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Harmonic oscillator with fluctuating damping parameter
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The multiplicative noise in the equation of motion of an underdamped harmonic oscillator produced by a
fluctuating damping parameter has a dramatic effect on the average coordinate of an oscillator. Noise of a
sufficiently large strength leads to an instability. In the presence of an external periodic force, the output signal
shows a nonmonotonic dependence on the strength and the rate of a colonstotastic resonance
Contrary to the case of a random frequency, this effect exists for white noise as well.
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I. INTRODUCTION The generalization of Eq(l) to an additional additive
random force and/or a random frequency should present no
A harmonic oscillator subjected to a random force hagdroblem. In the next two sections we consider separately the
long been a subject of study. The internal thermal noise apsolution of the homogeneous equatidn which is governed
pears additively in the oscillator equation of motion while Py the internal dynamics, and that of the nonhomogeneous
the external noise has been considered multiplicativelygduation determining the response to an external field. The
randomizing the oscillator frequency. A quantitative investi- 1!l solution of Eq. (1) is given by the sum of these two

gation of the latter phenomenon started in the remarkablg°!Utions.

article of Bourretet al. [1], and has since been explored Il FORCE-FREE OSCILLATOR

further by Russian researchers with application to the elec- '

trodynamics of a media with random dielectric constajt Let us first consider the free motion of an oscillator, re-

An investigation of the response of such a system withwriting Eq. (1) for this purpose as

nonwhite-noise to an external periodic force demonstrated dx

the existence of stochastic resonafgg L{x}=—yé—, Lix}=
All these works deal with an additive random force, or IS TH

with one acting on the osci_llator goordingtes. We know only In order to convert the differential equatidf) into an

one aruple concerning V\(hlte hoise acting on the VeIoc'ty’integrodifferential equation we apply, following RéL], the

Fhereby influencing damplng, wh_|ch is related to Waterwave%peratorL—l to Eq. (4) which gives

influenced by a turbulent wind fieldt]. However, there are

an increasing number of problems where the particles ad- 1 dx

vected by the mean flow passes through the region under x=-L 75& : )

study. These include problems of phase transition under

shear[5], open flows of liquids[6], Rayleigh-Benard and  Using thatL[L~*{f}]=f, one can easily check that the

Taylor-Couette problems in fluid dynamid§], dendritic  integral operatol. ~! inverse to the differential operatar

growths [8], chemical waveg9], and motion of vortices defined in Eq(4) has the following form:

[10]. The velocity which enters the convective term is sub- 1 [t

ject to fluctuations, i.e., the question arises of a harmonic L_l{f}E_f dt, ex;{— Z(t—tl)

oscillator with random damping. The same problem appears w1 Jo 2

when one studies the linear stability of nonlinésay, Duf- .

fing or Van der P9l oscillators. Y 7_, ®)

2

d 2
—+ya+w

dt2 X. (4)

SiMwy(t—ty)]f(ty),

We consider a forced, underdamped linear oscillator with 4
random damping i
ie.,
O 160 s omasnan, @)
=ty - twx=asi , t
dt® dt x(t)=—lj dtlexr{—z(t—tl)}
w1 Jo 2
where the random forc&(t) is a Gaussian variable with zero
mean and white noise correlator Xsimwq(t—1tq1)]&(t )dx(t ) (7)
t—hu 1) g5 (1
(E(DE(t))=Da(t—ty) (2 dt
or with the exponential correlator and
_ dx vy [t v dx
EDE(t)) =0 exp(—A[t—t]) (3) _:_f Y- ox
(6V)&ty) L Gt o ) dtexA — 5 (-t [Ety) Gt

which later on will be assumed to be dichotomous noise. In
the limit caseoc?—~ and A—x with 0?/A=D, Eq. (3) Y .
transforms into Eq(2). X1 g sifoy(t—t)]-wicodwy(t=ty)]r. (8
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On substituting Eq(8) in the right-hand side of Eq4), one i.e., the presence of white noise in the original equatibn
obtains leads to a decrease of dampingyb <1. Moreover, if yD
) >1, i.e., if the noise is sufficiently strong, the effective
(d_+ i+ 2 damping becomes negative, so that the average value of the
a2 Yar ¢ coordinatex increases in time, which indicates an instability.
On the other hand, for the exponentially correlated n@@se

