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Density functional study of the phase behavior of asymmetric binary dipolar mixtures
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Using density functional theory in the modified mean-figdMF) approximation we study the phase
behavior of asymmetric binary mixtures of equisized dipolar hard spheres with different dipole moments in the
fluid phase regime. We focus on “dipole-dominated” systems where isotropic attractive interactions are absent.
Despite these restrictions our results reveal complex fluid-fluid phase behavior involving demixing and first-
and second-order isotropic-to-ferroelectric phase transitions the relative importance of which depends on two
“tuning” parameters, that is, the paramelemeasuring the ratio of the dipolar coupling strengths, and the
chemical potential differencAu controlling the composition. The interplay of these effects then yields three
different types of phase behavior differing in the degree to which demixing dominates the system. A generic
feature of the resulting diagrams is that the isotropic-to-ferroelectric transition is shifted towards significantly
higher densities compared to the one-component case, and is therefore destabilized. Furthermore, demixing in
the MMF approach turns out to be always accompanied by spontaneous ferroelectricity, which is in contrast to
recent integral equation and simulation results for the limiting case of a mixture of dipolar and pure hard
sphereqT"=0).
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[. INTRODUCTION zero field. Choosing this somewhat minimalistic model,
) _ ) _ which lacks any dispersive interactions or asymmetric steric

Understanding phase properties of fluid mixtures whosgnteractions due to different sizes of the spheres, thus permits
components carry permanent dipole moments is important igis to study directly the influence of dipolar interactions on
various contexts. For example, molecular polar mixtures ar¢ne mixture’s phase behavior. In fact, recent researcbnen
intrinsically interesting as solutes since their solvation propcomponenDHS fluids(and related model systeirisas dem-
erties can be tuned by varying the compositidf®?]. In order  onstrated that the long-range and highly anisotropic character
to make use of these properties, however, it is vital to knowof dipolar interactions yields new, unexpected phase behav-
under which thermodynamic conditions the mixtures demixor [10-14, including the possibility ospontaneous polar-
and/or condensate. Another example are ferrocollg&j4] ization in dense, strongly coupled DHS fluid45-22. In
which are usually polydisperse and can therefore be regardadew of these findings, central topics of the present study are
as(multicomponentdipolar mixtures as well5,6]. Depend- the appearance of such ferroelectric phases in two-
ing on details of the colloidal stabilizing procedure and oncomponent fluids, and their interplay wittemixingtransi-
external conditionge.g., presence of an external fipler-  tions expected to take place for highly asymmetric mixtures.

rocolloids can exhibit both condensation and demixing tran- e address these questions using density functional
sitions, where the latter are particularly important as an€ory in the so-called modified mean-figdMF) approxi-
method to size separate the system. Despite these motiv 1ation, where the pair correlat|on' functignis replaced by

e Boltzmann factofcontrary to simple mean-field theory,

tions, there are so far only few theoretical studiés9] on whereg is set to ong The same ansatz has been previously
the phase behavior of such mixtures, partly because the trc_a mployed to study phase properties of one-component dipo-

ment of th? Iong-range anisotropic dlpolar Interactions in, r fluids[19,20 and fluids with spin-dependent interactions
computer simulations and other theoretical approaches is still | ., 45 Heisenberg spin fluid87]. Regarding the perfor-

involved. Consequently, a more precise understanding of thg, o e of MMF theory for dipolar fluids, results obtained so
link between the mixture’s microscopic features such as presg, [19-21,23-2F suggest that the theory does reproduce
ence of dipolar interactions of various strengths, van dep,,in features of the phase behavior such as the appearance

Waals-like forces, size asymmetry betwe.en the components spontaneous polarization and the prese(agsence of
etc., and the macroscopic pha_lse pehqvpr, eg. the aPPEWrdinary condensation transitions in pure Stockmaies)
ance of a demixing transition, is still missing.

Th £1h Ki i il thi fluids, whereas more subtle features such as dipolar chain
e purpose of the present work is to contribute to fill this¢, . ,4i0n observed in computer simulation studies of highly

gap by an ir)vestigation_of one of the most simple r_ngdels f.ordiluted dipolar system§10-12,14 are not captured by the
a dipolar mixture, that is, a b"f‘ary mixture of equngd di- approach. On the other hand, the great advantage of MMF
polar hard sphere®HS) with different dipole momentsin theory (compared to computer simulations or other liquid-
state approaches such as integral equation theasi¢lsat it
is simple to apply and thereby allows to quickly scan phase
*Electronic address: gabriel.range @fluids.tu-berlin.de diagrams for large portions of the parameter space. Thus, the
"Electronic address: sabine.klapp@fluids.tu-berlin.de approach seems to be particularly useful to get a first idea of
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the influence of different dipolar interactions on the mix-
ture’s phase behavior. pall, ®) = paas(w), fdwaa(w) =1. (2.9

The rest of the paper is organized as follows. In Sec. Il we
formulate our model and derive the MMF expression for theln Eq. (2.4) a,(w) is the orientational distribution function,
free energy functional, focussing dimid phases with isotro- which is normalized to one. For isotropic states the orienta-
pic or orientationally ordered characté@ec. Il A). The re- tional distribution is constant, that igg(w)=1/(47). Devia-
sulting functional is a generalization of the correspondingtions from that value indicate the presence of orientational
expression for pure dipolar systems derived earlier in Reforder, which, for the states considered, can be expected to be
[19,20Q. After defining conditions for phase equilibriec. axially symmetric. As a resuliy,(w) can be expressed via an
[1B) we also present in Sec. Il C an appropriate stabilityexpansion in Legendre polynomiaf,
analysis which allows us to locate critical lines of the mix-
ture. Results are presented in Sec. Il where we start by
briefly recalling the one-component system and subsequently
discuss in Sec. Il C different types oflensity-temperature
and concentration-temperatygghase diagrams obtained for where the expansion coefficients,; are connected to the
dipolar mixtures. The topology of these diagrams turns out t@rder parameterB,, by
depend both on the interaction paramdigiwhich measures 1 5
the ratio of the dipolar coupling strengjrend on the chemi- P =f dXa ()P (X) = ——— ay. (2.6)
cal potential differencé\ . controlling the composition. To -1 2l+1
complete the picture we also present our results in th
density-concentration plarn&ec. Il D), which turned out to

