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The addition of noise to a dynamical system means that initial states near points of instability may no longer
decay to a unique stable state. A common example of this behavior occurs in a dynamical system with two
degrees of freedom and with two or more stable states. If the initial state of the system is near the separatrices
bounding the basins of attraction of these stable states, then the addition of noise to the system means that there
is a nonzero probability that the stable state selected is in a different basin of attraction to that of the initial
state. We discuss a method of calculating these state-selection probabilities based on a path-integral represen-
tation of the stochastic dynamics. The relationship of this approach to a method based on the solution of the
backward Fokker-Planck equation is particularly stressed, since this was used in previous studies of problems
of this type. However, while the method based on the backward Fokker-Planck equation is a powerful one for
systems with one degree of freedom, in systems with more degrees of freedom it is much less useful. Since the
standard method of solution in this case involves a series of mappings onto a deterministic dynamics which is
simply the classical dynamics associated with the path-integral formulation, we argue that for systems with
more than one degree of freedom, the path-integral method is a very natural way of calculating state-selection
probabilities. We illustrate this on a simple example taken from population biology, and find that the state-
selection probabilities are in excellent agreement with Monte Carlo simulations.
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I. INTRODUCTION +7(t), where(z(t))=0 and(z7(t) »(t"))=2D&(t—-t").
An important point which needs to be emphasized at the

This paper is concerned with the phenomenon of stateutset is that when we talk about selection of final states, we
selection: if a system is initially near a point of instability, mean this on relatively short time scales. On these time
and more than one stable state is available to it, with whascales, the system will have moved to a local minimum of
probabilities are each of these final states chosen? It is inthe potential(if it exists) or to plus or minus infinity(if no
mediately clear that this is a question in stochastic dynamicBoundaries or minima existOf course, once the system has
since noise will obviously be crucially dependent for thereached a local minimum it will fluctuate about it and on
selection of the final state. The simplest example of this phelonger time scales will have a probability of escaping to an-
nomenon is a one-dimensiondD) system consisting of an ©ther minimum. These transitions between states, which are
overdamped particle moving in a potentiélx). The deter- stable in the detgrm|n|st|c dyn_amlcs and metastable in the
ministic dynamics is described by the equatioa-V'(x), stochast_lc dyr_1am|_cs, are of no interest to us here. We need to
where time has been rescaled so that the coefficientisf emphasize this, since by far the_majonty .Of studies of decay

. . L ) . to(metgstable states in stochastic dynamics have focused on
unity aru_j .the dot ‘.".‘-‘”Ot95 differentiation with respect to timéy o ransitions between such staf&k In this paper we will
I th_e |n|t|allcond|t|on |mposeq on the system s t.hat_ the e interested in systems that are initially near an unstable
particle begins at a local maximum ®x), then infinitesi-  giate rather than a stable state. For example, in the one-
mally small noise will cause the particle to move either to thegimensional potentiaV(x)=—(1/2) ax2+(1/4) Bx*, there is
right or to the left of the maximum with a probability of 1/2. 55 unstable state ak=0 and two stable states at
If the particle is initially near the maximum, e.g., slightly t0 = +(a/B)¥2 Our interest only focuses on initial conditions
the_ right of it, _then in the presence_of |nf|_n|te5|mally_ _small nearx=0. If |x < (a/B)*? but some way fronx=0, the par-
noise the particle will move to the right with probability 1. ticle will reach one of the minima on a relatively short time
However, if the noise strength is increased, there will be &cale. The result is similar k| > (a/B)Y2. Once the particle
nonzero probability that fluctuations will carry the particle has reached one of the minima, or if it starts there, a new set
over the maximum and its final state will be to the left of the of guestions, not of interest to us here, can be asked concern-
maximum. The goal is to develop a mathematical frameworkng transitions between the two stable states. On extremely
that will allow us to calculate the probability of ending up to long time scales, many transitions will take place between
the right or left of the maximum as a function of the initial these states and eventually the particle will be found at the
position, noise strength, nature of the potential, or any othepositionx with a probability given by the Boltzmann distri-
parameters that may be relevant. The noise will be taken tbution exp—-V(x)/D].
be Gaussian and white with zero mean and strergth While the one-variable case is useful for describing the
Therefore, the dynamics will be described &y -V'(x) phenomenon of state selection, the possible types of behavior
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are rather limited. The basic phenomenon can be understogeendix A, a brief outline of the path-integral formulation of
qualitatively by the study of any potential with a single ex- stochastic processes and the use of optimal paths in the
tremum which is in the form of a maximum. The simplest weak-noise limit is given. In Appendix B, the nature of the
example is the caseé(x)=—(1/2)ax? In two dimensions, a optimal paths which govern state selection in a general one-
rather richer structure is found. There are two distinct situadimensional potential are analyzed in some detail.