2 [t dx
—— 2 ex;{ - %(t—m}g(t)g(m Sty oneges

x(t)

d*x) | d{x) yPa® [t Y
v —+ + fex —| A+ S| (t—1ty)
X5 sinwy(t—t)]—wicofwy(t—ty)]}. (9 dt dt w1 Jo 2
On averaging of Eq(9), for the noise defined in Eq&2) X %sir[wl(t—tl)]—wl coiwl(t—tl)]]
and (3) one can use the simplest version of the splitting of
average$1] d(x)

X (ty)dt;+ w?(x)=0. (12

dx dx dt
<§<t>§<tl>a<tl>>=<§(t>§(tl>><a<tl>>. (10

Application of the Laplace transform
The substitution of Eq(10) into the averaging equation

(9) shows that for white nois€), one gets X(p)= fx<x)(t)exp(— pt)dt (13)
o2 d °
—+y(1—yD) — + 0?|[(x)=0, (12) :
dt dt to Eq. (12) yields

(P?+ 02+ yp)[(P+N)(P+ N+ 9) + @] = a?py*(p+)\)
(P+A+ ) (p+\)+ w?

(Pt ML(P+N)(p+A+y)+w]— 0y (p+\)
B (P+A+Y)(P+HN)+w?

X(p)

X(t=0)+ - (t=0). (14

One can check the stability of the solution of Ef), x (1+ a))(6— a)(5+a+2a?)
=x(t), without performing the inverse Laplace transform in s 5
Eq. (14). In the absence of a driving force and for zero initial <{2(1+a)[6+(1+ @)= o”][(1+ a) 56— ao”]
conditions x(t=0)=0, the mean solutiofx) should relax to —[(1+@)6— ac?]?), (16)
zero which means that the solution of the fourth-order poly-
nomial in p in the left-hand side of Eq(14) must have no where

roots with a positive real part. According to the Routh- N 2

Hurwitz theoren{11], this condition is obeyed for the fourth a=—, B= w_z 5=a+2p. (17)
order equation>!-ga;x'=0, if the following relations be- Y Y

tween coefficients; hold: The slightly cumbersome inequaliti€s6) define the stability

conditions in the form of the relations between three param-
2 5 eterso, a, andB. In the case of white noiseof — o0, A—
all 8>0, a;8,<8;83, apA3<a18,83~ 218 with D= o?/\ =const) these inequalities are reduced to the
(15 previously obtained conditioD y<<1. In the next section we
find the response of an underdamped oscillator to the peri-

These stability conditions applied to E(l4) take the odic external field.

following form: lll. DRIVEN OSCILLATOR
Equation(1) can be rewritten as two first order differential
equations
a?<min{ 28+ a+(1+a)?, (1+a YH(a+28), d q
X
TV o= viy-w’x+asinQy  (18)

1+a
—[a+2B+2(1+a?]}, , _ ,
2+ a[a pr2(ltal] which, after averaging, take the following form:
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d
0=,

=)= HEy) o) +asin@y. (19

Equation(19) contains a new correlat¢€y) which has to be
found separately. To this end, we use the well-known
Shapiro-Loginov procedur¢l12] which for exponentially
correlated noisé3) yields

d dy
a<fy>:<fa> ~Méy). (20

Multiplying the second of Eq(18) by &, one gets after aver-

aging
d
e

dt
Equation(21) contains two new correlatofgx) and{&2y).

== ¥(&y)— K €y) — 0*(£x). (21)
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noise while for the general case of the colored noise one has
to use some approximations. On substituting Eg®) and
(21) into Eq.(20) one gets

d
GilEn ==&y = K y)—0XE) - Méy). (29

We thus obtain a system of four equatiqi9), (22), and
(23) for four variables(x), {y), (¢x), and{¢y). From these
equations one can easily find the fourth-order differential
equation for(x)

The former can be easily found using a procedure similar to e seek the solution of Eq24) in the form

Egs.(20), (21), namely,

d dx
a<§X>=<§a>—>\<§X>=<§y>—>\(§><>- (22

To find the higher-order correlatdg®y) one has to use
the splitting procedurg10) which gives (&£2y)=(&?)(y)

4 3
ddif> +2(N+7y) ¥+[2w2+(>\+ Y2+ Ny
d? d
—y*0?] d<t)2(> +[(20%+ yN) (N +9) =N y? 0] %
+ w0’ + NN+ y)(X)=al 0®— Q2+ N\ (A
+ ) ]sin(Qt) +aQ (2N + y)cog Qt). (29
(X)=(X)ot+(X)a, (25)

where the output signgk), is induced by an external field,

asin(Qt) and(x), is defined by the internal dynamics. The
latter was calculated in the previous section, and its Laplace

transform is defined by Eq14). Let us write the solution

=o(y). Note that this procedure becomes exact for the SP&¢x), of the nonhomogeneous E@4) in the form

cial case of the two-state Markov proceg&dichotomous

noise which is described by the correlat@) with é==+o. (X)a=Asin(Qt+ ¢). (26)
In order to keep our calculation exact, we restrict our atten-
tion, similar to the authors of Refl], to the dichotomous Then, one easily finds that
|
a%(f3+Q2\3)
A2= ( 2 2 (27)

(Q2yhy—f1f2— 202092+ QN (YN =2 1) =N y?0?]?