oo

2ma(w) = ay(coS 6) = % + > ayPy(cosh), (2.5
=

?Nith these definitions, the isotropic phase is specified by

be a particularly useful representation to identify differenced =1=0: I-€-,¢a(x)=1/2,whereas a phase with nematic ori-

between the various phase properties observed. Finally, ofntational order would be characterized By,=0(+0) for
conclusions are summarized in Sec. IV. odd (even |, i.e., a,(X) = a,(—x). Finally, if P,,# 0 for all I,
the system is in a ferroelectric phase.

Il. MODEL AND METHOD A. Modified mean-field theory

We consider a binary mixture of two specigsandB) of The two main difficulties arising in theoretical treatments
dipolar hard spheres with equal diametersbut different  of dipolar fluids are the angle dependence of the dipolar po-
dipole momentam, and mg. The pair potential for two of tential on one hand, and it’s long-range character on the other
such particles at positions andr, is given by hand. In the present work we treat these problems in the

framework of a density functional approach, which is a gen-
Uap(T 12, @1, @) = U'Nr 1) +UIP(r 1 01,005),  (2.1)  eralization of an earlier study by Groh and Dietrit®,2Q
on one-component dipolar fluids. ‘ '
where r,=|r5=|r,—r4| is the particle separationw We start by considering the free enery F'+Fs+FdP
=(6, ¢) represents the orientation of a dipole in a spatiallyof the mixture which can be separated into the ideal gas part
fixed coordinate system, and the subscripndb denote  (F), the hard sphere excess paR'), and a part which
the components considerdeé(b)=A,B]. The repulsive stems from the dipolar interactiofF®P). The ideal part is
hard sphere interaction and the dipolar interaction ardiven by
given by pid 1
— =2 Pin(pAd - 11+ 2 P2 | dka(0in(2ay (),
r12< o V a :8 a B -1

h _1%
us(rlZ)_{O, f> 0. (2.2 (2.7

whereV is the volume,A, is the thermal wavelength, and
B=1/KkgT is the inverse temperature. The second term in Eq.
(2.7) accounts for the loss of entropy in anisotropic configu-
WP (1 1001, ) = ma3mb[m(wl)'m(w2) rations([it vanishes fora,(x)=1/2]. N N
o As to the hard-sphere excess part, it is sufficient to use a
Cafs PR " one-component approximation, since we are dealing solely
3M(wy) - FrallMlwy) - F1oll, (2.3 with equally sized species in this work. We choose the
Carnahan-Starling expressigp6]

and

where M(w) is a unit vector in direction ofw and 7,
=r1o/r1 Fhs _p4n- 37

In the present work we limit ourselves to the treatment of v Eﬁ (2.9

. . . . 7

spatially homogeneous, but possibly orientationally ordered
phases. Solidlike structures or domain formation are thus newhere the packing fraction=(m/6)po? depends on the total
glected and the singlet density of the system can be writtenumber densityp=pa +pg. _
as Finally, the dipolar contributionFd? is treated in the

041201-2



DENSITY FUNCTIONAL STUDY OF THE PHASE.. PHYSICAL REVIEW E 69, 041201(2004

framework of themodified mean-fielépproximation where *
the pair distribution function is set to its low-density limit, Tapym = 2 T (mumy)™, (2.18
ie., n=1
Jab(T 12, 01, @5) = €XP(— BUgy(T 12 @1, ®5)) . (2.9 where theﬁl(r':]) are temperature-dependent coefficients result-

. L i ing from the integrals in Eq2.10 over thenth-order expan-
With this simplification, one can derive analogous to thegjon terms of the Mayer functiofcf. Eq. (2.19]. Specifi-

one-component cag@7-30 cally, one has fon>1
. 1 B
Fdp=— = | dr dw,dr ,dwypa(r 1, @) pp(F 2, ) ~m_ L+ 1 1
2,8 " 1 14l 2 2Pa\! 1, W1)Pp\! 2, W2 ulm = 2,34772“!( B) ) drl2 ig—z
Xexp(= Bu(1 1) FoR(r 15,01, @,), (2.10

X f dw,dw,dw,,P(cos 0;) Pr,(COS 6,)
where

£IP(r 15, 1, ) = exp(= BUIP(r 15, 01, @5)) =1 (2.11) X DY w1, g, w1). (2.19

is the Mayer function. To simplify the expression 6t we  The casen=1 requires special care, since the integrand of
rewrite the dipole potential in rotationally invariant form, T'Y contains the dipolar potential itself and is therefore long
— ranged. As shown in a detailed analysis in Rdf9], the
ug‘é’(rlz, Wy, wp) = aTb(Dllz(wlv(”ZawlZ)- (2.12 result of this integ_ration depends on .the shape of.the sample.
Mo For the shape of interest here, that is, an ellipsoidal volume

where w,, describes the orientation of,, and inhibiting domain formation, the result of the integration is

~ ’ 2 T = - 8_77
D114 w7, g, w1) =~ (4m)%? 1_,:_)@112(601,&’210’12) 1 27°

(2.13 The remaining integrals in th@> 1) coefficients(2.19 can
be solved more straightforwardly. To this end one expresses

given by[31]