tions: type I, where the initial point is near the separatrix
between the basins of attraction of two stable states, and type
II, where the initial point is near an unstable point. When a Il. STATE SELECTION IN A SIMPLE 1D SYSTEM
potential exists, this unstable point will be a local maximum. | this section we will study the evolution of the system
In the first case, i.e., type I, the system will have the greatest

probability of moving to the stable state which lies in the X(t) = ax(t) + n(t), x(0) =X, (1)
same basin of attraction as the initial position, but also a . . .
nonzero probability of reaching the other stable states. Th&/here7(t) is a Gaussian noise such that

process of reaching the stable state on the “other side” of the _ Ny — 4

separatrix can be thought of as a generalized “barrier cross- () =0, (")) = 2D~ 1). @
ing” event. During the last decade, several applications offhis simple problem can be solved exactly on the infinite
this phenomenon have been discussed, particularly in thiterval - <x<c. There are many ways to do this,9],
biological scienceg2-5]. In the second case, i.e., type Il, but probably the easiest method is to use @yto calculate
there are no barriers to cross at all, as the paths that conneg{t)) and (x4(t)) and then note that since(t) is linearly
Ehe initiglﬂposition with any of the local minima_ are entirely (g|ated tor(t) and 7(t) has a Gaussian distribution, so will
downhill” [6,7. In both of these cases, we wish to under-y ) poing this one finds that the probability distribution that

stand how one calculates these probabilities and to developtﬂe system is a; at time T given that it began at, at time
framework for developing an intuition about the underlyingt: f

mathematical framework. In three and higher dimensions the Ols
number and type of transitions increase further. In this paper 12 1
we will be primarily concerned with a discussion of the rela- Pt T|X0,0) = (277D) (€T — 1)172
tive merits of the mathematical techniques that can be used o
to calculate the state-selection probabilities, and so will not X exp _{ a(Xo—XEe™™) } 3)
consider these higher-dimensional situations. Instead we will 2D(1-e2T) |’
use one-dimensional examples to describe the techniques anﬂ . )
build intuition, and then apply them to two-dimensional ex- 1he probablhty that the system has selected the states with
amples. X=X 18

The two main techniques that have been used to calculate o
state-selection probabilities are the solution of the backward P(X,T|Xo,0) = f dxsp(Xs, T[Xo,0). (4)

X

Fokker-Planck equatio(BFPE) [8,9] and the use of optimal

paths in the path-integral formulation of the stochastic proyerex >0 is some position far enough away from the origin
cess[10,11. Both methods have advantages and disadvangg that once the system has reached this point there is neg-
tages, and one of the aims of this paper is to highlight thesegigiple probability of it crossing back tg <0, at least on the

To our knowledge, type | state selection has only been invesime scales of interest here. The integral in E4). may be

tigated using the BFPE approach and related methods frogyried out exactly by changing variablesztox,e T -x,, 0
classical asymptotic analys{42-15,3, and type Il using tphat

only the path-integral approadl,7]. In this paper we will

apply the path-integral method to type | problems and com- P(X, Tl%, 0) _< a )1’2 e’

pare the method with the BFPE approach. As we will see, the 1%, 0) = 20D/ (e2T-1)12

BFPE method is very efficient for one-dimensional prob- " )

lems, less so for higher dimensions, and the path-integral xf dz exp _{L}_
approach is more intuitive than BFPE, leading to a deeper Xe 9T, 2D(1 - 2T)
understanding of the phenomenon under study. (5)

The outline of the paper is as follows. In Sec. I, we will
calculate the state-selection probabilities for the oneAn important point to notice is that the change of variable
dimensional potential/(x)=—(1/2)ax?. The calculation will has brought out a factor &' which makes it manifestly
be carried out exactly using both the BFPE and path-integrabbvious that Eq.(5) has a finite nonzero limit a3 — .
techniques. In Sec. lll the nature of the optimal paths used ik\lthough we need not takd —o« (or more preciselyT
the path-integral approach will be described and the connec> a2, so that term&™*T can be neglectédthe results sim-
tion between the two methods of calculation will be ex- plify considerably in this limit, so it is convenient to do so. If
plained. This relation between the two methods will be ex-we choose to work at finitd, we need to choos¥ appro-
plored further for two dimensional, type | situations in Sec.priately to ensure that the state-selection process has oc-
IV. In Sec. V we conclude by summarizing the availablecurred. On the other hand, in the limit that- <« the prob-
calculational approaches, comparing them, and commentingpility (5) becomes independent &f as we would expect.
on possible further work. There are two appendixes. In ApFrom Eq.(5)
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. a \Y2[* aZ? Eqg. (11) has to be solved subject to the absorbing boundary
lim P(X,T|x0,0) = | 5— f dzexp-) = conditionsu(X)=1 andu(-X)=0. The solution is
T 27D o
¢
=11+ erf (x/0)], ©®) gy &7
where{=(2D/a)Y? is a characteristic diffusion length and u(xg) = _X)Z; (12)
erf is the error functiori16]. This is the probability that the f dz e?
state at large positivg is selected. Ifx,=0 then this prob- —X/¢

ability is 1/2, if x,>0 it is greater than 1/2 and approaches

unity for x,> €. Similarly, if x,<0 the state-selection prob- The residual dependence Kronly gives exponentially small
ability is less than 1/2 and approaches zerdxXge> ¢, again ~ terms, which are related to the very rare chance of recrossing
as we would expect. Clearly the probability that the state athe maximum. As explained in Sec. |, these very long time
large negativex is selected can be obtained by subtractingPhenomena are not of interest here, and so we mayXake
Eq. (6) from 1 to give (1/2)[1-erf(x,/€)]. This can be — in Eq.(12) giving

obtained directly by beginning with Edq4), but with the 1 ot
range of integration now being—co,—X), where X>0. u(xo) :?J dze? = %[1+erf(xo/€)], (13)
This leads to an integration range in H&) of (-, —Xg). N J 0

