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Harmonic oscillator with fluctuating damping parameter

M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan, 52900 Israel

~Received 8 October 2003; published 9 April 2004!

The multiplicative noise in the equation of motion of an underdamped harmonic oscillator produced by a
fluctuating damping parameter has a dramatic effect on the average coordinate of an oscillator. Noise of a
sufficiently large strength leads to an instability. In the presence of an external periodic force, the output signal
shows a nonmonotonic dependence on the strength and the rate of a color noise~stochastic resonance!.
Contrary to the case of a random frequency, this effect exists for white noise as well.
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I. INTRODUCTION

A harmonic oscillator subjected to a random force h
long been a subject of study. The internal thermal noise
pears additively in the oscillator equation of motion wh
the external noise has been considered multiplicativ
randomizing the oscillator frequency. A quantitative inves
gation of the latter phenomenon started in the remarka
article of Bourretet al. @1#, and has since been explore
further by Russian researchers with application to the e
trodynamics of a media with random dielectric constant@2#.
An investigation of the response of such a system w
nonwhite-noise to an external periodic force demonstra
the existence of stochastic resonance@3#.

All these works deal with an additive random force,
with one acting on the oscillator coordinates. We know o
one article concerning white noise acting on the veloc
thereby influencing damping, which is related to water wa
influenced by a turbulent wind field@4#. However, there are
an increasing number of problems where the particles
vected by the mean flow passes through the region un
study. These include problems of phase transition un
shear@5#, open flows of liquids@6#, Rayleigh-Benard and
Taylor-Couette problems in fluid dynamics@7#, dendritic
growths @8#, chemical waves@9#, and motion of vortices
@10#. The velocity which enters the convective term is su
ject to fluctuations, i.e., the question arises of a harmo
oscillator with random damping. The same problem appe
when one studies the linear stability of nonlinear~say, Duf-
fing or Van der Pol! oscillators.

We consider a forced, underdamped linear oscillator w
random damping

d2x

dt2
1g@11j~ t !#

dx

dt
1v2x5a sin~Vt !, ~1!

where the random forcej(t) is a Gaussian variable with zer
mean and white noise correlator

^j~ t !j~ t1!&5Dd~ t2t1! ~2!

or with the exponential correlator

^j~ t !j~ t1!&5s2 exp~2lut2t1u! ~3!

which later on will be assumed to be dichotomous noise
the limit cases2→` and l→` with s2/l5D, Eq. ~3!
transforms into Eq.~2!.
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The generalization of Eq.~1! to an additional additive
random force and/or a random frequency should presen
problem. In the next two sections we consider separately
solution of the homogeneous equation~1! which is governed
by the internal dynamics, and that of the nonhomogene
equation determining the response to an external field.
full solution of Eq. ~1! is given by the sum of these tw
solutions.

II. FORCE-FREE OSCILLATOR

Let us first consider the free motion of an oscillator, r
writing Eq. ~1! for this purpose as

L$x%52gj
dx

dt
, L$x%[S d2

dt2
1g

d

dt
1v2D x. ~4!

In order to convert the differential equation~1! into an
integrodifferential equation we apply, following Ref.@1#, the
operatorL21 to Eq. ~4! which gives

x52L21H gj
dx

dt J . ~5!

Using thatL@L21$ f %#[ f , one can easily check that th
integral operatorL21 inverse to the differential operatorL
defined in Eq.~4! has the following form:

L21$ f %[
1

v1
E

0

t

dt1 expF2
g

2
~ t2t1!Gsin@v1~ t2t1!# f ~ t1!,

v15Av22
g2

4
, ~6!

i.e.,

x~ t !52
g

v1
E

0

t

dt1 expF2
g

2
~ t2t1!G

3sin@v1~ t2t1!#j~ t1!
dx

dt
~ t1! ~7!

and

dx

dt
5

g

v1
E

0

t

dt1 expF2
g

2
~ t2t1!Gj~ t1!

dx

dt
~ t1!

3H g

2
sin@v1~ t2t1!#2v1 cos@v1~ t2t1!#J . ~8!
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On substituting Eq.~8! in the right-hand side of Eq.~4!, one
obtains

S d2

dt2
1g

d

dt
1v2D x~ t !

52
g2

v1
E

0

t

dt1 expF2
g

2
~ t2t1!Gj~ t !j~ t1!

dx

dt
~ t1!

