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The addition of noise to a dynamical system means that initial states near points of instability may no longer
decay to a unique stable state. A common example of this behavior occurs in a dynamical system with two
degrees of freedom and with two or more stable states. If the initial state of the system is near the separatrices
bounding the basins of attraction of these stable states, then the addition of noise to the system means that there
is a nonzero probability that the stable state selected is in a different basin of attraction to that of the initial
state. We discuss a method of calculating these state-selection probabilities based on a path-integral represen-
tation of the stochastic dynamics. The relationship of this approach to a method based on the solution of the
backward Fokker-Planck equation is particularly stressed, since this was used in previous studies of problems
of this type. However, while the method based on the backward Fokker-Planck equation is a powerful one for
systems with one degree of freedom, in systems with more degrees of freedom it is much less useful. Since the
standard method of solution in this case involves a series of mappings onto a deterministic dynamics which is
simply the classical dynamics associated with the path-integral formulation, we argue that for systems with
more than one degree of freedom, the path-integral method is a very natural way of calculating state-selection
probabilities. We illustrate this on a simple example taken from population biology, and find that the state-
selection probabilities are in excellent agreement with Monte Carlo simulations.
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I. INTRODUCTION

This paper is concerned with the phenomenon of state
selection: if a system is initially near a point of instability,
and more than one stable state is available to it, with what
probabilities are each of these final states chosen? It is im-
mediately clear that this is a question in stochastic dynamics
since noise will obviously be crucially dependent for the
selection of the final state. The simplest example of this phe-
nomenon is a one-dimensional(ID) system consisting of an
overdamped particle moving in a potentialVsxd. The deter-
ministic dynamics is described by the equationẋ=−V8sxd,
where time has been rescaled so that the coefficient ofẋ is
unity and the dot denotes differentiation with respect to time.
If the initial condition imposed on the system is that the
particle begins at a local maximum ofVsxd, then infinitesi-
mally small noise will cause the particle to move either to the
right or to the left of the maximum with a probability of 1/2.
If the particle is initially near the maximum, e.g., slightly to
the right of it, then in the presence of infinitesimally small
noise the particle will move to the right with probability 1.
However, if the noise strength is increased, there will be a
nonzero probability that fluctuations will carry the particle
over the maximum and its final state will be to the left of the
maximum. The goal is to develop a mathematical framework
that will allow us to calculate the probability of ending up to
the right or left of the maximum as a function of the initial
position, noise strength, nature of the potential, or any other
parameters that may be relevant. The noise will be taken to
be Gaussian and white with zero mean and strengthD.
Therefore, the dynamics will be described byẋ=−V8sxd

+hstd, wherekhstdl=0 andkhstdhst8dl=2Ddst− t8d.
An important point which needs to be emphasized at the

outset is that when we talk about selection of final states, we
mean this on relatively short time scales. On these time
scales, the system will have moved to a local minimum of
the potential(if it exists) or to plus or minus infinity(if no
boundaries or minima exist). Of course, once the system has
reached a local minimum it will fluctuate about it and on
longer time scales will have a probability of escaping to an-
other minimum. These transitions between states, which are
stable in the deterministic dynamics and metastable in the
stochastic dynamics, are of no interest to us here. We need to
emphasize this, since by far the majority of studies of decay
to (meta)stable states in stochastic dynamics have focused on
the transitions between such states[1]. In this paper we will
be interested in systems that are initially near an unstable
state rather than a stable state. For example, in the one-
dimensional potentialVsxd=−s1/2dax2+s1/4dbx4, there is
an unstable state atx=0 and two stable states atx
= ± sa /bd1/2. Our interest only focuses on initial conditions
nearx=0. If uxu, sa /bd1/2 but some way fromx=0, the par-
ticle will reach one of the minima on a relatively short time
scale. The result is similar ifuxu. sa /bd1/2. Once the particle
has reached one of the minima, or if it starts there, a new set
of questions, not of interest to us here, can be asked concern-
ing transitions between the two stable states. On extremely
long time scales, many transitions will take place between
these states and eventually the particle will be found at the
positionx with a probability given by the Boltzmann distri-
bution expf−Vsxd /Dg.

While the one-variable case is useful for describing the
phenomenon of state selection, the possible types of behavior
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are rather limited. The basic phenomenon can be understood
qualitatively by the study of any potential with a single ex-
tremum which is in the form of a maximum. The simplest
example is the caseVsxd=−s1/2dax2. In two dimensions, a
rather richer structure is found. There are two distinct situa-
tions: type I, where the initial point is near the separatrix
between the basins of attraction of two stable states, and type
II, where the initial point is near an unstable point. When a
potential exists, this unstable point will be a local maximum.
In the first case, i.e., type I, the system will have the greatest
probability of moving to the stable state which lies in the
same basin of attraction as the initial position, but also a
nonzero probability of reaching the other stable states. The
process of reaching the stable state on the “other side” of the
separatrix can be thought of as a generalized “barrier cross-
ing” event. During the last decade, several applications of
this phenomenon have been discussed, particularly in the
biological sciences[2–5]. In the second case, i.e., type II,
there are no barriers to cross at all, as the paths that connect
the initial position with any of the local minima are entirely
“downhill” [6,7]. In both of these cases, we wish to under-
stand how one calculates these probabilities and to develop a
framework for developing an intuition about the underlying
mathematical framework. In three and higher dimensions the
number and type of transitions increase further. In this paper
we will be primarily concerned with a discussion of the rela-
tive merits of the mathematical techniques that can be used
to calculate the state-selection probabilities, and so will not
consider these higher-dimensional situations. Instead we will
use one-dimensional examples to describe the techniques and
build intuition, and then apply them to two-dimensional ex-
amples.