(2.20

47
Dy (@3, 03,010 = D Cllylol;mymm) Pi(cos 0) = o+ 1Y|o(w), (2.21
mymym
% YIlml(wl)lemz(wz)Yrm(wlz)- and calculates theth power of®,;, by applying the prod-

uct rule for rotational invariantésee Eq(B8) in Ref.[19])
(2.19 iteratively. Using then the orthogonality of the spherical har-

In Eq. (2.14), the C(I4l5l ;mym,m) are Clebsch-Gordan coef- monics[31] and the relation

ficients andY)(w) are spherical harmonics. C(1,1,0;000 = (- 1)'(2l + 1)-1/2%2 (2.22
In order to express the Mayer function, Eg.11), in ro-

tational invariants we employ a Taylor expansion in powers(see Eq(A.157) in Ref.[31]), 4, being the Kronecker sym-

of —BudP, yielding bol, one finds that

=0, (I+#m). (2.23

i o 1(-Bmmy\"~
fgg)(rlza w1, @) = E _(—a> 101,05, 017).

n=1 N! r?z As a consequence, the quadratic expressiorFfirin Eq.

(2.15 (2.16) becomes diagonal ih that is,

oo

Inserting Eq.(2.15 and expressioné2.4) and (2.5) for the Fap
singlet density into the MMF expression & (2.10), it 7—% Papbg Uah,| @ | @ | (2.24
can be written as a quadratic form in the density coeffi- @ h
cients appearing in Eq2.5), that is, where
Fdip *© %
v 2 Papb > Uabimai m, (2.16 Uap) = > U™ (mamy)", (2.25
ab |,m=0 n=1
with and theul(”) are given by Eq(2.19 with |=m.
a0=1/2, (2.17) In practice one has to truncate the expangiib) of the

Mayer function at a finite valu@,,, A truncation atny,,
which is still exact within the MMF approximation. The =1 would imply that the expansion of the Mayer function
quantitiesti,y,,, appearing in Eq(2.16 are defined by reduces to the linear term, i.e., to the dipolar potential itself.
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TABLE I. Numerical values of the|” for I,n<4 ing the chemical potentialg, (instead of the densitigs,) as
thermodynamic variables. The grand free energy density
n=1 n=2 n=3 n=4 functional is given by
87 8 B°
1=0 0 — 0 P ) Fid + Fhs *°
3 30° 2597 v = N +> PanE Uap,| Xa, 1| ~ > HMaPa-
8 0 161 182 ab =0 a
= " 225605 0 (2.26
3
=2 ﬂ% 0 _ﬁﬂg Q) becomes minimal for the equilibrium configuration
37530 612590 [pa,» @a(X)] corresponding to the séte,, T,V). This principle
167w B2 leads to the following Euler-Lagrange equations for the sin-
=3 0 0 357 25600 0 glet densities
8w p° a(QIV) Q1Y)
|=4 0 0 0 - = =0. 2.2
992 2590 PPN~ (2.27)

One can show that this corresponds to the usual mean-fiefgMPloying now the functiona(2.26, the first member of
approximation[27] where the pair distribution functiogis ~ Ed- (2.27) yields the conditions

set to ongand, consequentlyy, -, =0). However, the major

drawback of this approximatio@in contrast to themodified 9 (Fid +Fhs

0

) + 2 pp2, Uap @a @) — Mo = 0.
b I=0

mean-field approximationis that the dipolar contribution S )
FdP to the free energy vanishes for isotropic phases, which is
clearly unphysical. In this work we choosg,,,=4, the nu- (2.28
merical values of thelf“) for I,n=<4 are given in Table I.

d pa

The minimization with respect to the orientational distribu-

B. Equilibrium configurations and phase equilibria tion a,(x) has to be performed obeying the norm condition in

In order to locate phase coexistences it is generally mor&q. (2.4). Solving the resulting expression with respect to the
convenient to employ the grand canonical ensemble involverientational parameters,, one obtains

l oo
f dXP|(x)exp[— > Bop (2i+ 1)Uab,iab,ipi(x)]
B 20+17 b i=1

Qg | =

(2.29

-1

2 1 *
f dx exp| = 2 Bpp> (2i + 1)Uqpiap, Pi(X)
b i=1

The coupled equation®.28 and (2.29 can be solved nu- ferroelectric(p> p;.) state. Based on these results we expect
merically by employing a multidimensional Newton- similar behavior to occur as well in our dipolar mixtures,

Raphson algorithm, yielding the equilibrium configuration where, however, the critical line will also depend on the
for given (u,, T,V). In order to identifycoexisting statest  composition. In order to get an analytical expression for this
given chemical potentialsc, and ug, we combine Egs. critical line we expand the orientational part of the free en-
(2.28 and (2.29 with a further equation reflecting that the ergy,

pressurep=—0%%up, ug, T)/V=-Q[p%, a5{x)]/V of both

states have to be equal as well. AF pa [ *
v > f dXara(¥)IN(2aa(X)) + 2 Papp . Uapa @)