Since erf is an odd function, we may combine these two

results and write the probability of the state at large posi-as in Eq.(6). We see that the method based on the use of the

: : : BFPE gets the result very quickly in this simple example.
tive (negative x being selected aB.(P.) where The weakness of the method becomes apparent when inves-

P, = %[l + erfixxy/€)]. (7) tigatin_g higher_dimensional situation;. Then the_ordinary_ dif-
ferential equatioril1) becomes a partial differential equation
This is one of the few problems in which we have theand so is much more difficult to solve.
luxury of calculating state-selection probabilities exactly. In The path-integral approach consists of calculating
all other cases approximation schemes have to be used. A%x;,T|x,,0) whenD is small. This is achieved by finding
discussed in Sec. |, the two methods applied to date are thie optimal paths, which is analogous to making a semiclas-
BFPE and path integrals. Therefore, the remainder of thisjcal approximation in quantum mechanics or finding instan-
section will be devoted to the derivation of the state-selectionon solutions in field theory. In this simple example, it is
probability, i.e., Eq(6), using these methods. possible to find the exact resul8) using this method. In
To formulate the problem using the BFPE, let us firstmore complicated problems only the exponential term, and
denote the solution of thdorward) Fokker-Planck equation perhaps the prefactor, can be calculated. However, for the
for a potential V(x)=—(1/2)ax? with absorbing boundary values ofD that we are interested in, the leading contribution
conditions atx;=+X, by P(x¢,T|xp,0). This function also provided by the exponential factor is sufficient.

satisfies the BFPIE,9], An overview of the method is given in Appendix A. Here
_ ~ we will simply indicate how the exponential factor may be
IB_ o IP P obtained. The starting point is the action functional
==V’ (X +D—. (8)
oT 07X0 &XO 1 T
By integrating Eq(8) overx;, it follows that the probability Sx]= ZJ dt(x - ax)?. (14
that the system is still in the intervétX,X) at timeT, that 0
is, the survival probability, The extrema ofgx] are found by settingsS/ ox(t)=(1/2)
X X (—X+a?x) equal to zero, and solving the resulting differen-
Q(X, T|x0,0) :f dxP(xs, T|X0, 0), 9 tial equation subject to the boundary conditio«8) =x, and
-X X(T)=x;. This is the path of least action, also called the op-

also satisfies this equation. In addition, it is clear that thegg};lnpasﬁeogcha;i;?;_l p?;htb Igéh's case, it is easily found by
probability of absorption before timg, given by 9 q -

P(X,T|X0,0) = 1 —Q(X,T|Xo,0), (10 Xo(t) = Xg€% + (X — xoe“T)M (15

sinhaT’
also satisfies the BFPE. Sin&&X,T|x,0) has a finite limit
asT— we may take this limit at the outset. Once again, Substituting Eq(15) into Eq. (14) gives the action for the
there is no need in principle to do this; we could kéep classical path,
finite. Taking T— oo, the stationary problem reads -
1 .
du _d%u Sf;J dt(k. - ax))? =
0= axo - + D&, u(Xg) = TIim P(X,T|x,0). (11 0
% - As explained in Appendix A, the leading contribution to the
We are interested in the probability of absorption throughpath integral ise™*®, and we see that using E(L6) the
one boundary. If we choose this to be the boundai, éten  exponential factor in Eq.3) is recovered.

alxo = xe™T)?

—2(1 Zer) (16
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IIl. COMPARISON OF THE TWO METHODS %o
2

The two methods of calculating the state-selection prob-
abilities in Sec. Il look very different. First, the BFPE in-
volves time-independent quantities, whereas in the path inte 1.5
gral, the temporal dynamics is central. Second, in the BFPE;
the error function arises directly, whereas in the path integral
the quantity which naturally arises is the exponential factor 1
e 5P, How are these seemingly different methods related? .75
Our aim in this section is to answer this question. 0.5

Let us begin by asking why in the BFPE approach we can
take T—oo at an early stage, but why, at least in Sec. Il, we 0.25

19975

do not do so in the path integral. The reason rests on the fac . . . . -
that, while the probability distributionp or P vanish asT 0.2 0.4 0.6 0.8 1
—oo (there is no stationary probability distributignthe Xo

probability of absorption before tim&, which is P, does 2

have a finite nonzero limit a$— «. SinceP also satisfies e

the BFPE, we may work with it directly, but when using path =~
integrals we have first to calculate then perform an inte- 1.5
gration to findP. From the specific example shown in Eq. ; »5
(5), it is clear that carrying out the integration ovgrbrings
out a factor which makeB nonzero in the limifT — . It is
also clear that th& — oo limit must be finite, since® isa  0.75
probability, and so is less than or equal to unity. We would
therefore like to find a way of taking the limit—c at an
earlier stage in the path-integral method, and so simplifying0 - 25
the calculation. . . . . .
To do this, we return to our explicit example. As we noted 10 20 30 40 50
when discussi_ng Eq5), thee®” factor \_/vhi_ch appears in the FIG. 1. The optimal paths foF=1 andT=50 with a=1.
change of variable;=e*T(z+Xx,) is crucial in that for large
it cancels thée??™—1)"Y2term in the prefactor, thus yielding a value on the order o&™* (the time scale associated with
a finite nonzero result foP(X, T|xy,0) asT— . This means the potentigl to values much greater than*. We will see
that we cannot take the limi—  in the definition ofz. To  that a consideration of the nature of the paths in this case will
understand the change of varialzex.e@T-x, in terms of give us a key insight into the type of paths that dominate the