The two main techniques that have been used to calculate
state-selection probabilities are the solution of the backward
Fokker-Planck equation(BFPE) [8,9] and the use of optimal
paths in the path-integral formulation of the stochastic pro-
cess[10,11]. Both methods have advantages and disadvan-
tages, and one of the aims of this paper is to highlight these.
To our knowledge, type I state selection has only been inves-
tigated using the BFPE approach and related methods from
classical asymptotic analysis[12–15,2], and type II using
only the path-integral approach[6,7]. In this paper we will
apply the path-integral method to type I problems and com-
pare the method with the BFPE approach. As we will see, the
BFPE method is very efficient for one-dimensional prob-
lems, less so for higher dimensions, and the path-integral
approach is more intuitive than BFPE, leading to a deeper
understanding of the phenomenon under study.

The outline of the paper is as follows. In Sec. II, we will
calculate the state-selection probabilities for the one-
dimensional potentialVsxd=−s1/2dax2. The calculation will
be carried out exactly using both the BFPE and path-integral
techniques. In Sec. III the nature of the optimal paths used in
the path-integral approach will be described and the connec-
tion between the two methods of calculation will be ex-
plained. This relation between the two methods will be ex-
plored further for two dimensional, type I situations in Sec.
IV. In Sec. V we conclude by summarizing the available
calculational approaches, comparing them, and commenting
on possible further work. There are two appendixes. In Ap-

pendix A, a brief outline of the path-integral formulation of
stochastic processes and the use of optimal paths in the
weak-noise limit is given. In Appendix B, the nature of the
optimal paths which govern state selection in a general one-
dimensional potential are analyzed in some detail.

II. STATE SELECTION IN A SIMPLE 1D SYSTEM

In this section we will study the evolution of the system

ẋstd = axstd + hstd, xs0d = x0, s1d

wherehstd is a Gaussian noise such that

khstdl = 0, khstdhst8dl = 2Ddst − t8d. s2d

This simple problem can be solved exactly on the infinite
interval −̀ ,x,`. There are many ways to do thisf8,9g,
but probably the easiest method is to use Eq.s1d to calculate
kxstdl and kx2stdl and then note that sincexstd is linearly
related tohstd and hstd has a Gaussian distribution, so will
xstd. Doing this one finds that the probability distribution that
the system is atxf at timeT given that it began atx0 at time
t=0 is

psxf,Tux0,0d = S a

2pD
D1/2 1

se2aT − 1d1/2

3 exp −Hasx0 − xfe
−aTd2

2Ds1 − e−2aTd J . s3d

The probability that the system has selected the states with
xf .X is

PsX,Tux0,0d =E
X

`

dxfpsxf,Tux0,0d. s4d

HereX.0 is some position far enough away from the origin
so that once the system has reached this point there is neg-
ligible probability of it crossing back toxf ,0, at least on the
time scales of interest here. The integral in Eq.s4d may be
carried out exactly by changing variables toz=xfe

−aT−x0, so
that

PsX,Tux0,0d = S a

2pD
D1/2 eaT

se2aT − 1d1/2

3 E
Xe−aT−x0

`

dz exp −H az2

2Ds1 − e−2aTdJ .

s5d

An important point to notice is that the change of variable
has brought out a factor ofeaT which makes it manifestly
obvious that Eq.s5d has a finite nonzero limit asT→`.
Although we need not takeT→` sor more preciselyT
@a−1, so that termse−aT can be neglectedd, the results sim-
plify considerably in this limit, so it is convenient to do so. If
we choose to work at finiteT, we need to chooseX appro-
priately to ensure that the state-selection process has oc-
curred. On the other hand, in the limit thatT→` the prob-
ability s5d becomes independent ofX, as we would expect.
From Eq.s5d
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lim
T→`

PsX,Tux0,0d = S a

2pD
D1/2E

−x0

`

dz exp −Haz2

2D
J

= 1
2f1 + erf sx0/,dg, s6d

where,;s2D /ad1/2 is a characteristic diffusion length and
erf is the error functionf16g. This is the probability that the
state at large positivex is selected. Ifx0=0 then this prob-
ability is 1/2, if x0.0 it is greater than 1/2 and approaches
unity for x0@,. Similarly, if x0,0 the state-selection prob-
ability is less than 1/2 and approaches zero forux0u@,, again
as we would expect. Clearly the probability that the state at
large negativex is selected can be obtained by subtracting
Eq. s6d from 1 to give s1/2df1−erf sx0/,dg. This can be
obtained directly by beginning with Eq.s4d, but with the
range of integration now beings−` ,−Xd, where X.0.
This leads to an integration range in Eq.s6d of s−` ,−x0d.
Since erf is an odd function, we may combine these two
results and write the probability of the state at large posi-
tive snegatived x being selected asP+sP−d where

P± = 1
2f1 + erfs±x0/,dg. s7d

This is one of the few problems in which we have the
luxury of calculating state-selection probabilities exactly. In
all other cases approximation schemes have to be used. As
discussed in Sec. I, the two methods applied to date are the
BFPE and path integrals. Therefore, the remainder of this
section will be devoted to the derivation of the state-selection
probability, i.e., Eq.(6), using these methods.