C. Critical line a BJa ab =1
In their MMF study of the phase behavior of one- (2.30

component dipolar fluids, Groh and Dietricii9] have

shown that these systems exhibit at sufficiently high temfor small deviations from the isotropic state, i.e., smaj|.
peratures a critical lingy(T) at which the system undergoes A Taylor expansion of the entropic part af~/V up to sec-
a second-order transition from an isotrogje<p;) into a  ond order yields
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N _ For the following analysis it is more convenient to rewrite
22 dxag(9In(2ag(X) i ity=
B Xargl X X the (M)),, in terms of the total densitp=p,+pg and the
a - concentrationga =pa/p, cg=pg/p=1-Ca. This yields
1 oo
Pa 1
=2 dX(‘*‘Ea |7)|(X)> 2 pc
a BJa 2 57 PPCalan,| + = p°CACBUAR,|
M C2+1 B ’
o0 I:
2 pc
X|n(1+22 (07 |7D|(X)> 2C CalU 2C2u +_u
= a, pCglallpa P CeUss| 2aA+1 8
=g (2.39
=3 p—a2< )a§1|+ (2.31)
a Bz \2+1 The rigorous condition for the isotropic configuration to be

where we used the expansi¢2.5) of the orientational dis- sta_ble is thatM, is. .positive definitefi.e., both eigenval_ues
tribution function, the expansiofil/2+&)In(1+2¢)=¢&+& )\i(l=1_,2) are positivé for_e\_/efyl. However, our num_encal
+0(&, and the orthogonality of the Legendre polynomi- ana!yss _has" shown that it is in fact enough to consider only
als. The dots in Eq(2.31) stand for higher order terms. the “leading” matrixM,, since theM,., are always positive

; : definite as long as this is true foil ;. As a consequence, the
Using Eqs.(2.30 and(2.31) AF/V can be rewritten as condition for criticality is that M; becomes positive

AE & semidefinite, i.e.,
v 2 2 (M) apaajap). (2.32
I=1 ab A =0, A,>0. (2.35
where the elements of the symmetric matritgsare defined
by Applying this criterion to the matrix at hanaf. Eq. (2.34

with 1=1] one finds that an asymmetric mixturd <1))
&1( 2 ) (1=1). (2.33 with given concentration € c, <1 and given temperatufe
B\2l+1 B orders spontaneously at densities above the critical density

(M) ab= papplUan) + Sap

2 2/ 2 2
—5(Calaa 1 + CaUgg 1) ~ 5V(Calaa 1 *+ CgUgp 1) — 4CaACg(Uan 1Ugg,1 ~ Uag 1)

porit = (2.39
et 2/3caCg(Uan 1Ugg 1 ~ uiB,l)
[
The limiting casex, — 1 (pureA fluid) andc, — 0 (pureB - (Mas
fluid) have to be treated with special care, since both nomi- a= Man |- (2.39

nator and denominator in E¢2.36) vanish ifc,=0,1 (i.e.,

cg=1,0. However, applying the rule of de I'Hospital to Eq. . I . .
5 ) PPYINg P q Interpreting\ as a vanishing “restoring force” against fluc-

(2.36 yields tuations with directionar [32,33, it follows that this direc-
tion can give information on theharacterof the phase tran-
o 213 (cn—0.1) sition in the space of order parameters. In that sense one
Perit = BCaUpa 1+ B(1—CalUgg 1 AT concludes from Eq(2.38 that while crossing the critical
' ' (2.37) line, the system will order such that the leading order param-
' etersay ; and ag ; are coupled by
which is equivalent to the known result E(/.10 in Ref. o = M)
[19]. For the other limiting case, that is, mixtures with —Bl__Bl_ 1M (2.39
=1 (and thereforauaa 1 =Uag 1=Ugp 1), condition(2.35 di- apn1 Par —(Mypas
rectly leads to the one-component case, regardless of the
concentratiorc,. Inspection of the matrix elements at the critical line shows

Additional information on the mixture’s behavior at the that(Mi),g is always negative wheredl ), is positive.
critical line can be obtained via an analysis of the eigenvecTherefore, Eq. (2.39 implies that the isotropic-to-
tors of M ; directly atp.i. Under these conditions, the eigen- ferroelectric transition in our dipolar mixtures is always
vector @=(ap 1,ag1)" associated to the vanishing eigen- characterized by a parallel ordering (ag/aa;
value\ (which causes the determinant to go to 2ésagiven  =Pg 1/ P, 1>0) of both species, with the ratio between the
as order parameters given by E@®.39.
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0.7 - - - T IEAR - - pic to the ferroelectric fluid is continuous in all order param-
4 2 eters, resulting in aritical line as described by Eq2.37)
for cy— 1.

It may be noted that the MMF theory does not capture the
full fluid phase behavior in the sense that dipolar chain and
network formation processes observed in computer simula-
tion studies of dilute, strongly coupled dipolar systems
[10-12,14 do not appear. On the other hand, a feature cor-
rectly reproduced by the MMF theory is the absence of an
ordinary condensation transition between an isotropic gas
and an isotropic liquid in dipolar hard sphere systems with-
out any additionalisotropig attractive interaction§l3,14].
Finally, the spontaneously polarized fluid phases as predicted
by the MMF theory have also been observed in computer

0 01 02 03 04 05 06 07 08 09 1 simulations[15-18, and integral equation studi¢®2], even
p* though a comparison of ferroelectric transition temperatures
indicates that the MMF theory seriously overestimates the

FIG. 1. Phase diagrams of twidecouplegl one-component flu-  tendency for long-range ferroelectric ordgas one might
ids with interaction ratid’=0.75 in the density-temperature plane have expected
(T"=kgTa®/m},p"=po°). For explanation of the lines and sym-  Since phase diagrams in the density-temperature plane are
bols, see main text. easy to understand we will employ this type of representation

also in our discussion ahixturesof A and B particles with

Ill. RESULTS interaction ratiol’. The density axis will then be thtotal

densityp” of the system. In order to control tleemposition
of the mixture, say, the concentration Afparticlesc,, we