1

0.5

; ; functional integral for type | state selection.
th timal path f
e optimal paths, we define a new pat(t) as The optimal path for the problem considered in Sec. Il is
w(t) = Xfe—a(T—U = X(1). (17 given by Eq.(15), and plotted out in Fig. 1 for two values of

) ) ) . ~ T: T=1 andT=50. The paths for these two valuesTofook
Since both the terms on the right-hand side of this equatiogery different. The reason is that if the specified time interval
satisfyx=a°x, so doesw(t). Furthermore, since the first term s short, e.g.T=1, the path taken in space and time is direct.
actually satisfiesc=ax, the action for the classical path can This is a consequence of the constraint imposed by the initial

be written entirely in terms ofv(t): and final conditions. On the other hand, agets larger the
1(T system has to take an increasingly indirect route in order to

S.= _f dt(w — aw)2. (18)  reachthe final point at the specified tieln the case where
4Jo T=50, shown in Fig. 1, it is apparent that the system moves

. B B back to very near the origin, spends most of the time in the
The boundary conditions(0)=x, andx(T)=X; on x.(t) NOW icinity of the origin, and then moves back xg=x relatively

become conditionsv(0)=z and w(T)=0 on the pathw(t).  qgyickly. In the limitT— =, the particle will move back to the
Taking T— = with zfixed, then gives a path which begins at grigin in a time set byr™2, spend an infinite amount of time
z and ends at the origin. The required solutionViof &®W  in the vicinity of the maximum, and then move xg=x in a
which satisfies these conditions v&(t)=ze . Substituting  time again set byr L.
this function into Eq.(18) yields (1/2)az% which gives the Our aim in this section was to show how the BFPE and
leading term exp=z°/2D in Eq. (6), and hence the error path-integral approaches are connected. In the BFPE ap-
function as a result. Further insight into the meaning ofproach theT — o limit is taken at the outset. Using the path
the transformation(17) can be gained by looking at the integral, T may be chosen large, but at first sight it appears as
case of a more general potentM(x), considered in Ap- if it has to be kept finite to ensure that a meaningful result is
pendix B. obtained. However, a transformati@ti7) can be made which

In addition to this discussion of the mathematical struc-allows the limit to be taken at an earlier stage. The nature of
ture of the optimal paths in the limif—c, it is useful to  the optimal path forT large shows the importance of the
examine how the form of the paths changeJ asoves from  maximum of the potential for state selection, which will be
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important when investigating two-dimensional examples. y " -
The resulting form forS, and the identification of the vari- \‘ -
able z, leads to the error function, which in the BFPE ap- -
proach is obtained by solution of the differential equation -
(12).
The discussion in this section has been concerned with the /
linear evolution equatior{l). More generally, we can ask s
whether the same ideas apply to the case ,

(1) == V'[x®)]+ 7(1), x(0)=x,, (19) X

whereV(x) is a potential with a maximum at=0 which also FIG. 2. A schematic representation of optimal paths that start
includes nonlinear terms. In this case, the stationary problerfia" the separatrix at the solid circle, move to the vicinity of the

. . . . I saddle point indicated by aX, and move to either one of the end
\?vsitf? e_fl\;\,(?)c: I)n VI\E/E%&)c%ingreagzof\/sezytcr)egil\?glng t factor points indicated by a solid square. The separatrix is indicated by the
0/

large-dashed line.

o dze/@/D pend on the parametess 8, andy. The state-selection prob-
-X lem in this case can be formulated by asking: given an initial
UXo) = - (20 condition(xg,Yo), what is the probability that a given species
J dze/@P dominates? If the initial condition is sufficiently far from the
-X separatrix, when the noise is weak the species that will domi-

nate will be the one that has the same basin of attraction as

dratic function ofx. In the nonlinear case, if we change vari- tgeﬂ']g't'sa; C;r;?r'.t'or:hSﬁﬁzﬁzrfs'f;hﬁo':'tggcorr:)%ggq.t's fr:(;ﬁhe
ables tof=-V(x)/D we see that the nontrivial Jacobian n % ! zero p "y

of this transformation means that the resulting integral iSsystem will cross the separatrix and end up in the other basin

. . -2 ~of attraction. It is this probability that we wish to calculate.
not an error function. However, the dominant contribution : .
) : Clearly, this process is what we have called type | state se-
can be approximated as an error functj@h The descrip-

. . . . lection.
tlpn Of. the opt|m.al path which leads to the res(20) is In the path-integral approach to this problem we will once
given in Appendix B.

again takeT to be large. In the one-dimensional case we saw
that the optimal path was such that it spent most of the time
in the vicinity of the maximum. This was necessary in order
for the path to satisfy the conditions that it end up at the final

We now turn our attention to 2D systems. For concreteoint at precisely the timd. In the population dynamics

Clearly, the error function only arises whéfix) is a qua-

IV. STATE SELECTION IN 2D SYSTEMS

ness, we will focus on the following system:

X(t) = ax(t) = yx(O)y(®) +x(t) 71(0),

y(t) = By(t) = yx(Oy() +y(t) 72(1),
where 7;(t) is a Gaussian noise such that

model, the only way that an optimal path can be of arbitrarily
long duration, is that it spend most of its time in the vicinity
of the saddle point. It is this feature that makes the lafge
regime so convenient.

