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Theory of one-dimensional swelling dynamics of polymer gels under mechanical constraint
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Recently, the swelling kinetics of thin-plate gels with rectangular surfaces under mechanical constraint was
experimentally investigatefA. Suzuki and T. Hara, J. Chem. Phykl4, 5012(2001)]. In this system, the top
and bottom surfaces of gels were chemically clamped on the glass plates, and the gels could swell and shrink
only along the thickness direction when the osmotic pressure of the solvent is changed. Here, we analyze this
process using the linearized stress-diffusion coupling model of gels based on the two fluids model. The result
is somewhat unusual in that the time evolution of the thickness is described by a single exponential even
though the swelling is governed by the diffusion of solvent. This result and that the characteristic relaxation
time depends on the lengths of the rectangular surfaces and not on the thickness of gels agree well with the

experiment.
DOI: 10.1103/PhysRevE.69.041402 PACS nunm$)er83.80.Kn, 82.70.Gg, 83.10.Bb, 81.05.Z2x
I. INTRODUCTION proposed. In this model, the coupling between the solvent

. . i diffusion and the polymer stress are considdi).
A gel placed in solution absorlger desorbsthe solutions Here, we formulate the dynamics of gels using the stress-

and swells(or shrinkg when the temperature or the solution yigtysion coupling model, and calculate the swelling process
composition is changed. The dynamics of this process wag hin_plate gels with rectangular surfaces under mechanical

first analyzed by Tanaka and Fillmof®F). They considered . siraint. The result shows an unusual feature of the stress-
the swelling of a spherical gel and proposed the followingitt,sion coupling model.

equation(TF equation to describe the kinetics of swelling

2]

(21 1. The stress-diffusion coupling model

au(r,t)=V -o(r,p), (1) We first explain the stress-diffusion coupling model. Let

u(r,t) be the displacement of the point locatedrain the

whereu(r,t) is the displacement of a pointof the polymer  reference state and(r,t) be its time derivative[u(r,t)

network at timet, o is the stress tensor of the polymer net- =gu(r,t)/dt]. Let vy(r,t) be the velocity of the solvent. The

work, and{ the friction constant associated with the motion equations of motion which determingr ,t) andv(r ,t) are

of the polymer relative to the solvent. This equation ex-as follows[4]:

plained the characteristic feature of the swelling phenomena

of a spherical gefl3]; the relaxation timer is of the order of {ve—U)=-(1-¢) Vp, (2

d?/D, whered is the diameter of the gel aridl is the collec-

tive diffusion constant. V. (o-pl)=0, (3)
Recently, Suzuki and Hara reported the experimental re-

sults which cannot be interpreted by the TF equalfibp V-[¢u+(1-¢)v]=0. (4)

They studied the swelling kinetics of thin-plate gels shown in

F|g 1, where the top and bottom surfaces were Chemica”y'ere,{ is the friction constant associated with the motion of
clamped on the glass plates, and the gels could swell anéle polymer relative to the solvenp, is the volume fraction
shrink only along the thickness direction between the glas§f polymer,p is the pressure, aridis the unit tensor defined
plates. Experimental results show that the time evolution of

the thickness is well described by a single exponential and

that the characteristic relaxation time depends on the

lengths of the rectangular surfaces and not on the thickness

of gels: 7=DY(ay%+b,?) "%, wherea, andb, are the lengths

of rectangular surfaces.

The experiment of Suzuki and Hara cannot be described e
by the TF equation as we shall show in later sections. In fact, : -
it has been realized that the TF equation cannot reproduce , a0
general anisotropic deformations of gels such as the free | “x e
swelling phenomena of long cylindrical and large disklike i -
gels [6]. As an alternative, the stress-diffusion coupling
model, which are based on the two fluids model, has been FIG. 1. Model of the thin-plate gel.
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by Ijj=¢;. The first equation represents Darcy’s law for the Ill. THEORETICAL ANALYSIS OF THE SWELLING OF A
permeation of solvent through the gel network. The sec- THIN-PLATE-LIKE GEL
ond equation stands for the force balance, wheris the

stress of the gel network. The third equation stands for the Ve consider a thin-plate-like gel shown in Fig. 1. The top
incompressibility condition. and bottom surfaces of the gel are chemically clamped on the