In order to characterize the phase behavior of the systewill employ the difference between the chemical potentials,
we use the following reduced quantities: the temperaturgpecifically the parametehu’ = ug—pu,. In this way the
T :kBT(r3/m,§, measuring thermal energy versus the dipolanimit Au” — — corresponds to a situation wheBeparticles
pair energy for two tangent spheres of speéién a parallel  are completely expelled from the system at all temperatures
side-by-side configuration, the densitipg=p,0° and the (cy=1 andp’=p,), yielding the density-temperature phase
chemical potentials s, =In(A3/6°) - Bu,. The total reduced diagram of a pureA fluid shown in Fig. 1. The opposite
density and the concentration of specieghen follow as behavior is found in the limitAx" — o wherec,=0 (i.e.,

p =pa+pg andca=pa/p. Finally, the different dipolar cou- p*=pg) at all temperatures and the phase diagram reduces to
plings in the mixture are specified by the parameler that of a pureB fluid. The latter is indicated by the dashed set
:mélmf\, measuring the ratio of the dipolar coupling of lines in Fig. 1. The phase diagram and specifically the
strengths within specie& andB, respectively. It is sufficient reduced tricritical temperatur'Ez*Tch of a pureB fluid can be

to consider mixtures with & I'< 1 (the behavior at largel"  obtained byscaling the temperatures of th& system by a

A. Reduced quantities

then simply follows from interchanging andB). factor of I': Sinceﬁu/(iig(rlzv"’1,wg):(,B/F)ugi’B’(rlz,wl,wz),
a configuratior] p, a(x)] will be stable for a purd fluid at a
B. Background: The one-component case temperaturd T’ if it is a stable configuration for a pur

o : : L : fluid at the temperatur&".
Before considering dipolar mixtures it is instructive to P

briefly discuss the MMF phase behavior of one-component
dipolar hard-sphere fluidgpreviously obtained in Ref.
[19,20). Results are shown in Fig. 1 where the full lines
combined with the upper dotted line correspond to the phase agq reasoned in Sec. Il B the chemical potential differ-
diagram of a puréA fluid in the density-temperature plane. gncea ;" can be used as a “tuning” parameter controlling the
Disregarding any solid structuréshich are not captured by  change of the density-temperature phase diagram of a dipolar
the present approagthere are two phases involved, an iso- pixiure with fixed I’ from the pureA to the pureB case
tropic gas (IG) with zero orientational order parameters (Au' — ). Investigating now “true” dipolar mixtures with
(aa>1=0) appearing at low and intermediate densities and ginjte values ofAx" for a range of interaction parameters 0
ferroelectric Ii'q.uid(FL) with ap =1>0 a*ppearing at higher < <1 it turns out that one can distinguiiireeregimes of
number densities. Below the temperatliigp, related tothe \hich differ in the types of phase behavior encountered
tricritical point (TCP) of the pureA fluid, the transition be- by the systems on their way fromA to B. Characteristic
tween the isotropic and the ferroelectric phase is charactefeatures of each regime are discussed in the following para-
ized by large jumps both in densitgee gray regions in Fig. graphs for exemplary values df. For reasons discussed

1) and in the order parameteds, ;. Increasingl” towards  above we start by considering phase diagrams in the density-
Trcp,, the differences between coexisting phases vanish, an@mperaturgand concentration-temperatyglane. In order

for temperatures abov'éfrCPA the transition from the isotro- to better understand the “global picture,” however, we

C. True mixtures

041201-6



DENSITY FUNCTIONAL STUDY OF THE PHASE. PHYSICAL REVIEW E 69, 041201(2004

0.7 T 07— .
0.6 06 | . :
e TP §
. 05 L 05 1 ‘
!
0.4 04 B | of ]
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FIG. 2. Phase diagrams of a dipolar hard-sphere mixture with L 1 |
interaction ratiol’'=0.75 and chemical potential differendieu” -5 0 5 10
=-2.0 in the density-temperature plafeft) and the concentration- H*
A

temperature plangight).

. . . ) ) FIG. 3. Polarization order parameters and composition as func-
present in Sec. Ill D additional diagrams in the density-iions of 4 upon crossing the critical lin€l'=0.75, Ay’ =-2.0,

concentration plane. T"=0.65>Tycp). The upper dashed line shows the numerically ob-
o tained values for the ratiBg ;/ P, 1, which coincides at the critical
1.I'=0.75 Tricriticality for every ca line with the analytically obtained valuésee circlg from Eq.

The casd’=0.75 is typical for systems where the dipolar (2-39-
li t ths withi d in bet handB i .. . .
COUpTN STENGHs Wi aTC 11 HE ST Thanc = Species fluid phases is kept as long Ag:" is not too high. The main

are still quite similar. Increasingu” from its lower limit —o o f chani “in thi ime is that th
(pure A fluid), one encounters at first the phase behavioffect of changingiin this regime is that the temperature
displayed in the two parts of Fig. 2. Values of the densitied©lated to the TCP monotonically decreases, accompanied by

related to coexisting and critical statésee left-hand side & decrease of the corresponding values,0and an increase
(Ihs) of Fig. 2] are still very similar to the pure case, and the of the composition dlﬁergnces bet\{vegn. coexisting phas*es be-
only significant feature identifying the system as a mixture ig@W Trce Only at very high(but still finite) values ofAu

the appearance of small changes ampositionat the (Fig: 5 one encounters a new topology involving, in addition
isotropic-ferroelectric transition. The amount of these!© the TCP, &ritical point (CP) separating two ferroelectric

changes can be seen from the right-hand itig of Fig. 2 phases with different densities. However, as seen from the

displaying the values of the parametgrrelated to coexist- rh§ O.f Fig. 5 the most significant diﬁeren(?e between thFT' co-
ing and critical states. Due to the small valuesgf’ both existing phases is in fact the large gap in the composition.