To formulate the problem using the BFPE, let us first
denote the solution of the(forward) Fokker-Planck equation
for a potentialVsxd=−s1/2dax2 with absorbing boundary
conditions atxf = ±X, by p̃sxf ,Tux0,0d. This function also
satisfies the BFPE[8,9],

] p̃

] T
= − V8sx0d

] p̃

] x0
+ D

]2p̃

] x0
2 . s8d

By integrating Eq.s8d over xf, it follows that the probability
that the system is still in the intervals−X,Xd at timeT, that
is, the survival probability,

QsX,Tux0,0d =E
−X

X

dxfp̃sxf,Tux0,0d, s9d

also satisfies this equation. In addition, it is clear that the
probability of absorption before timeT, given by

PsX,Tux0,0d = 1 −QsX,Tux0,0d, s10d

also satisfies the BFPE. SincePsX,Tux0,0d has a finite limit
as T→` we may take this limit at the outset. Once again,
there is no need in principle to do this; we could keepT
finite. TakingT→`, the stationary problem reads

0 = ax0
du

dx0
+ D

d2u

dx0
2, usx0d = lim

T→`
PsX,Tux0,0d. s11d

We are interested in the probability of absorption through
one boundary. If we choose this to be the boundary atX, then

Eq. s11d has to be solved subject to the absorbing boundary
conditionsusXd=1 andus−Xd=0. The solution is

usx0d =

E
−X/,

x0/,

dz e−z2

E
−X/,

X/,

dz e−z2
. s12d

The residual dependence onX only gives exponentially small
terms, which are related to the very rare chance of recrossing
the maximum. As explained in Sec. I, these very long time
phenomena are not of interest here, and so we may takeX
→` in Eq. s12d giving

usx0d =
1

Îp
E

−`

x0/,

dze−z2
= 1

2f1 + erfsx0/,dg, s13d

as in Eq.s6d. We see that the method based on the use of the
BFPE gets the result very quickly in this simple example.
The weakness of the method becomes apparent when inves-
tigating higher dimensional situations. Then the ordinary dif-
ferential equations11d becomes a partial differential equation
and so is much more difficult to solve.

The path-integral approach consists of calculating
psxf ,Tux0,0d when D is small. This is achieved by finding
the optimal paths, which is analogous to making a semiclas-
sical approximation in quantum mechanics or finding instan-
ton solutions in field theory. In this simple example, it is
possible to find the exact result(3) using this method. In
more complicated problems only the exponential term, and
perhaps the prefactor, can be calculated. However, for the
values ofD that we are interested in, the leading contribution
provided by the exponential factor is sufficient.

An overview of the method is given in Appendix A. Here
we will simply indicate how the exponential factor may be
obtained. The starting point is the action functional

Sfxg =
1

4
E

0

T

dtsẋ − axd2. s14d

The extrema ofSfxg are found by settingdS/dxstd=s1/2d
3s−ẍ+a2xd equal to zero, and solving the resulting differen-
tial equation subject to the boundary conditionsxs0d=x0 and
xsTd=xf. This is the path of least action, also called the op-
timal path or classical path. In this case, it is easily found by
solving the equationẍ=a2x to be

xcstd = x0e
at + sxf − x0e

aTd
sinh at

sinh aT
. s15d

Substituting Eq.s15d into Eq. s14d gives the action for the
classical path,

Sc =
1

4
E

0

T

dtsẋc − axcd2 =
asx0 − xfe

−aTd2

2s1 − e−2aTd
. s16d

As explained in Appendix A, the leading contribution to the
path integral ise−Sc/D, and we see that using Eq.s16d the
exponential factor in Eq.s3d is recovered.
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III. COMPARISON OF THE TWO METHODS

The two methods of calculating the state-selection prob-
abilities in Sec. II look very different. First, the BFPE in-
volves time-independent quantities, whereas in the path inte-
gral, the temporal dynamics is central. Second, in the BFPE
the error function arises directly, whereas in the path integral
the quantity which naturally arises is the exponential factor
e−S/D. How are these seemingly different methods related?
Our aim in this section is to answer this question.

Let us begin by asking why in the BFPE approach we can
takeT→` at an early stage, but why, at least in Sec. II, we
do not do so in the path integral. The reason rests on the fact
that, while the probability distributionsp or p̃ vanish asT
→` (there is no stationary probability distribution), the
probability of absorption before timeT, which is P, does
have a finite nonzero limit asT→`. SinceP also satisfies
the BFPE, we may work with it directly, but when using path
integrals we have first to calculatep, then perform an inte-
gration to findP. From the specific example shown in Eq.
(5), it is clear that carrying out the integration overxf brings
out a factor which makesP nonzero in the limitT→`. It is
also clear that theT→` limit must be finite, sinceP is a
probability, and so is less than or equal to unity. We would
therefore like to find a way of taking the limitT→` at an
earlier stage in the path-integral method, and so simplifying
the calculation.