A typical optimal path, as illustrated schematically in Fig.
2, will move to the vicinity of the saddle point, remain there

for a long period, and then move into either one of the basins
(m®)=0, (p®)pt")=2Ds;5t-t). (22) of attraction. Qf course, aqtua] stochastic paths_as seen in a
Monte Carlo simulation, will display characteristics that are
This is a simplified version of a model considered in Ref.quite different from the optimal paths; see Appendix A for a
[17] to describe the competition between two species in &fiscussion of this point.
fluctuating environment. In this paper we will use this model  The calculation now proceeds in a manner completely
to illustrate the essential points necessary to understand stajPalogous to the 1D case discussed previously. The optimal
selection in dimensions higher than one. Although the deterpath naturally decomposes into two distinct pieces. The first
ministic equations cannot be derived from a potential, thisoriginates near the separatrix and ends in the vicinity of the
poses no problems for the method. The connection betweeshddle point, corresponding to the uphill path in the 1D prob-
state selection and population dynamics will be made in @aem. The second begins near the saddle point and moves to
forthcoming paper. The deterministic equivalent of B2)  the final position in one of the basins, corresponding to the
has two fixed points, one at the origin and one(&y)  downhill path. As in the 1D case, no stationary probability
=(B/v,aly). In this model, no stable coexistence betweendistribution exists. Therefore, to calculate the state-selection
the two species exists. Consequently, there is a separatrprobability we need to integrate over all final positions in the
that divides thex-y plane into two regions, one where tke relevant basin of attraction.
species dominates thespecies, and the other where the To illustrate these ideas we take=B. The advantage of
species dominates thespecies. The separatrix begins at thethis choice is that the equation for the separatrix is simply
origin, passes through the nontrivial fixed point, and contin-y=x. We define coordinates parallel and perpendicular to the
ues on to infinity. The detailed shape of this curve will de-separatrix by
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r=y-x,
(23

u+w—9.
Y

S=

N

The required integration ovéK;,y;) now becomes an inte-
gration over (r{,s;). The integration overs; converts the
probability distribution function in two variables to a func-
tion in one variable. The remaining coordinateis analo-
gous tox; in the one-dimensional problem. The integration
overr; is performed by changing variables to the analog of

in the one-dimensional case. With this change of variables,

we can take th& — o limit before performing the integra-
tion. The state-selection probability is now in the form of an
integral that runs from ry to . The leading contribution in

PHYSICAL REVIEW E 69, 041106(2004

0.

0.

Yo

0.

5 0.6 0.7

FIG. 3. Comparison of calculated state-selection probability

the integrand i€ S0, whereSis essentially the action for the (s_olid line) using Eq.(28) and Monte Carlo result&losed circlep
first part of the optimal path, i.e., the part that connects thdIth D=0.01,%=0.4, anda=/=y=1.

initial point with the saddle point. More specifically, it is the
action calculated in the limit that— oc but with the param-
eter ry replaced with the variable z- just as in the one-
dimensional case.

As can be seen in Figs. 3 and 4, these results are in re-
markably good agreement with Monte Carlo simulations.
Given that the resul{25) was obtained via a linearization

We can take advantage of the fact that we are only interabout the separatrix, it is somewhat surprising that the cal-

ested in points near the separatrix to calcuttkinearizing

culated probability agrees so well with the simulated prob-

the extremal equations about the separatrix yields twdability for relatively large values af,. Presumably, the small
coupled, linear ordinary differential equations. This procesg/alues ofD ensure that we are still in the linear regime.

involves first solving for the nonlinear dynamics along the

separatrix and then linearizing about this solution. The de-

tails of this calculation will be provided in a forthcoming
publication[18]. The result forSis

_ (a-y%)’Z _
8sia In(ad yso) = (@ = ¥5)]

Putting these components together we find that the probabi
ity of ending up in the basin of attraction wharés large and
positive (the y species dominatgss

SZ.

S2) (24)

[

This expression is exactly of the for(@) and can be written,
after normalization, as

dzexp{- SZ/D}.

o

(25)

L[1 + erf (rg\S/D)]= 3[1 + sgn(ro) erf (VS(ro)/D)]
(26)

As in Sec. Il, the probability that the state with large negative

r is selectedthe x species dominat@ss 1 minus this quan-
tity, that is,

2[1 - sgn(ro) erf(\S(ro)/D)]. (27)
So the final result for the probability of state selection is

1 +erf(z\S(ro)/D)], (29)

V. CONCLUSION

If noise is added to a deterministic system with two or
more stable states, various phenomena are initiated. For ex-
ample, on very long time scales there may be activation over
the barrier separating any two of these stable states. In this
paper we have been interested in a process which occurs on
a shorter time scale: calculating the probability that the vari-
ous stable states are “selected” by the system, given a par-
ticular initial condition. For the vast majority of initial states,
one particular stable state will be selected with probability 1,
and this is the state that would be predicted as the final state
in the corresponding deterministic system. However, if the
initial state is near a point of instability, such as a saddle

Py

0.8t

0.6

0.