coexisting phases are clearly dominated Ayarticles(c, ¥Ve thlus c_anﬂ C%nCIUde that the _pfﬂa?; transition within the
~0.5). but the phase even more saturatedifs the ferro-  eIToelectric fluid state is essentially demixingtransition,

electric phase. This is due to the stronger dipolar couplin riven by high valugs oy~ which fayors theB SPECIES SO
betweenA particles and the higher density of the ferroelec- trongly. that coexistence O.f a B-rich fe_rrogle(_:trlc liquid
tric phase. Both effects yield a stronger effectigmean (FLg) with an even denseh-rich ferroelectric liquid(FL,)
field. The typical behavior of the leading orientational orderbecomes possible.

parameters, ; and Pg ; upon crossing a critical line is dis- 07 ———— 07—t
played in Fig. 3 for an exemplary temperature. Clearly, the i :
two order parameters have the same sign, which is consister
with the analysis in Sec. Il C and implies that the two species ¢
orderparallel. From a physical point of view, we understand
this feature as a consequence of the “cross” effective field.
experienced by thémore weakly coupledB particles as
soon as thé\ particles start to order. The other curve in this
figure represents the behavior of the concentratjgrshow- 0.4
ing that the composition of the mixture variesntinuously
(as does the total densjtywhen the system enters the ferro-

06 | 1

05

03 L 1 L L

0.3

electric state: . . . 0 02 04 06 08 1 12 0 02 04 06 08 1
Changes in the phase diagrams induced by further in- o* &y

crease of the chemical potential difference, i.e., by a stronger

and stronger favoring of themore weakly coupledB spe- FIG. 4. Same as Fig. 2, but foAx =3.0. The density-

cies are depicted in Figs. 4 and 5, respectively. Specificalltemperature diagram contains the results for the pufiiid as a
from Fig. 4 it is seen that the general topology involving two reference.
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0.7 —— 07 ——— 0.7 —— 07
; : 07 :
g : o :
0.6 3 B 0.6 M B 0.6 | 05FIG, LY i 06 [ i
" ¢ * " 03004 08 12
E: 05 | 1 Ry 05 - B E: 05 | _::FLBCP FL,
: TCP :
04 | ] 0.4
FL,
03 C 03 o Ll v o
0 02 04 06 08 1 12 0 02 04 06 08 1 0 02 04 06 08 1 12 0 02 04 06 08 1
p* A p* Co
FIG. 5. Same as Fig. 2, but fdru'=8.0. FIG. 6. Phase diagrams fdr=0.60 andAx"=3.0. The inset on
the lhs additionally contains the density-temperature diagram at
It is clear that the demixing CP must disappear agair?'“ =13.

whenAy” is pushed towards even higher values where the

behavior of the mixture approachpsr definitionenthat of — magnetic Cl observed in a Heisenberg spin fluid with
the pureB fluid. Practically, this happens such that the tem-purely repulsive spherical interactiofi27,34, and spatially
perature of the triple poinlG)-(FLg)-(FL,) moves towards confined symmetric binary square-well mixtures where the
smaller and smaller values, while the densities of the coexpresence of walls stabilizes demixing transiti¢gs].
istence(FLg)-(FL,) are getting higher and higher and even-  Given the disappearance of the TCP in favor of a CEP
tually leave the fluid phase regime. Finally the density-(Fig. ) itis interesting to see how the system’s phase behav-
temperature phase diagram of the pBriuid involving only ~ ior changes back to that of the puBesystem(involving only

a TCP resultgcf. Fig. 1). a TCP upon further increasing afx”. An intermediate situ-
B _ ation encountered on this way is presented in Fig. 7. It is
2.T'=0.6Q Appearance of critical end points seen that the demixing CP has now moved to densities out-

We now turn to more asymmetric mixtures with smaller Side the range typical for fluid states, such that the density-
coupling ratios, taking the cad&=0.60 as an example. Start- temperature diagram displayed in Fig. 7 contains only first-
ing again from the purd fluid and increasing\x” one finds ~ order (FLg)-(FL,) transitions. Moreover, the CEP has
at first phase diagrams containing only a T@B)-(FL),  changed back into a TCP, yielding againtiple point
similar to those depicted in Figs. 2 and 4 for the case oflG)-(FLg)-(FL4). Further increase of chemical potential dif-
mixtures with more symmetric dipolar couplings. Contrary ferences yields smaller and smaller triple point temperatures
to the latter systems, however, where further increagedf ~ (see the dashed lines in Fig. 7 as an examhel finally the
yields simultaneous appearance of both a TCP agutémix- phase diagram of the pui fluid.
ing) critical point FLy-FLg at substantially higher densities

(cf. Fig. 5), increase ofAu” atI'=0.60 favors the demixing 3. Strongly asymmetric mixtures: Nonmonotonic behavior
tendency so strongly that a P develops at tempera- of (tri)critical points
tures and densities in themediate vicinityof the TCP. As a From a topological point of view, mixtures with smaller

result, the TCP becomesnstableand eventually changes coupling ratios(I'<0.5) were found to display essentially
into acritical end point(CEP) where the ferroelectric critical

line meets theélG)-(FL,) coexistence at temperatures below 4
the CP. Density-temperature phase diagrams correspondin

to the scenario immediately before and after the transforma. 55 [
tion of the TCP into a CEP are displayed in the lhs of Fig. 6.
The concentration diagram on the rhs moreover shows tha
the (IG)-(FL,) transition at temperatures arouff@gp in- »
volves large jumps in theomposition This again identifies
the appearance of a CEP plus a CP within the ordered phas
as a phenomenon, which is rather driven by the combinec
tendencies of the system to order ferroelectrically and to de-
mix, than by its tendency to just condensate at low tempera- o

tures. 0 02 04 06 08 1 12 T 0 001 002 003 004

In this context it is worth to note that a similar phase p* cy

0.36 |

0.34

0.32

behavior involving a CEP plus a critical pointlaghernum-

ber densities has been observed for other complex fluids FIG. 7. Same as Fig. 6 but fdru"=8.0. The dashed lines on the
where “ordering” tendencies dominate the phase behavioths correspond to the density-temperature diagram at an even higher
Examples are the paramagnetic-ferromagnetic Q& a  value of Ax*=10.0.
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FIG. 8. Phase diagrams fdi=0.40 andAu"=1.0. Thep'-T'
representatioiileft) contains the results faku" =— (pureA fluid)

as a reference.
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~
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0.5 B
04 B
03 L[
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FIG. 10. Phase diagrams fdf=0.30 andAu"=1.25. The

p'-T" diagram (left) contains the results for a purk fluid as a

reference.