3H g

2
sin@v1~ t2t1!#2v1 cos@v1~ t2t1!#J . ~9!

On averaging of Eq.~9!, for the noise defined in Eqs.~2!
and ~3! one can use the simplest version of the splitting
averages@1#

K j~ t !j~ t1!
dx

dt
~ t1!L 5^j~ t !j~ t1!&K dx

dt
~ t1!L . ~10!

The substitution of Eq.~10! into the averaging equatio
~9! shows that for white noise~2!, one gets

F d2

dt2
1g~12gD !

d

dt
1v2G^x&50, ~11!
in
ia

ly

h-
h
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i.e., the presence of white noise in the original equation~1!
leads to a decrease of damping ifgD,1. Moreover, ifgD
.1, i.e., if the noise is sufficiently strong, the effectiv
damping becomes negative, so that the average value o
coordinatex increases in time, which indicates an instabili
On the other hand, for the exponentially correlated noise~3!
one gets

d2^x&
dt2

1g
d^x&
dt

1
g2s2

v1
E

0

t

expF2S l1
g

2D ~ t2t1!G
3H g

2
sin@v1~ t2t1!#2v1 cos@v1~ t2t1!#J

3
d^x&
dt

~ t1!dt11v2^x&50. ~12!

Application of the Laplace transform

X~p!5E
0

`

^x&~ t !exp~2pt!dt ~13!

to Eq. ~12! yields
~p21v21gp!@~p1l!~p1l1g!1v2#2s2pg2~p1l!

~p1l1g!~p1l!1v2 X~p!

5
~p1g!@~p1l!~p1l1g!1v2#2s2g2~p1l!

~p1l1g!~p1l!1v2 x~ t50!1
dx

dt
~ t50!. ~14!
m-
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One can check the stability of the solution of Eq.~1!, x
5x(t), without performing the inverse Laplace transform
Eq. ~14!. In the absence of a driving force and for zero init
conditions,x(t50)50, the mean solution̂x& should relax to
zero which means that the solution of the fourth-order po
nomial in p in the left-hand side of Eq.~14! must have no
roots with a positive real part. According to the Rout
Hurwitz theorem@11#, this condition is obeyed for the fourt
order equation( i 50

i 54aix
i50, if the following relations be-

tween coefficientsai hold:

all ai.0, a1a4,a2a3 , a0a3
2,a1a2a32a1

2a4 .
~15!

These stability conditions applied to Eq.~14! take the
following form:

s2,minH 2b1a1~11a!2, ~11a21!~a12b!,

11a

21a
@a12b12~11a2!#J ,
l

-

~11a!2~d2a!~d1a12a2!

,$2~11a!@d1~11a!22s2#@~11a!d2as2#

2@~11a!d2as2#2%, ~16!

where

a5
l

g
, b5

v2

g2 , d5a12b. ~17!

The slightly cumbersome inequalities~16! define the stability
conditions in the form of the relations between three para
eterss, a, andb. In the case of white noise (s2→`, l→`
with D5s2/l5const) these inequalities are reduced to
previously obtained conditionDg,1. In the next section we
find the response of an underdamped oscillator to the p
odic external field.

III. DRIVEN OSCILLATOR

Equation~1! can be rewritten as two first order differenti
equations

dx

dt
5y,

dy

dt
52gy2gjy2v2x1a sin~Vt ! ~18!

which, after averaging, take the following form:
1-2
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d

dt
^x&5^y&,

d

dt
^y&52g^y&2g^jy&2v2^x&1a sin~Vt !. ~19!

Equation~19! contains a new correlator^jy& which has to be
found separately. To this end, we use the well-kno
Shapiro-Loginov procedure@12# which for exponentially
correlated noise~3! yields

d

dt
^jy&5 K j

dy

dt L 2l^jy&. ~20!

Multiplying the second of Eq.~18! by j, one gets after aver
aging

K j
dy

dt L 52g^jy&2g^j2y&2v2^jx&. ~21!

Equation~21! contains two new correlatorŝjx& and^j2y&.
The former can be easily found using a procedure simila
Eqs.~20!, ~21!, namely,

d

dt
^jx&5 K j

dx

dt L 2l^jx&5^jy&2l^jx&. ~22!