Yo

0.2 0.4 0.6 0.8 1

where the plus or minus sign is taken depending on whether FIG. 4. Comparison of calculated state-selection probability
the value ofr in the selected state is the same or different to(solid line) using Eq.(28) and Monte Carlo result&losed circles

the sign ofr,.

with D=0.1, x9=0.4, anda=B=y=1.
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point, a separatrix, or an unstable point, the answer to theersity, is gratefully acknowledged. Support from the NSF-
guestion of which stable state is “selected” is not so cleariGERT program “Dynamics of Complex Systems in Science
cut; only probabilities of the various stable states being seand Engineering{Grant No. DGE-99875%7at Northwest-
lected can be given. This paper has been concerned with thgn University is also acknowledged.
calculation of these probabilities.

In Sec. | we introduced a nomenclature to differentiate
between different types of state selection. In one-dimensional ) . APPEND'X A ) )
prob|ems 0n|y one type of state selection existsy but in two In this appendlx we review the formulation of stochastic
dimensions the system may start from the vicinity of thedifferential equations, such as Egs), (19), or (21), as func-
separatrix separating the basin of attraction of two stabldional integrals and obtain the dominant contribution to the
states, or from the vicinity of a completely unstable state. Weconditional probability we wish to determine in the limit
denoted these two kinds of state selection as type | and typghere the noise strength tends to zero. We will limit our
I, respectively. In this paper, we restricted our attention todetailed discussion to the one-variable case, and simply state
the former type, the latter having been explored previouslythe results for an example in two dimensions, since the for-
[6,7]. Our concern was with the potential analytical ap-malism generalizes in an obvious way. The use of path inte-
proaches to the calculation of state-selection probabilities ngrals in the solution of stochastic differential equations was
type | systems, rather than the elucidation of any particulagescribed by Onsager and Machli8) in the case of linear
system. As is common in the field of stochastic nonlinearequations and later extended to nonlinear equations by many
dynamics, there are two main approaches to the analysis: th§thors, principally Grahaifi21,23. An introduction to these
asymptotic analysis of differential equations, typified in thiSjgeas can be found in some of the standard textbooks on path
context by the use of the BFPE, and the use of the pathiegrals and quantum field theofg3,24. An outline of the
integral formalism. This latter approach is the one favored by,ga of optimal paths in problems of this kind can be found in
physicists, largely because of the intuitive insights it affords.; earlier paper§7,25.

_Although the BFPE is extremely powerful for one-  The conditional probability that the system is in the state
d|n"!en3|onall problems, in higher dimensions a partlal dn’“fer-xf at time T, given it was initially in the state, att=0 is
ential equation must be solved. The method of solution pro-

ceeds_ via a series of. mappings resulting in a problem in P(X¢, T|Xg,0) = (&% = X(T) Dy (A1)
two-dimensional classical dynamics. It has been known for
many years that there is a classical dynamics associated withhere IC denotes the initial conditiox(0)=x, on the sto-
stochastic equations of the Langevin type and the solution ofhastic process ang(T) is the solution of the differential
this dynamics in the weak noise limit allows the Ca|CU|ati0nequation(19) describing this process at tinTe The average
of mean first passage timgk9]. In the path-integral method, in Eq. (A1) is over Gaussian white noisgt) with zero mean
the optimal paths are the least-action solutions of this classind correlation function given by E¢). In terms of func-
cal dynamics. In this sense, the path-integral method is morgonal integrals Eq(Al) equals
direct. One of the main aims of this paper has been to de-
velop an intuition that will enable us to understand progres- 1 (7
sively more difficult state-selection problems. For example, Cf Dn dx; = x,(T)] exp{— EJ dt[nz(t)]},
we have shown how the error function is a direct conse- Ic 0
quence of integrating over the final positions in the relevant (A2)
basin of attraction, but only when the potential transverse to
the separatrix is quadratic. Another example concerns th&hereC is a normalization constant and the subscejpon
nature of the optimal path in the largelimit. In order that ~ X(T) is to emphasize that it depends axT) through Eq.
the system arrives at the final point at tirfie it needs to  (19). Using these equations to perform a functional change
spend a long period in the vicinity of the saddle point. This isof variable from to x yields, up to a normalization con-
the fundamental reason why the saddle point is so importangtant,
even though typical Monte Carlo paths make transitions LT
across any point along the separatrix. _ L . T2

This paper has stressed the technical aspects of the type | f,c Dx 3 Ay x(T)]exp{ 4D fo dix+V'(x)] }
problem at the expense of making contact with applications.
However, this does not mean that there is a lack of applica-
tions. In fact, the generic nature of the phenomenon implie
that it will exist in a wide variety of situations, and some
references to these applications were given in Sec. I. In
forthcoming publication[18] we will use the method of X(T)=x¢
analysis outlined in this paper to explore some of these prob- p(Xs, X0, 0) :Cf Dx Jx] exp{- 9x]/D}.
lems in more detail. x(0)=xg

(A3)

WhereJ is the Jacobian of the transformation. Expressed as a
gath integral
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port from the Complex Systems Group, Northwestern Uni-are given by
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T 2 T
9x]= %L dfx+ V' (x)]? (A5) L[x]=- % +a?,  Jx]xexp { %fo dif- a]} .

and[24] (A11)