the same types of phase diagrams already discussed in tethe TCP/CEP temperature occurs for the most asymmetric
two previous paragraphs. However, closer inspection revealgixtures considered, characterized by an interaction fatio
some subtle, yet significant differences, the first of which=g 30[cf. Fig. 9). We note, however, that for an intermediate

occurs already df =0.40 and concerns theu" dependence

range ofAu” the TCP/CEP appears at densities datside

of the tricritical temperature. We recall that for the more the range of densities where one would expect fluid phases to

symmetric mixturesT;.p monotonicallydecreasesvhen the

be stablgand this is even more true for the densities related

chemical potential difference is increased away from its lim-o demixing CPs Specifically, given that both species in the

iting value - (i.e., the pureA fluid). This monotonic de-

present mixtures have the same diameter and dit&hthat

crease is intuitively clear since the dipolar coupling within one-component fluids of DHS freeze at densities comparable
the B component is weaker, yielding a smaller and smallerig those of pure HS systenid6], i.e.,p" =0.95, one expects
tendency for ferroelectric ordering of the overall mixturessimilar freezing densities for the present mixtures. An exem-

with increasingAx”. Having in mind this picture it is par-

plary MMF phase diagrartwhere solid phases are not taken

ticularly surprising that, fol”=0.40, the temperature related into accouny for a highly asymmetric mixture is depicted in
to the TCP at firsincreasesvhenB particles are added to the Fig. 10, showing that tricriticality occurs at unphysical fluid
mixture. This can be see from the density-temperature diadensities in the vicinity of the close-packing limit. We can
grams on the lhs of Fig. 8 and also from Fig. 9 where thetherefore expect that true mixtures of this type would display

Au' dependence of the TCRer CEPs, respective)yis dis-

only first-order fluid-fluid transitions, with exceptions ap-

played for alll’ regimes. Figure 9 addltlona”y shows that, at pearing at very |arge or very small Va|uesm&* (i_e_’ close
I'=0.40, the tricritical temperature only starts to decreasggp the pure casgs
again after the TCP has changed into a CEP. Similar behavior

0.8

0.7

0.6

0.5

04

0.3

-10

FIG. 9. Temperatures related to the tricritical poids critical

-5

Au”

D. The global picture

In order to round off our discussion of the MMF results
we finally present some alternative representations of the
phase behavior. Although these contain, of course, essen-
tially the same information as do the two-dimensional phase
diagrams displayed in Sec. lll C, we found the additional
diagrams displayed below particularly helpful in order to
elucidate the differences of the mixture’s phase behavior at
different values ofl".

We start with Fig. 9 which has been already referred to at
the end of Sec. Ill C and shows tidg.” dependence of the
temperature related to the T@& CEP, respectivejyfor all
three " regimes. For the more symmetric mixtures corre-
sponding tal’=0.75 andl"=0.60 this temperature monotoni-
cally decreaseswith increasingAu”, i.e., with increasing
concentration oB particles, as expected due to their weaker
dipolar coupling. The difference between these scenarios
then consists in the absence or presence of a transformation

end point3 of the mixtures as functions of the chemical potential TCP« CEP at intermediate values afu” [cf. Secs. Ill C 1

difference for various values df. Solid (dasheg parts of the lines
correspond to TCPECEPS.

and 1l C 2. On the other hand, the more asymmetric mix-
tures(I'=0.4 and 0.3 which tend to demix more strongly,
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FIG. 11. Density-concentration phase diagram for a mixture FIG. 12. Same as Fig. 11 but fér=0.60.

with I'=0.75 at various temperatures. The pair of triangtepiares
denotes coexisting states af =0.50/Au"'=1.0T =0.32/Au"

i : smaller densities and higher temperatures associated to the
=10.0. For further explanations, see main text.

demixing critical points. Considering now even more asym-

) o . metric systemécf. Fig. 13 one observes a yet new feature in
are characterized by a somewhat counterintuitive behavior g density-concentration diagram, namelglasedcoexist-

the tricritical temperature in the sense tAat., first raises ence loop at a temperatufé=0.633. Even though this tem-

and starts tq decrease only after the T(_ZP has _changed i”top%rature is higher thafffrcp the system still possesses a
CEP. The difference between these mixtures is then purely~p 1o appearance of the loop can be explained as fol-

quantitative in the sense that B&0.3 tricritical (and any lows: holding the temperature fixed and increasipg from

other critica) behavior occurs at densities outside the fdeAlu*TCP one observes at first the development di@)-(FL)
phase regime.