The stresar is given by the constitutive equation for the 912SS plates, and the gel can swell and shrink only along the

gel network. Here, we use the linearized form for the stres§n€-dimensional thickness direction. We take the origin of
tensor: the coordinates at the center of the thin-plate gel.dgeby,

and Z, be the initial length of the edge of the gel. We as-
9 Uy I I 2 dUg sume that the thickness of the gel is much smaller than the
o =KX PV AR D =238/, (5 side length of the gel. We consider the situation that the
Kk K Xj ﬁXi 3 K an . . .
osmotic pressurg,, of the external solutions is changed
from O to py. Our objective is to find out the time depen-
dence of the thicknessc@) of the gel.
Now, since the gel is fixed at the glass plate, we can
G\ uy Pu, ap assume that the displacement vegtgy uy, u,) is of the same
X[ (K+ 3 axax | Gax x|~ ax (6)  order of the thickness of the gelt) :uy, uy, u,~c(t). There-
K KO ' fore, the terms ob,u; and d,u; are much smaller than those
From Eq.(2), the solvent flux relative to the polymer net- Of d:U;. In such a case, Eq6) can be approximated as
work is described as

whereK is the bulk modulus anc is the shear modulus of
gels. Equation$3) and(5) give

k

ap_ (K . é_lG) Uy . G( Uy . ﬁzux>
vsi_ui:_wﬂ. (7) ax 37 ax? (?yz 07
& 9% 2 2 2
. | +<K+9>< Fuy P )EGauX' 3
The volume fractiong can be regarded as constant in the 3/\dxady dxdz kY
linear analysis. Hence, the incompressibility condition, Eqg.
(4), is described as 4\ P ) 2
Ju Jvg @:<K+_G>_u%+e<(9_u2¥+_:2¥)
E{¢—'+(1—¢>—S'}:o. ®) oSy e
i 9% 9% G\[ #u #u #u
+|K+—= + —L |=G—, (19
Equations(6)—(8) are the closed set which determing ,t), 3/\dxdy dzdy 97

v(r,t) andp(r,t).

~ To solve the set of equations, we need boundary condi- 4\ Ay, Pu, Fu,
tions. There are two kinds of boundary conditions, each de- 0=|K+ §G 02 + 2T
scribing the mechanical condition and the condition of sol- X y
vent permeation. G\ Fu  Fuy )\ _ 4\,
~ (i) Mechanical condition. If the mechanical fortg act- Y | vy ayaz) K+3G) 2
ing on the boundary is known, the mechanical balance equa-

tion has to be imposed:

(15

(- pl) -n=f, for a deformable boundary. (9) Here, we have assumed that the presg(rey,z,t) is inde-
) . pendent ofz, since the equilibration time of the pressurezin
On the other hand, if the velocity of the gel network at thegirection is of the order of2/D and is negligibly small com-
boundaryvy, is known, the equation to be imposed is  pared with the characteristic time of the swelliaghich is
2
ag/D).
By eliminating the velocity of solvent from Eq$7) and
(i) Solvent permeation at the boundary. If the solvent car{8), we have
permeate freely at the boundary, the presguneust be con-

U = vy, for gels fixed to a boundary. (10

tinuous at the boundary. %ﬁ%ﬁz_uz: (1-4) (% %+%>. -
P = Pout fOr a permeable wall, (1) X y z { X y

wherep,, is the osmotic pressure outside the gel. Since|au,/dx| and [dl,/dy| are much smaller thafdl,/dz,
On the other hand, if the solvent cannot permeate througBndp is independent of, Eq. (16) can be approximated by
the boundary, the normal velocitys,—U) -n (n being the unit

vector normal to the boundayynust be zero. Using Eq7), o, (1-¢)?(Pp  &p
this condition can be written as 9z Iz 9x2 + (9_y2 : (17)
(Vp) -n=0 for an impermeable wall. (12 The boundary conditions are described as
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p(x= xay/2,y,t) = pg .
for the boundary at the side,
{p(x,y: +by/2,t) = pg Y
(18)
U(x,y,z= £ct) =
uy(x,y,z= ¢t