The functional determinant oL[x.] is proportional to
}_ (A6)  sinhaT/a [26] and the Jacobian te @72, Putting these
together gives Eq(3), up to a normalization constant.
It is important to realize that there are two distinct dynam-
For D—0, the path integralA4) is dominated by solutions jcs associated with problems of this kind. The first is the
of the Euler-Lagrange equatior#S/ 6x(t)=0, which satisfy  original stochastic dynamics given by, for instance, @).
the boundary conditions(0)=x, andx(T)=x;. Let the solu-  This is the dynamics used in Monte Carlo simulations. The
tion of least action be denoted by(t). Then writingx(t)  second dynamics is th@eterministicdynamics, given by a
=x.(t)+ ox(t), scalingdx by D2, and performing the Gauss- variation of the actiorfA5), which describes th® — 0 limit

.
J[x] = det [%ﬂ o« exp { %f dfV'(x)]

0

ian functional integral yields of the stochastic dynamics. They are quite different and it is
important not to carry over intuition from one to the other
P(x;, T|X0,0) =C" exp{~ IxJ/DH[x] without careful consideration. Froh5),
&’s i 1(7 [1 1T dv
X de ™ (1 - (A7) x=—f dt{—kz—Ux}+—J dt—, (A12
{&(t)&(t)xzxc S 2)y 12 ) 2J)y dt’ (A12)
The new overall constart’ is determined by normalization Where
and there are higher corrections in the form of a power series R T
in D multiplying Eq. (A7) which have been omitted. Uk = =3[V (0]° (A13)

While the above discussion has been carried out for &Bince the last term in EquZ) iS a constant, and conse-
system with one degree of freedom, it should be clear that i§uently gives zero variation, the Euler-Lagrange equations
generalizes in an obvious way to systems of more than ongptained from Eq(A12) correspond to classical mechanics
degrees of freedom and those where no potential ej@gls iy the potentialU(x). When considering the optimal paths

We may summarize the result of performing the functionalgch as«(t), it is the potentialU(x), and notV(x), which is
steepest descent on EH#\4) to next-to-leading order by relevant.

. . R As we have stressed, all of these ideas generalize imme-
=p@® (o) )
P(F1,TIfo, 0) = p/(Fy, Thexp{~ p™(Fy, T/D}[1 + O(D)], diately to systems with more than one variable. For example,
(A8) the stochastic differential equatio(1) give rise to the ac-

tion

where the leading order contributigi is just the action of

the optimal pathry(t)=[x.(t),y(t),...] and the next-to- _1 Tdt X = ax+ yxy 2+ V= By +yxy\?

leading order contribution is Sxy]= 4 X ’

y
p (. T) = J[F](detLF]) ™2 (A9) (A14)
HerelL is the matrix formed from the second order functionalWhICh when varied leads to the differential equations
derivative of the action functional evaluated at the optimal 1d ()'( ) (y )
e =yl ==-8+
path, di\ x 044 7y B+ x|,
L[re] 7S (A10) (A1)
= — = 1d(y X
S o) | o __(_ g X) _ <_ e )
=7, ydtyﬂv N~ atw
The result{A8) is the starting point for our method: if we can
determine the functionp©® and p¥, then we will have a
form for the conditional probability valid when the noise is APPENDIX B
weak. In this appendix we explore the path-integral approach to

To illustrate these ideas, let us use the simplest one varihe calculation of state-selection probabilities in a general
able problenV(x)=—(1/2)ax?, discussed in the main text, as one-dimensional potentialV(x). As we have stressed
an example. TheW’(x)=-ax and the actiofA5) becomes throughout, such calculations are most straightforwardly car-
Eq. (14). A variation then leads to the differential equation ried out using the BFPE. This was shown explicitly in Sec.
X=a?x for the optimal path. The explicit form of the solution I, where the result in the case of interest was obtained, and
and its action are given in the main text by Ef5) and(16), displayed in Eg.(20). However, our interest is not in this
respectively. This gives the leading order contribution. Theone-dimensional problem for its own sake, but instead in
next to leading order contributiomepresented by EqA9)] using it to gain insights into the path-integral method for
are found from other problems of this kind. These insights will turn out to be
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valuable in the investigation of higher-dimensional systems Xo(1) = X, (t;= 2) + Xq4(t; %) (B6)
where the BFPE method is not so useful, and path-integral
methods are. For the first part of the pattt<T), the downhill solution is

The potentialV(x) will be assumed to have no extrema negligible, and the optimal path is entirely made up of the
other than at the origin, where it has a maximum. For allterm x,. For the vast majority of the time, both terms are
other values ok, V(x)<O0: it has a positive slope for nega- negligible, andx.(t)=~0. For the very last part of the path,
tive x and a negative slope for positive Obviously, the the uphill solution is negligible, and the path is entirely made
simple exampleV(x)=—(1/2)ax?, discussed previously in up of the downhill solution. The situation is clearly illus-
this paper, satisfies these conditions. We will also ge  trated in Fig. 1 wherl=50, for then=1 case. When cal-
=—(1/2n)ax®",n=2,3,..., asanother simple example. culating the action of this path, the time integral in Eq.