To do this, we return to our explicit example. As we noted
when discussing Eq.(5), theeaT factor which appears in the
change of variablexf =eaTsz+x0d is crucial in that for largeT
it cancels these2aT−1d−1/2 term in the prefactor, thus yielding
a finite nonzero result forPsX,Tux0,0d asT→`. This means
that we cannot take the limitT→` in the definition ofz. To
understand the change of variablez=xfe

−aT−x0 in terms of
the optimal paths, we define a new pathwstd as

wstd = xfe
−asT−td − xcstd. s17d

Since both the terms on the right-hand side of this equation
satisfyẍ=a2x, so doeswstd. Furthermore, since the first term
actually satisfiesẋ=ax, the action for the classical path can
be written entirely in terms ofwstd:

Sc =
1

4
E

0

T

dtsẇ − awd2. s18d

The boundary conditionsxs0d=x0 andxsTd=xf on xcstd now
become conditionsws0d=z and wsTd=0 on the pathwstd.
TakingT→` with z fixed, then gives a path which begins at
z and ends at the origin. The required solution ofẅ=a2w
which satisfies these conditions iswstd=ze−at. Substituting
this function into Eq.s18d yields s1/2daz2, which gives the
leading term exp−az2/2D in Eq. s6d, and hence the error
function as a result. Further insight into the meaning of
the transformations17d can be gained by looking at the
case of a more general potentialVsxd, considered in Ap-
pendix B.

In addition to this discussion of the mathematical struc-
ture of the optimal paths in the limitT→`, it is useful to
examine how the form of the paths changes asT moves from

a value on the order ofa−1 (the time scale associated with
the potential) to values much greater thana−1. We will see
that a consideration of the nature of the paths in this case will
give us a key insight into the type of paths that dominate the
functional integral for type I state selection.

The optimal path for the problem considered in Sec. II is
given by Eq.(15), and plotted out in Fig. 1 for two values of
T: T=1 andT=50. The paths for these two values ofT look
very different. The reason is that if the specified time interval
is short, e.g.,T=1, the path taken in space and time is direct.
This is a consequence of the constraint imposed by the initial
and final conditions. On the other hand, asT gets larger the
system has to take an increasingly indirect route in order to
reach the final point at the specified timeT. In the case where
T=50, shown in Fig. 1, it is apparent that the system moves
back to very near the origin, spends most of the time in the
vicinity of the origin, and then moves back toxf =x relatively
quickly. In the limitT→`, the particle will move back to the
origin in a time set bya−1, spend an infinite amount of time
in the vicinity of the maximum, and then move toxf =x in a
time again set bya−1.

Our aim in this section was to show how the BFPE and
path-integral approaches are connected. In the BFPE ap-
proach theT→` limit is taken at the outset. Using the path
integral,T may be chosen large, but at first sight it appears as
if it has to be kept finite to ensure that a meaningful result is
obtained. However, a transformation(17) can be made which
allows the limit to be taken at an earlier stage. The nature of
the optimal path forT large shows the importance of the
maximum of the potential for state selection, which will be

FIG. 1. The optimal paths forT=1 andT=50 with a=1.
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important when investigating two-dimensional examples.
The resulting form forS, and the identification of the vari-
able z, leads to the error function, which in the BFPE ap-
proach is obtained by solution of the differential equation
(11).

The discussion in this section has been concerned with the
linear evolution equation(1). More generally, we can ask
whether the same ideas apply to the case

ẋstd = − V8fxstdg + hstd, xs0d = x0, s19d

whereVsxd is a potential with a maximum atx=0 which also
includes nonlinear terms. In this case, the stationary problem
as defined in Eq.s11d generalizes by replacing theax0 factor
with −V8sx0d, which can be solved to give

usx0d =

E
−X

x0

dzeVszd/D

E
−X

X

dzeVszd/D
. s20d

Clearly, the error function only arises whenVsxd is a qua-
dratic function ofx. In the nonlinear case, if we change vari-
ables toz=Î−Vsxd /D we see that the nontrivial Jacobian
of this transformation means that the resulting integral is
not an error function. However, the dominant contribution
can be approximated as an error functionf2g. The descrip-
tion of the optimal path which leads to the results20d is
given in Appendix B.

IV. STATE SELECTION IN 2D SYSTEMS

We now turn our attention to 2D systems. For concrete-
ness, we will focus on the following system:

ẋstd = axstd − gxstdystd + xstdh1std,
s21d

ẏstd = bystd − gxstdystd + ystdh2std,

wherehistd is a Gaussian noise such that

khistdl = 0, khistdh jst8dl = 2Ddi jdst − t8d. s22d

This is a simplified version of a model considered in Ref.
f17g to describe the competition between two species in a
fluctuating environment. In this paper we will use this model
to illustrate the essential points necessary to understand state
selection in dimensions higher than one. Although the deter-
ministic equations cannot be derived from a potential, this
poses no problems for the method. The connection between
state selection and population dynamics will be made in a
forthcoming paper. The deterministic equivalent of Eq.s21d
has two fixed points, one at the origin and one atsx,yd
=sb /g ,a /gd. In this model, no stable coexistence between
the two species exists. Consequently, there is a separatrix
that divides thex-y plane into two regions, one where thex
species dominates they species, and the other where they
species dominates thex species. The separatrix begins at the
origin, passes through the nontrivial fixed point, and contin-
ues on to infinity. The detailed shape of this curve will de-

pend on the parametersa, b, andg. The state-selection prob-
lem in this case can be formulated by asking: given an initial
conditionsx0,y0d, what is the probability that a given species
dominates? If the initial condition is sufficiently far from the
separatrix, when the noise is weak the species that will domi-
nate will be the one that has the same basin of attraction as
the initial condition. However, if the initial condition is close
to the separatrix, then there is a nonzero probability that the
system will cross the separatrix and end up in the other basin
of attraction. It is this probability that we wish to calculate.
Clearly, this process is what we have called type I state se-
lection.