To find the higher-order correlator^j2y& one has to use
the splitting procedure~10! which gives ^j2y&5^j2&^y&
5s2^y&. Note that this procedure becomes exact for the s
cial case of the two-state Markov process~dichotomous
noise! which is described by the correlator~3! with j56s.
In order to keep our calculation exact, we restrict our att
tion, similar to the authors of Ref.@1#, to the dichotomous
t
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noise while for the general case of the colored noise one
to use some approximations. On substituting Eqs.~22! and
~21! into Eq. ~20! one gets

d

dt
^jy&52g^jy&2s2g^y&2v2^jx&2l^jy&. ~23!

We thus obtain a system of four equations~19!, ~22!, and
~23! for four variableŝ x&, ^y&, ^jx&, and ^jy&. From these
equations one can easily find the fourth-order differen
equation for̂ x&

d4^x&
dt4

12~l1g!
d3^x&
dt3

1@2v21~l1g!21lg

2g2s2#
d2^x&
dt2

1@~2v21gl!~l1g!2lg2s2#
d^x&
dt

1v2@v21l~l1g!#^x&5a@v22V21l~l

1g!#sin~Vt !1aV~2l1g!cos~Vt !. ~24!

We seek the solution of Eq.~24! in the form

^x&5^x&01^x&a , ~25!

where the output signal^x&a is induced by an external field
a sin(Vt) and ^x&0 is defined by the internal dynamics. Th
latter was calculated in the previous section, and its Lapl
transform is defined by Eq.~14!. Let us write the solution
^x&a of the nonhomogeneous Eq.~24! in the form

^x&a5A sin~Vt1f!. ~26!

Then, one easily finds that
A25
a2~ f 2

21V2l2
2!

~V2gl22 f 1f 22g2V2s2!21V2@l1~gl22 f 1!2lg2s2#2 ~27!
rre-

nt
l
en-
and

tanf5
Vg f 2

21V3g2l22Vg2s2~l1V21lv21l2l1!

f 1~ f 2
21V2l2

2!1V2g2s2~ f 11l2!
,

~28!

where

l15l1g, l252l1g, f 15V22v2, f 25 f 12ll1 .
~29!

It follows from Eq. ~27! that the amplitude of the outpu
signal ~26! shows a nonmonotonic dependence on the no
strengths2 and the correlation ratel ~stochastic resonance!.
The amplitudeA reaches a maximum at the following valu
of the noise strength:
e

~s2!max5
g~l2V21l1l2!2~V22v2!~V22v22ll1!

g2~V21l2!
.

~30!

Dependence of the squared ratioA/a of the amplitude of
the response signal to that of the external field on the co
lation ratel for v5g51 and different frequenciesV of the
external field is shown in Figs. 1 and 2 for two differe
noise strengths251 ands255. These graphs show typica
stochastic resonance nonmonotonic behavior for the frequ
cies V close to the resonance frequencyV5v51. The
maxima are more pronounced for larger noise strength.

In the limit case of white Gaussian noise,s2→`, l→`
ands2/l5D, Eq. ~27! takes the form

A5a@~V22v2!21g2V2~12Dg!2#21/2. ~31!
1-3
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The latter result can be also obtained directly from E
~11! with the driving forcea sin(Vt) in the right-hand side of
this equation. Hence, in the presence of white noise one
tains the ‘‘dynamic’’ resonance slightly renormalized b
white noise. The amplitude of the output signalA turns out to
be a nonmonotonic function of the noise strengthD for white
noise as well, reaching its maximum atD5g21. The situa-
tion becomes more complicated for color noise~3!, where
the real ‘‘stochastic’’ resonance occurs. For the resonant
quencyv5V and g51, the amplitude of the output signa
~27! takes the form

A2

a2 5
l2~l11!21V2~2l11!2

V4~2l112s2!21V2l2~l112s2!2 , ~32!

which is a nonmonotonic function of the frequency of
external fieldV, noise strengths2, and ratel. For the spe-
cial cases251, the amplitude increases indefinitely whe
l→0.

IV. CONCLUSION

A fluctuating damping parameter, which means the
pearance of multiplicative noise in the equation of motion
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an underdamped harmonic oscillator, causes an instability
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strengthD exceeds an inverse damping parameterg21.

Just as in the case of a random frequency, the output
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to a periodic force shows a nonmonotonic dependence on
strength and the rate of a color noise~stochastic resonance!.
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FIG. 2. The same as Fig. 1 for noise strengths255 and the
frequencesV50.8, 1.0, 1.1, and 1.2.
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