The problem is formally defined by Eq19) with 5(t)  (A5) may be split up into these three regimes. Since the
given by Eq.(2). The path-integral formulation of this prob- downhill solution gives zero actiofpecause+V'(x)=0l,
lem is given in Appendix A. The optimal paths, found by only the first part of the path gives a nonzero action:
variation of the actiogA5), are solutions of the second order

. . ) 1t . X
differential equation S.= ZJ dif X, + V' (x) 2= f dt XV (o) = J dxV' (%),
0 0 -z

=V (X)V"(x), (B1) (B7)

which may be integrated once to give wheret” is the time at which the path reachés which is so

L= v/ (02 + k (B2) near to thg origin that both the*uphill and downhill ;olutions
an 2 ’ are effectively zero. A —=, X —0, and the classical ac-

wherek is a constant of integration. In the, technically simi- tion becomes

lar but conceptually different, study of the problem of acti- 0

vation over a potential barrier, the paths begin and end at an S.= J dxV'(x) =V(0) -V(-2)=-V(-2). (B8)
extrema of the potential, and so bofh(x) andx are zero as -z

t— +o, and sck=0[10,11]. In this case Eq(B2) reduces to
x=xV’(x). A solution satisfyingk=+V’(x) is called an “up-
hill” path [sincex and V’(x) both have the same sigand

As an explicit example, let us look at the ca¥éx)
=—(1/2n)ax®",n=1,2,....Whenn=1,

X:—\{’(x) a “downhill” path Lsincex apdV’(x) have differ-' X,(EX0) = X8 %, Xg(tixg) = x& T, (B9)
ent signg [10]. These solutions again turn out to have im-
portant roles to play in the present problem, in the lifhit Whenn=2,3,..., it isstraightforward to show that
— 00,
To determine the relevant optimal path for genérét), _ Xo
Xu(thO) -

we first make a change of variable analogous to @) in [1+2(n- 1)@V -1’

the caseV(x)=—(1/2)ax?. The function x,e™ ™ is the (B10)
downhill solution for this potential which ends up st at X¢
time T. Therefore, letxy(t;X;) be the solution ofk=-V’(x) Xa(t;Xg) =

2(n-1 -1) *
satisfyingxy(T; ;) =X;. Then the generalization of E(L7) is [1+20n=Da(T-oxf " V]H2mD
It should be clear that the solutions have the properties we
have described, and, in particular, wh&r-c, the time in-
terval may be separated into subintervals where at most one
of the solutions is non-negligible.

The dominant contribution to the path integi@4) is
e %P, which by Eq.(B8) gives

W(t) = Xqg(t;Xp) = Xe(t). (B3)

Once againw(t) satisfies the boundary conditiong0)=z
andw(T)=0, wherez is now defined by

7= x4(0:%¢) = Xo. (B4)

For largeT, x4(0;%s) is very small, since to take a long time

to get tox; requires starting very near to the origin. In par- sing £q.(4), the probability that the system has selected the
ticular, states withx; > X is

lim x4(0;%¢) = 0. (B5) :
T 0 P(X,T|Xo,0) ~J dxexp{V(-2)/D}. (B12)
X

p(Xs, T|X0,0) ~ exp{V(- 2)/D}. (B11)

©

Therefore, from Eq(B4) we see thaz=-x,, and from Eq.

(B3) that w(t) =~-x.(t) for t<T. This implies that, in the The ~ sign has been used, since the prefagér will de-
limit T— oo, w(t) is a path beginning @ on the other side of pend onx;, and so contribute to the integral. It is also under-
the maximum tok, and ending at the origin. This implies that stood thatS; is only exactly equal to ¥(-2) in the limit T

it is an uphill path with an initial condition z We may —oo. Changing variables from to z using Eq.(B4), taking
therefore denote it asxg(t;—2z). In summary, for largd, T— o, and using Eq(B5) gives
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o0

lim P(X, T|Xo,0) ~ f dz exp{V(-2)/D},
Too

—Xo

(B13)

in agreement with Eq(20).

PHYSICAL REVIEW E 69, 041106(2004

This is the result which we would expect from an uphill path
in the T— o limit.

It should be clear that these ideas extend to two, and
higher dimensions. A specific two-dimensional calculation is
outlined in Sec. IV, and will be presented in more detail in a

The results of this appendix may be summarized as folfuture publication[18]. The additional feature is that the in-

lows. In order to make a transformation froxp to a new
variable[going from Eq.(4) to Eq.(5) or from Eq.(B12) to
Eq. (B13)] we need to keefd finite. This is because ab
— oo the dependence of the action xyis lost, and the trans-

tegration over the final statgshe analog ofx;) has to be

decomposed into two parts. The first is the coordinate paral-
lel to the separatrix. This is simply integrated over. The sec-
ond is the coordinate perpendicular to the separatrix. Once

formation becomes singular. However, since the calculatiorthe first integration has been carried out, this second integra-

simplifies considerably in this limit, the idea is to ke&p

tion is of the kind(4) found in one-dimensional problems.

finite only in the combination on the right-hand side of Eqg. The development of the formalism then follows similar lines
(B4), and to take the limit elsewhere. This appendix showdo that just given.

that the effect of this is simply to substitute minus this com-

bination (defined to be 2) for the initial condition, but to

Finally, several aspects of the formalism discussed in this
appendix have the flavor of the BFPE, for instance, the fact

leave the calculation otherwise unchanged. Of coursg, if that a final condition is imposed on the downhill solution

had not been kept finite in EqB4), then =z would have
equaledx, and the action would simply have beeW/(xg).

X4(t;%s), rather than an initial condition. This connection will
be explored in more detail elsewhdis].
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