In the path-integral approach to this problem we will once
again takeT to be large. In the one-dimensional case we saw
that the optimal path was such that it spent most of the time
in the vicinity of the maximum. This was necessary in order
for the path to satisfy the conditions that it end up at the final
point at precisely the timeT. In the population dynamics
model, the only way that an optimal path can be of arbitrarily
long duration, is that it spend most of its time in the vicinity
of the saddle point. It is this feature that makes the largeT
regime so convenient.

A typical optimal path, as illustrated schematically in Fig.
2, will move to the vicinity of the saddle point, remain there
for a long period, and then move into either one of the basins
of attraction. Of course, actual stochastic paths as seen in a
Monte Carlo simulation, will display characteristics that are
quite different from the optimal paths; see Appendix A for a
discussion of this point.

The calculation now proceeds in a manner completely
analogous to the 1D case discussed previously. The optimal
path naturally decomposes into two distinct pieces. The first
originates near the separatrix and ends in the vicinity of the
saddle point, corresponding to the uphill path in the 1D prob-
lem. The second begins near the saddle point and moves to
the final position in one of the basins, corresponding to the
downhill path. As in the 1D case, no stationary probability
distribution exists. Therefore, to calculate the state-selection
probability we need to integrate over all final positions in the
relevant basin of attraction.

To illustrate these ideas we takea=b. The advantage of
this choice is that the equation for the separatrix is simply
y=x. We define coordinates parallel and perpendicular to the
separatrix by

FIG. 2. A schematic representation of optimal paths that start
near the separatrix at the solid circle, move to the vicinity of the
saddle point indicated by anX, and move to either one of the end
points indicated by a solid square. The separatrix is indicated by the
large-dashed line.
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r ; y − x,
s23d

s;
1

2
sx + yd −

a

g
.

The required integration oversxf ,yfd now becomes an inte-
gration over sr f ,sfd. The integration oversf converts the
probability distribution function in two variables to a func-
tion in one variable. The remaining coordinater f is analo-
gous toxf in the one-dimensional problem. The integration
over r f is performed by changing variables to the analog ofz
in the one-dimensional case. With this change of variables,
we can take theT→` limit before performing the integra-
tion. The state-selection probability is now in the form of an
integral that runs from −r0 to `. The leading contribution in
the integrand ise−S/D, whereS is essentially the action for the
first part of the optimal path, i.e., the part that connects the
initial point with the saddle point. More specifically, it is the
action calculated in the limit thatT→` but with the param-
eter r0 replaced with the variable −z, just as in the one-
dimensional case.

We can take advantage of the fact that we are only inter-
ested in points near the separatrix to calculateS. Linearizing
the extremal equations about the separatrix yields two
coupled, linear ordinary differential equations. This process
involves first solving for the nonlinear dynamics along the
separatrix and then linearizing about this solution. The de-
tails of this calculation will be provided in a forthcoming
publication[18]. The result forS is

Sszd =
sa − gs0d2z2

8s0
2fa lnsa/gs0d − sa − gs0dg

; Sz2. s24d

Putting these components together we find that the probabil-
ity of ending up in the basin of attraction wherer is large and
positive sthe y species dominatesd is

E
−r0

`

dz exp h− Sz2/Dj. s25d

This expression is exactly of the forms6d and can be written,
after normalization, as

1
2f1 + erf sr0ÎS/Ddg = 1

2f1 + sgnsr0d erf sÎSsr0d/Ddg.

s26d

As in Sec. II, the probability that the state with large negative
r is selectedsthe x species dominatesd is 1 minus this quan-
tity, that is,

1
2f1 − sgnsr0d erf„ÎSsr0d/D…g. s27d

So the final result for the probability of state selection is

1
2f1 + erf„±ÎSsr0d/Ddg, s28d

where the plus or minus sign is taken depending on whether
the value ofr in the selected state is the same or different to
the sign ofr0.

As can be seen in Figs. 3 and 4, these results are in re-
markably good agreement with Monte Carlo simulations.
Given that the result(25) was obtained via a linearization
about the separatrix, it is somewhat surprising that the cal-
culated probability agrees so well with the simulated prob-
ability for relatively large values ofr0. Presumably, the small
values ofD ensure that we are still in the linear regime.

V. CONCLUSION

If noise is added to a deterministic system with two or
more stable states, various phenomena are initiated. For ex-
ample, on very long time scales there may be activation over
the barrier separating any two of these stable states. In this
paper we have been interested in a process which occurs on
a shorter time scale: calculating the probability that the vari-
ous stable states are “selected” by the system, given a par-
ticular initial condition. For the vast majority of initial states,
one particular stable state will be selected with probability 1,
and this is the state that would be predicted as the final state
in the corresponding deterministic system. However, if the
initial state is near a point of instability, such as a saddle

FIG. 3. Comparison of calculated state-selection probability
(solid line) using Eq.(28) and Monte Carlo results(closed circles)
with D=0.01,x0=0.4, anda=b=g=1.

FIG. 4. Comparison of calculated state-selection probability
(solid line) using Eq.(28) and Monte Carlo results(closed circles)
with D=0.1, x0=0.4, anda=b=g=1.
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point, a separatrix, or an unstable point, the answer to the
question of which stable state is “selected” is not so clear-
cut; only probabilities of the various stable states being se-
lected can be given. This paper has been concerned with the
calculation of these probabilities.