(19

Furthermore, since there is no external force acting on the
glass plate, the total force acting on the glass plate must be

zero. This condition is written as

by/2
f dXJ dy(o'zz_ p)z:tc =0. (20)
- by/2

From Eg.(15), we have
=A(t)z, (21)

whereA(t) is independent ok andy since the thickness of
the gel is uniform. Sincdau,/dx| and |auy/dy| are much

smaller thandu,/ 9z, o,, is given by

0yp= (K + gG>A(t), (22)

and Eq.(20) is written as

by/2
de dy pix,y,t). (23

(K + = G)A(t) =—
by/2

3

Equations(17) and(21) lead the following Poisson equation

for the pressure(x,y,t):

@ #p_
R RL Ul (24)

where

¢
(1-¢)

a(t) = A). (25)

This Poisson equation can be solved by the Fourier transfor,

mation under the boundary condition of Ef):
S 2m-1)=
POGY, D) =Po= 2 2 CnCOY —— X
m=1n=1 )

X co< My) a(t), (26)
bo

16 <(2m— 1)7T>2
(2m-1)(2n-1)7° ag

_ 21-1
+<—(2nb D”) } . (27)
0

Equation(23) gives

where

Cm n= (_ 1)m+n

;_ 0 for the top and bottom boundary.
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- 6
(K+ G)A(t) prat)S 3 {(m- 1)(24n— D}

m=1n=1

x{((Zm— 1)77)2+ ((Zn - 1)77)2}‘1
d bo
(28)

Equations(25) and(28) give the following relation:

-1
At) = po<K + ge> - A®b), (29)

where 7 is the relaxation time defined by

64 (2m-1)r\?
lmz_ln%{(Zm— (2n- 1)712}2{< ag )

—r\2] 1
+(%>} . (30)

Here,D is the collective diffusion constant of gels defined by

D=(1-¢)(K+4G/3)/{. From Eq.(29), we can solveA(t)
as follows:

-1
A(t):pO<K+gG> {1—exr<— E)} (31

Here, we used the initial conditioA(0)=0. Therefore, Eq.
(21) leads

-1
u,zt) = p0<K + gG) {1 - ex;{— 3) }z. (32

The time evolution of the thickness of gel&) is obtained as
follows:

4 \1
%:)):1+po<K+§G) {1—ex;<—£>}- (33

These results show that the time evolution of the thick-
ness of gels is described by a single exponential and the
Characteristic relaxation time depends on the lengths of the

rectangular surfaces and not on the thickness of gels.
From Eqs26), (27), and(31), the time evolution of pres-

sure in gels are solved as follows:
(X Yat) poll__{E Ecmn <(2m_1)ﬂ-x)
D7 me1nm1 Qo
S<(2n—l)1-r )} p( t)]
xXcod ——vy| rexpl—— | |. (34)
bo T

From Egs.(13) and (14), the displacements, and u, are
described as follows:

14
U(X,Y,2,t) = Ea_(x YD(c-2), (35)
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14dp ) experiment is calculated to be about 0.026 thmin.
uy(X,y,zt) = ga—y(X,y,t)(Co- ). (36) The time evolution of pressure of gels are calculated by
Eq. (34) and shown in Fig. 3.

Here, we use the boundary conditions described by(Eg). The profiles of the time evolution of the pressure are in-

variant during the swelling process, and this is one of the
special properties of the diffusion in a single exponential
swelling process.

We now compare the result of the present analysis with
the experiment of Suzuki and Hara.

Equation(33) shows that the time evolution of the thick- V. DISCUSSION
ness of gels is described by a single exponential. This agrees

well with the experimental resulfg=ig. 2(a) of Suzuki and ) 5 ) .
Hara[1]]. By comparing the theoretical results with the ex- SCalé is shorter thafi=co/D. The swelling process involv-

perimental results, we can see that the swelling ratio in thdd this fast process is schematically shown in Fig. 4. In the

. 2 .
equilibrium state is related to the ratio of the elasticity angSnort time scale of~ c;/D, the gel swells at the side bound-

the change of osmotic pressure of gaigK+2G)™%. From @M, The volume chang@V s about AV=Dtico2mag