Y0P NN — (27— 0?) (2%~ w?— A\ y)
- YA(QH+N%) '

(Uz)max

(30

Dependence of the squared rafita of the amplitude of

the response signal to that of the external field on the corre-

and
t Qyi3+ 03920 ,— QY20 (M Q%+ N w?+A2\y)
ang= F1(F2+ O2\2) + 02202 (f, +\2) ’
(28)
where
)\1:)\+ Y, )\2:2)\+ Y, f1=Qz—w2, fzzfl_)\)\l.
(29

lation rate\ for w=7y=1 and different frequencieQ of the
external field is shown in Figs. 1 and 2 for two different
noise strengtr®=1 ando?=5. These graphs show typical

stochastic resonance nonmonotonic behavior for the frequen-

cies () close to the resonance frequen€y=w=1. The

It follows from Eq. (27) that the amplitude of the output M

axima are more pronounced for larger noise strength.

signal (26) shows a nonmonotonic dependence on the noise N the limit case of white Gaussian noigg}— o, \—

strengtho? and the correlation rate (stochastic resonange
The amplitudeA reaches a maximum at the following value
of the noise strength:

ando?/A=D, Eq.(27) takes the form

A=a[(Q%— 0?)?+y20%(1-Dy)?] 2 (31
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FIG. 1. The dependence of the squared ratla of the ampli- FIG. 2. The same as Fig. 1 for noise strength=5 and the

tude of the response signal to that of the external field on the corfrequence€2=0.8, 1.0, 1.1, and 1.2.
relation rate\ for y=w=1. ando®=1. The curves displayed cor-
respond to different values of the frequency of the external fiel
0=0.7, 0.8, 1.0, and 1.2.

AN underdamped harmonic oscillator, causes an instability for
sufficiently large strength of noigénoisy pump”). A similar
effect exists for the case of a random frequency where strong
noise may result not only in the well-known instability of the
second moments, but also in the instability of the oscillator
Bz_oordinate(first moment if the strength of the color noise

Is sufficiently large. Thus, for an undamped system this
strength has to be larger than twice the unperturbed fre-
guency[13]. In our case of a random damping parameter
with white noise, such an instability occurs when the noise

The latter result can be also obtained directly from Eqg.
(11) with the driving forcea sin(()t) in the right-hand side of
this equation. Hence, in the presence of white noise one o
tains the “dynamic” resonance slightly renormalized by
white noise. The amplitude of the output sigAaurns out to
be a nonmonotonic function of the noise strentfor white
noise as well, reaching its maximum @t=y 1. The situa-

tion becomes more complicated for color noi&, where string:hD _exi;:eds an wfwerse(;jam?mg paramt?]tei‘. tout si
the real “stochastic” resonance occurs. For the resonant fre- ~USt s In the case or a random irequency, the output sig-

quencyw=0 and y=1, the amplitude of the output signal nal of an oscillator with a random damping parameter subject
(27) takes the form ' to a periodic force shows a nonmonotonic dependence on the

strength and the rate of a color noigtochastic resonance

A? NN +1)%2+ Q%2 +1)2 However, for the random damping parameter, in contrast to

22 0N+ 1= 0D O+ 1= o0)2’ (32 the case of a random frequency, this effect exists for white
noise as well.

which is a nonmonotonic function of the frequency of an Finally, some terminological clarification should be noted.
external field(), noise strengthr2, and rate\. For the spe- Sometimes by stochastic resonance one means the nonmono-

Cia| Casea-zz 1, the amp"tude increases |ndef|n|te|y When tOﬂiC dependence Of a Signa|-t0-n0ise ratio on the noise am-
A—0. plitude. In contrast to this narrow definition, we use the term
“stochastic resonance” in the wide sense, meaning the non-
monotonic behavior of the output signal or some function of
it (moments, autocorrelation functions or dynamic param-

A fluctuating damping parameter, which means the apeterg on the characteristic of the noi¢gtrength of the noise
pearance of multiplicative noise in the equation of motion ofor the correlation time

IV. CONCLUSION
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