In Sec. I we introduced a nomenclature to differentiate
between different types of state selection. In one-dimensional
problems only one type of state selection exists, but in two
dimensions the system may start from the vicinity of the
separatrix separating the basin of attraction of two stable
states, or from the vicinity of a completely unstable state. We
denoted these two kinds of state selection as type I and type
II, respectively. In this paper, we restricted our attention to
the former type, the latter having been explored previously
[6,7]. Our concern was with the potential analytical ap-
proaches to the calculation of state-selection probabilities for
type I systems, rather than the elucidation of any particular
system. As is common in the field of stochastic nonlinear
dynamics, there are two main approaches to the analysis: the
asymptotic analysis of differential equations, typified in this
context by the use of the BFPE, and the use of the path-
integral formalism. This latter approach is the one favored by
physicists, largely because of the intuitive insights it affords.

Although the BFPE is extremely powerful for one-
dimensional problems, in higher dimensions a partial differ-
ential equation must be solved. The method of solution pro-
ceeds via a series of mappings resulting in a problem in
two-dimensional classical dynamics. It has been known for
many years that there is a classical dynamics associated with
stochastic equations of the Langevin type and the solution of
this dynamics in the weak noise limit allows the calculation
of mean first passage times[19]. In the path-integral method,
the optimal paths are the least-action solutions of this classi-
cal dynamics. In this sense, the path-integral method is more
direct. One of the main aims of this paper has been to de-
velop an intuition that will enable us to understand progres-
sively more difficult state-selection problems. For example,
we have shown how the error function is a direct conse-
quence of integrating over the final positions in the relevant
basin of attraction, but only when the potential transverse to
the separatrix is quadratic. Another example concerns the
nature of the optimal path in the largeT limit. In order that
the system arrives at the final point at timeT, it needs to
spend a long period in the vicinity of the saddle point. This is
the fundamental reason why the saddle point is so important,
even though typical Monte Carlo paths make transitions
across any point along the separatrix.

This paper has stressed the technical aspects of the type I
problem at the expense of making contact with applications.
However, this does not mean that there is a lack of applica-
tions. In fact, the generic nature of the phenomenon implies
that it will exist in a wide variety of situations, and some
references to these applications were given in Sec. I. In a
forthcoming publication[18] we will use the method of
analysis outlined in this paper to explore some of these prob-
lems in more detail.
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APPENDIX A
In this appendix we review the formulation of stochastic

differential equations, such as Eqs.(1), (19), or (21), as func-
tional integrals and obtain the dominant contribution to the
conditional probability we wish to determine in the limit
where the noise strength tends to zero. We will limit our
detailed discussion to the one-variable case, and simply state
the results for an example in two dimensions, since the for-
malism generalizes in an obvious way. The use of path inte-
grals in the solution of stochastic differential equations was
described by Onsager and Machlup[20] in the case of linear
equations and later extended to nonlinear equations by many
authors, principally Graham[21,22]. An introduction to these
ideas can be found in some of the standard textbooks on path
integrals and quantum field theory[23,24]. An outline of the
use of optimal paths in problems of this kind can be found in
our earlier papers[7,25].

The conditional probability that the system is in the state
xf at timeT, given it was initially in the statex0 at t=0 is

psxf,Tux0,0d = kdfxf − xsTdglIC, sA1d

where IC denotes the initial conditionxs0d=x0 on the sto-
chastic process andxsTd is the solution of the differential
equations19d describing this process at timeT. The average
in Eq. sA1d is over Gaussian white noisehstd with zero mean
and correlation function given by Eq.s2d. In terms of func-
tional integrals Eq.sA1d equals

CE
IC

Dh dfxf − xhsTdg expH−
1

4D
E

0

T

dtfh2stdgJ ,

sA2d

whereC is a normalization constant and the subscripth on
xsTd is to emphasize that it depends onhsTd through Eq.
s19d. Using these equations to perform a functional change
of variable fromh to x yields, up to a normalization con-
stant,

E
IC

Dx J dfxf − xsTdgexpH−
1

4D
E

0

T

dtfẋ + V8sxdg2J ,

sA3d

whereJ is the Jacobian of the transformation. Expressed as a
path integral

psxf,Tux0,0d = CE
xs0d=x0

xsTd=xf

Dx Jfxg exp h− Sfxg/Dj.

sA4d

The actionSfxg and the JacobianJfxg are functionals which
are given by
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Sfxg =
1

4
E

0

T

dtfẋ + V8sxdg2 sA5d

and f24g

Jfxg = detFdh

dx
G ~ expH1

2
E

0

T

dtfV9sxdgJ . sA6d

For D→0, the path integralsA4d is dominated by solutions
of the Euler-Lagrange equationsdS/dxstd=0, which satisfy
the boundary conditionsxs0d=x0 andxsTd=xf. Let the solu-
tion of least action be denoted byxcstd. Then writing xstd
=xcstd+dxstd, scalingdx by D1/2, and performing the Gauss-
ian functional integral yields

psxf,Tux0,0d = C8 exp h− Sfxcg/DjJfxcg

3 detFU d2S

dxst8ddxst9d
U

x=xc

G−1/2

. sA7d

The new overall constantC8 is determined by normalization
and there are higher corrections in the form of a power series
in D multiplying Eq. sA7d which have been omitted.