2 H 2
) . =cgay. Hence, the change of the thickness A8//
thf )e:»l(perlmental results of the swelling procegg(K :cg?oao which can be neg?ected for a thin gel. In th:%ime
+§Sigurzag bsehg\?vlgu':ﬁteedsitzoebge?)té%l:ﬂte%lfé of the relaxatio[sl)caIe oft~a(2)/D, the solvent can diffuse from the side
time. We plottedsD against(ag2+by?)L, as it was done by oundary into the center of the gel, and the change of the

Suzuki and Hara. The relaxation timreis nicely in propor- thickness of the gel is observed in this time scale.
X PP e N y In prop We have shown that the change of the gel thickness is
tion to the values ofa,“+b,°)™ in agreement with the ex-

. ; : described by a single exponential function. This comes from
perimental result4Fig. 3b) of Suzuki and Hargl]]. By  ihe fact that the gel is constrained by rigid glass plates. If the

comparing the theoretical results with the experimental one el is constrained by flexible impermeable membranes
we can see that the collective diffusion consténin the

IV. COMPARISON WITH EXPERIMENTS

In this paper, we have ignored the fast process whose time

A A A A

[z 7]

Lz 2z

2
FIG. 3. The time evolution of the pressum in gels (p t~ad/D

=0:white— pg:gray) for various widths of the glass plates with A

ay=4.2,9.3,19.3,35.8 mrifrom upper figures to lower ongsnd

fixed by=26.0 mm, at times t=0,3200,6400,9600,128000, FIG. 4. The schematics of the swelling process of the gel con-
16000 min(from left figures to right ones strained by rigid glass plates related to the time scale.
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| — )= 1-3 3 (cymo—— 10
\ PR, =Po m=1n=1 (2m - 1)(2n - 1)772
g\/\_ijvco% s((2m—1)7r ) S((Zn—l)q-r )
X co X |co y
A 4 Q bo
t
E::j xexp(——)] (42
¥ Tm,n
t~ad/D where 7, , is the multimode relaxation time:
2m-1m\? [(@2n-D7\?|™?
Tm,nE D_l{<( )7T> +(( )77) } . (43)
FIG. 5. The schematics of the swelling process of the gel con- o bo
strained by flexible impermeable membranes related to the tim%rom Eq.(40), the thickness of the gel is given by
scale. ' '
c(x,y,t) 4 \71t
shown in Fig. 5, the swelling behavior will be quite different. Co =1+ (K " 3G> POy D). (44)

For this case, the component of displacement vectaoy . . L
depends orx andy coordinate, and we should solve the Therefore, when the gell is constrained by erX|bIe imperme-
pressure p=p(x,y,t) and the displacement vecton able membra_mes, the thickness of_the gel is not u_nlf_orm and
=[U (X, Y, Z,1), Uy (X, Y2, 1), Uy(X, Y, Z, D)]- the process involves many relaxatl(_)n_ times. This is in sharp
From Eq.(15y), we have contrast to the gel constrained by rigid impermeable plates.

u, = A(X,Y,t)z. (37) VI. SUMMARY

Thus oz is given by In this paper, we have calculated the swelling process of

4 thin-plate gels with rectangular surfaces under mechanical

0= (K + gG)A(X,y,t)- (38 constraint using the linearized stress-diffusion coupling

model of gels based on the two-fluid model. We have shown
Since there is no external force acting on the flexible memthat the theory reproduces several characteristic features of
brane,o,,—p must be zero: experimental results, such that the time evolution of the
thickness is described by a single exponential and that the

722~ PXY,1) = 0. (39 characteristic relaxation time depends on the lengths of the
From Egs.(37)—(39), we have the relation rectangular surfaces and not on the thickness of gels.
4\ These results show that the stress-diffusion coupling
_ 4 model of gels, which considers the relative motion between
= <K+ SG> P(X,y.1)Z. (40 the solvent and the polymer of gels together with the me-

chanical coupling between the solvent diffusion and the
polymer network stress, correctly describes the dynamics of
the general anisotropic deformation of gels.

From Egs.(17) and (40), we can show that the pressure
p(x,y,t) satisfies the following diffusion equation:

@—D(@_'_@)

= 41
at axe  ay? (4
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