Besides the different behavior afcpcep @ further fea- coexistence(see pair of triangles implying that the TCP

ture distinguishing the various mixture’s phase behaviors imUSt have moved towards higher temperatures. After the

the topology and shape of the “three-dimensional” phase dia%—ranSformatlon TCR»CEP the(IG)-(FL) coexistence then

grams generated by plotting tiital) densitiesp” and con- chgnges into &F.LB)_.(FLA) coexistence, as indicated by the
centrationsc, corresponding to coexisting states of a givenpalr of squares in Fig. 13. Upon further increasegf the
system (fixed I') at various temperatures. Examples are
shown in Figs. 11-14. Solid lines are the two-phase coexist-
ence lineggenerated by varyind ™ at fixed "), whereas
the dashed lines denote values@fand c, related to the
TCP/CEP. As a consequence, the crossing of these lines wit 0.8 1
the horizontals at,=1 andc,=0 indicates the tricritical
densities of a purd or B fluid. We also note that, for eadh
states on the rh@hs) of the dashed line in Figs. 11-14 cor- 0.6 F

respond to ferroelectri@sotropio states. o
We start again with the Fig. 11 corresponding to nearly
symmetric mixturesI'=0.75. It is seen that, for a broad 0=

range of densities and temperatures, the first-order isotropic
ferroelectric transition involves changes mainly in the den-
sity rather than irc, (as shown exemplarily by the coexist-
ing states denoted by the pair of triangles in Fig. Whereas
demixing only comes into play at very high values @f u*=0.3|5
(squares in Fig. )1 As a result, the line of tricritical points, 0
which are characterized by significantly smaller densities
than those associated to the demixing CP, remains essentiall, P

unaffected by the demixing transitions. This obviously

changes when going to smaller interaction ratios where de- FIG. 13. Same as Fig. 11 but fér=0.40. The pair of triangles
mixing becomes more favorable, as reflected in Fig. 12 botlisquares denotes coexisting states &af'=0.633 and Ay’
by the appearance of a CEP and by tbempared to Fig. 11  =1.0Au" =1.75.

02

0 0.2
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more and more favors demixing until finally the correspond-
ing CP appears at densities deep within the fluid phase re-
gime. We stress, however, that these demixing CPs appeared
always within the ferroelectrically ordered region, indicating
that—within the MMF theory—asymmetric dipolar cou-
plings alone are not enough do induce demixing already in
the isotropic phase. In fact, we did not even find isotropic
demixing transitions for the most asymmetric systems, that
is, mixtures of dipolar and pure hard sphef&s=0). This
finding is in contrast to recent integral equati@2,37 and
computer simulation studig88], which indicates that isotro-

pic demixing in dipolar/hard-sphere mixtures without any
dispersive interactions is essentiallycarrelational effect

and in that sense far from being trivial. Given the discrep-
ancy atl’=0 one also concludes that the present MMF predi-
cations on the nature of demixing transitionsfiatte I' >0

0 0.2 0.4 0.6 0.8 1 1.2

need to be carefully tested against simulations or other more
p’ sophisticated theoretical approaches. Work in this direction is
) currently in progress.
FIG. 14. Same as Fig. 11 but f=0.30. Beyond demixing, the other major effect of decreading

in our MMF study is a significant shift of the isotropic-to-
coexistence region finally closes at the demixing criticalferroelectric transition towards lower temperatures and/or
point. Therefore the appearance of such loops in the densityarger densities relative to the one-component case. This sug-
concentration diagrams just reflects nonmonotonic behaviogests that spontaneously polarized phases in dipolar systems
of Tfrcp upon varyingAux” (see discussion of Fig.)9From  generally become stronglyestabilizecby nonuniformity in
this it is clear that the corresponding diagram for the mosthe dipole moments. In fact, a similar observation has also
asymmetric mixtures considered hetE=0.3) should, in been made in a recent Monte Carlo sty@y where the de-
principle, also contain islands but it turns out that these argree of spontaneous polarization in strongly coupled dipolar
outside the physically meaningful density rangee dis- hard-sphere mixtures with different dipole moments has
cussion in Sec. Il CB As a result one obtains a diagram found to be much smaller than in the pure system. In Ref.
dominated by first-order demixing transitions as displayed ir{7], no attempt has been made to determine the actual tran-
Fig. 14. sition temperatures of the dipolar mixtures, but given the
mean-field character of our theory we would expect the
MMF predictions to be highly overestimated. Still, in view
of the agreement on a qualitative level and given that calcu-

In this work we have explored the fluid-fluid phase behav-/ations on the MMF level are much less time consuming, we
ior of asymmetric binary dipolar model mixtures in the feel encouraged to employ the present theory also to inves-
framework of density functional theory in the modified tigate other dipolar mixtures such as “binary ferrocolloids”
mean-field (MMF) approximation. Phase diagrams haveWith particles differing not only in their dipole moments, but
been obtained by minimizing the resulting free energy func-2lso in their sizes. We note that the present approach could
tional both for isotropic and for orientationally ordered fluid also be applied to other mixtures with angle-dependent inter-
phases, supplemented by an appropriate stability analysis getions such as Heisenberg fluid mixtures or simple liquid
order to locate critical lines. Despite the simplicity of our crystal models. In fact, given the similarity of the results
model system, where the two species differ only in theijrobtained within the MMF theory for single component
dipole moments, the resulting phase behavior turns out to beleisenberd27] and dipolar fluid§19,20, we would expect
significantly richer than that of the one-component counterthe Heisenberg mixtures to display analogous features as we
part_ One of the most Surprising results was that aww ha\(e found.here,. such as demiXing transitions and destabili-
differences between the dlpole mome(rﬁs: mé/mi_)l) re- zation of O”entaﬂona”y ordered phaseS.
su!t in the appearance mfgm|X|ngtranS|t|on§ betweer) two ACKNOWLEDGMENTS
fluid phases of strongly different compositions, as signalled
by the presence of a demixing critical poif@P). Whereas Sabine H. L. Klapp acknowledges financial support from
the corresponding densities are somewhat artifigial, ex- the Deutsche Forschungsgemeinschaft through the Emmy-
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IV. CONCLUSIONS
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