While the above discussion has been carried out for a
system with one degree of freedom, it should be clear that it
generalizes in an obvious way to systems of more than one
degrees of freedom and those where no potential exists[24].
We may summarize the result of performing the functional
steepest descent on Eq.(A4) to next-to-leading order by

psrW f,TurW0,0d = ps1dsrW f,Tdexp h− ps0dsrW f,Td/Djf1 + OsDdg,

sA8d

where the leading order contributionps0d is just the action of
the optimal path rWcstd=fxcstd ,ycstd , . . .g and the next-to-
leading order contribution is

ps1dsrW f,Td = JfrWcgsdet LfrWcgd−1/2. sA9d

HereL is the matrix formed from the second order functional
derivative of the action functional evaluated at the optimal
path,

LfrWcg = U d2S

drWst8ddrWst9d
U

rW=rWc

. sA10d

The resultsA8d is the starting point for our method: if we can
determine the functionsps0d and ps1d, then we will have a
form for the conditional probability valid when the noise is
weak.

To illustrate these ideas, let us use the simplest one vari-
able problemVsxd=−s1/2dax2, discussed in the main text, as
an example. ThenV8sxd=−ax and the action(A5) becomes
Eq. (14). A variation then leads to the differential equation
ẍ=a2x for the optimal path. The explicit form of the solution
and its action are given in the main text by Eq.(15) and(16),
respectively. This gives the leading order contribution. The
next to leading order contribution[represented by Eq.(A9)]
are found from

Lfxcg = −
d2

dt2
+ a2, Jfxcg ~ expH1

2
E

0

T

dtf− agJ .

sA11d

The functional determinant ofLfxcg is proportional to
sinh aT/a f26g and the Jacobian toe−aT/2. Putting these
together gives Eq.s3d, up to a normalization constant.

It is important to realize that there are two distinct dynam-
ics associated with problems of this kind. The first is the
original stochastic dynamics given by, for instance, Eq.(19).
This is the dynamics used in Monte Carlo simulations. The
second dynamics is thedeterministicdynamics, given by a
variation of the action(A5), which describes theD→0 limit
of the stochastic dynamics. They are quite different and it is
important not to carry over intuition from one to the other
without careful consideration. From(A5),

Sfxg =
1

2
E

0

T

dtF1

2
ẋ2 − UsxdG +

1

2
E

0

T

dt
dV

dt
, sA12d

where

Usxd = − 1
2fV8sxdg2. sA13d

Since the last term in Eq.sA12d is a constant, and conse-
quently gives zero variation, the Euler-Lagrange equations
obtained from Eq.sA12d correspond to classical mechanics
in the potentialUsxd. When considering the optimal paths
such asxcstd, it is the potentialUsxd, and notVsxd, which is
relevant.

As we have stressed, all of these ideas generalize imme-
diately to systems with more than one variable. For example,
the stochastic differential equations(21) give rise to the ac-
tion

Sfx,yg =
1

4
E

0

T

dtFS ẋ − ax + gxy

x
D2

+ S ẏ − by + gxy

y
D2G ,

sA14d

which when varied leads to the differential equations

1

x

d

dt
S ẋ

x
− a + gyD = gS ẏ

y
− b + gxD ,

sA15d
1

y

d

dt
S ẏ

y
− b + gxD = gS ẋ

x
− a + gyD .

APPENDIX B
In this appendix we explore the path-integral approach to

the calculation of state-selection probabilities in a general
one-dimensional potentialVsxd. As we have stressed
throughout, such calculations are most straightforwardly car-
ried out using the BFPE. This was shown explicitly in Sec.
III, where the result in the case of interest was obtained, and
displayed in Eq.(20). However, our interest is not in this
one-dimensional problem for its own sake, but instead in
using it to gain insights into the path-integral method for
other problems of this kind. These insights will turn out to be
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valuable in the investigation of higher-dimensional systems
where the BFPE method is not so useful, and path-integral
methods are.

The potentialVsxd will be assumed to have no extrema
other than at the origin, where it has a maximum. For all
other values ofx, Vsxd,0: it has a positive slope for nega-
tive x and a negative slope for positivex. Obviously, the
simple exampleVsxd=−s1/2dax2, discussed previously in
this paper, satisfies these conditions. We will also useVsxd
=−s1/2ndax2n,n=2,3, . . ., asanother simple example.

The problem is formally defined by Eq.(19) with hstd
given by Eq.(2). The path-integral formulation of this prob-
lem is given in Appendix A. The optimal paths, found by
variation of the action(A5), are solutions of the second order
differential equation

ẍ = V8sxdV9sxd, sB1d

which may be integrated once to give

1
2ẋ2 = 1

2fV8sxdg2 + k, sB2d

wherek is a constant of integration. In the, technically simi-
lar but conceptually different, study of the problem of acti-
vation over a potential barrier, the paths begin and end at an
extrema of the potential, and so bothV8sxd and ẋ are zero as
t→ ±`, and sok=0 f10,11g. In this case Eq.sB2d reduces to
ẋ= ±V8sxd. A solution satisfyingẋ= +V8sxd is called an “up-
hill” path fsince ẋ and V8sxd both have the same signg and
ẋ=−V8sxd a “downhill” path fsinceẋ andV8sxd have differ-
ent signsg f10g. These solutions again turn out to have im-
portant roles to play in the present problem, in the limitT
→`.

To determine the relevant optimal path for generalVsxd,
we first make a change of variable analogous to Eq.(17) in
the caseVsxd=−s1/2dax2. The function xfe

−asT−td is the
downhill solution for this potential which ends up atxf at
time T. Therefore, letxdst ;xfd be the solution ofẋ=−V8sxd
satisfyingxdsT;xfd=xf. Then the generalization of Eq.(17) is

wstd = xdst;xfd − xcstd. sB3d

Once againwstd satisfies the boundary conditionsws0d=z
andwsTd=0, wherez is now defined by

z= xds0;xfd − x0. sB4d

For largeT, xds0;xfd is very small, since to take a long time
to get toxf requires starting very near to the origin. In par-
ticular,

lim
T→`

xds0;xfd = 0. sB5d

Therefore, from Eq.sB4d we see thatz<−x0, and from Eq.
sB3d that wstd<−xcstd for t!T. This implies that, in the
limit T→`, wstd is a path beginning atz on the other side of
the maximum tox0 and ending at the origin. This implies that
it is an uphill path with an initial condition −z. We may
therefore denote it as −xust ;−zd. In summary, for largeT,

xcstd = xust;− zd + xdst;xfd. sB6d

For the first part of the pathst!Td, the downhill solution is
negligible, and the optimal path is entirely made up of the
term xu. For the vast majority of the time, both terms are
negligible, andxcstd<0. For the very last part of the path,
the uphill solution is negligible, and the path is entirely made
up of the downhill solution. The situation is clearly illus-
trated in Fig. 1 whenT=50, for then=1 case. When cal-
culating the action of this path, the time integral in Eq.
sA5d may be split up into these three regimes. Since the
downhill solution gives zero actionfbecauseẋ+V8sxd=0g,
only the first part of the path gives a nonzero action:

Sc =
1

4
E

0

t*

dtfẋc + V8sxcdg2 =E
0

t*

dt ẋcV8sxcd =E
−z

x*

dxcV8sxcd,

sB7d

wheret* is the time at which the path reachesx* , which is so
near to the origin that both the uphill and downhill solutions
are effectively zero. AsT→`, x* →0, and the classical ac-
tion becomes

Sc =E
−z

0

dxcV8sxcd = Vs0d − Vs− zd = − Vs− zd. sB8d

As an explicit example, let us look at the caseVsxd
=−s1/2ndax2n,n=1,2, . . ..Whenn=1,

xust;x0d = x0e
−at, xdst;xfd = xfe

−asT−td. sB9d

Whenn=2,3, . . ., it isstraightforward to show that

xust,x0d =
x0

f1 + 2sn − 1datx0
2sn−1dg1/2sn−1d ,

sB10d

xdst;xfd =
xf

f1 + 2sn − 1dasT − tdxf
2sn−1dg1/2sn−1d .

It should be clear that the solutions have the properties we
have described, and, in particular, whenT→`, the time in-
terval may be separated into subintervals where at most one
of the solutions is non-negligible.

The dominant contribution to the path integral(A4) is
e−Sc/D, which by Eq.(B8) gives

psxf,Tux0,0d , exp hVs− zd/Dj. sB11d

Using Eq.s4d, the probability that the system has selected the
states withxf .X is

PsX,Tux0,0d , E
X

`

dxfexp hVs− zd/Dj. sB12d

The , sign has been used, since the prefactorps1d will de-
pend onxf, and so contribute to the integral. It is also under-
stood thatSc is only exactly equal to −Vs−zd in the limit T
→`. Changing variables fromxf to z using Eq.sB4d, taking
T→`, and using Eq.sB5d gives
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lim
T→`

PsX,Tux0,0d , E
−x0

`

dz exp hVs− zd/Dj, sB13d

in agreement with Eq.s20d.
The results of this appendix may be summarized as fol-

lows. In order to make a transformation fromxf to a new
variable[going from Eq.(4) to Eq. (5) or from Eq.(B12) to
Eq. (B13)] we need to keepT finite. This is because asT
→` the dependence of the action onxf is lost, and the trans-
formation becomes singular. However, since the calculation
simplifies considerably in this limit, the idea is to keepT
finite only in the combination on the right-hand side of Eq.
(B4), and to take the limit elsewhere. This appendix shows
that the effect of this is simply to substitute minus this com-
bination (defined to be −z) for the initial condition, but to
leave the calculation otherwise unchanged. Of course, ifT
had not been kept finite in Eq.(B4), then −z would have
equaledx0 and the action would simply have been −Vsx0d.

This is the result which we would expect from an uphill path
in the T→` limit.

It should be clear that these ideas extend to two, and
higher dimensions. A specific two-dimensional calculation is
outlined in Sec. IV, and will be presented in more detail in a
future publication[18]. The additional feature is that the in-
tegration over the final states(the analog ofxf) has to be
decomposed into two parts. The first is the coordinate paral-
lel to the separatrix. This is simply integrated over. The sec-
ond is the coordinate perpendicular to the separatrix. Once
the first integration has been carried out, this second integra-
tion is of the kind(4) found in one-dimensional problems.
The development of the formalism then follows similar lines
to that just given.

Finally, several aspects of the formalism discussed in this
appendix have the flavor of the BFPE, for instance, the fact
that a final condition is imposed on the downhill solution
xdst ;xfd, rather than an initial condition. This connection will
be explored in more detail elsewhere[18].
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