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Recursive graphs with small-world scale-free properties
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We discuss a category of graphs, recursive clique trees, which have small-world and scale-free properties
and allow a fine tuning of the clustering and the power-law exponent of their discrete degree distribution. We
determine relevant characteristics of those graphs: the diameter, degree distribution, and clustering parameter.
The graphs have also an interesting recursive property, and generalize recent constructions with fixed degree
distributions.
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In a complex system a large number of agents interactleterministic small-world networks comparable to those ob-
showing a cooperative behavior which does not depend onltained stochastically by Watts and Strogi8¥, node replace-
on the individual features of its parts, but also on its structurenent and node addition methods to produce small-world and
and on the different sorts of relations which can be estabscale-free networks from a low diameter “backbone” net-
lished between them and the environment. This global bework [9], specific recursive scale-free constructions with
havior allows the system to attain certain achievements withfixed degree distribution§10-13, and scale-free trees
out the presence of an administrative hierarchy or a centralwithout clustering[14]. In this paper we present a recursive
control mechanism. A swarm of bees, an ant colony, compagraph construction which produces scale-free small-world
nies which supply a big citywater, electricity, telephone, networks with an adjustable clustering and such that the pa-
etc), even biological mechanisms or social relationships argameter of the power law associated with the degree distri-
all complex systems where global patterns emerge from thgution, y, takes values between 2 and+In3/In2
interaction of a large number of similar elements. In recent-2 584 96. It has been shown that the values for the scaling
years, there has been an increase in understanding of sughnonent of most real technical networkis] are in this
complex systems in terms of networks, modeled by graphs;nge Moreover, the addition of one-degree nodes to our
composed of vertices and edges, where vertices represent (g, ction allows a model which is not far from the real

basic elements and edges their mtgractlons. The World W'dﬁ)pology of the Internet at the autonomous system level, as is
Web (WWW), Internet, transportation systems, and manyy.scribed in Ref[16]

biological and social systems have been characterized by Therefore, we introduce here a deterministic exact net-

small-world scale-free network®,1] which have a strong work model of complex tems for which w N adiust
local clusteringnodes have many mutual neighbo=s small 0 odel of complex systems 1o ch we can adjus
both the clustering parameter and the power-law exponent,

diameter(maximum distance between any two nodasd a . | | hasti h
distribution of the number of nearest neighbors for each nod8°viding a complementary tool to stochastic approaches.

according to a power laWscale-free properly see for ex- Recursive clique tree 4,t), q=2. Definition.—a com-
ample, Refs.[3—6]. To model these networks and their Plete graptK (also referred in the literature asclique; see
growth very often stochastic models and methods from staRef. [17]) is a graph without loops whosg vertices are
tistical physics have been considered; see R@f.However, pairwise adjacent. The recursive clique trggq,t) is the
the use of exact deterministic models allows a quick detergraph constructed as follows. Fo=0, K(q,0) is the com-
mination of the relevant parameters of the associated grapplete graphK, (or g clique). For t=1, K(q,t) is obtained
that may be compared with experimental data from real androm K(q,t—1) by adding for each of its existing subgraphs
simulated networks. Previous work, for example, consideredsomorphic to & clique a new vertex and joining it to all the
vertices of this subgrapksee Fig. 1 for the casq=3).
Then, att=1, K(q,1) results in the complete graph with
*URL:http:/Awww-mat.upc.esf comellas;  Electronic address: +1 verticesKg,,, and att=2 we addg+1 new vertices,
comellas@mat.upc.es each of them connected to all the vertices of one ofdhe
TURL:http:/mww.sciences.univ-nantes.fr/info/perso/permanents/ cliques K, (subgraphs oK), and so on.
fertin/; Electronic address: fertin@irin.univ-nantes.fr This algorithm produces a complex growing graph with a
fURL:http://Awww.labri fr/Persof-raspaud/; Electronic address: tunable parametey which controls all its relevant character-
raspaud@labri.fr istics. In the particular casg=2 we obtain the same graph
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TABLE I. Number of new edges added to the recursive clique

---- t=0 treeK(q,t) at each step and total number of complete grapkig
___________ = at this step.
— t=2 Step(t) New edges Number df,
0 a(q-1) 1
2
1 q q+1
2 q(a+1) q(a+1)+(q+1)=(q+1)
+1)? +1)%+(g+1)*=(q+1)*
FIG. 1. (Color onling First stages of a growing recursive clique q(c?“ ) a(a+1) (c? N y=(a+1)
treeK(3t). K(3,0) is the complete graph or cliqi&; (the triangle L1)-1 1)
with thick edges At each step a vertex is connected to each off q(a+1) i i (a ). i1
existing K5. Therefore at=1 only one vertex is added, but &t ' *1 9(q+1) a(q+1)y+(a+1)=(q+1)
=2, four new vertices should be connected to the four different -
cliguesK,.

The distribution of vertices and degrees is given in Table II.

as in Ref[11]. However, our family is infinite ag can take ) L
The maximum degree at stéfs

any natural value starting from 2.

Notice that although we call the graph a recursive clique i
tree, the graph contains numerous cycles and hence is not a Ai:q 9
tree in the strict sense. Recursive clique tréég,t) are a 1-q
natural generalization of tregd one considers the casg
=1, then we obtain a subfamily of the “usual” treeSimi-

_da-1 1 2

Adding up the number of vertices gives the result

lar constructions in which new vertices are joined to every t (q+1)t—1
vertex of a giverg clique have been considered, in another N,= E (q+1)+(q+1)=—F—+q (3)
context, in Ref[18] and termed k trees.” =1 q

Recursive construction of({,t). There exists another in-
teresting way to construd€(q,t), which clearly shows the
recursive structure of such networks. We cwdtive cliqueof 2 -
K(q,t) its initial q cligue att=0. ThenK(q,t) is con- E:2|E|‘:q[q q+2(qt+1)—2]
structed as follows. Ny (g+1)'—1+¢?

At step 0, we have the native cliqu&,. For any steg o -
=1, K(q,t) is constructed as follows. Consider g+1) [for g=2, itis 4/(1+3")]. _
clique, then every subgraph of it isomorphic togaclique ~ Degree distributionThe degree spectrum of the graph is
(there areq+1 such cliquesis a native clique of &(q,t  discrete: at time, the numbeN(k,t) of vertices of degree
—1); see Fig. 2.

S)ize and (g)]rder of Kg,t). Table I gives the number of new TABLE II. Distribution of vertices and degrees for the recursive
edges added to the tree at each step and the total number @fiue treek(q.t) at each step.

The average degree is then

4

K at this step. Therefore we can easily compute the total o .
q
edges at step étep(t) Num. vertices Degree
1 1 qt+1 q
q(q—1) . q(q—1) 2 q+1 2q
=+ +1)'=—F—+(q+1)'-1.
[Eli=———+0a2, (a+1)'=—F—+(a+1)'~1 g+ 1 ;
(1 3 q+1 q’+2q
q+1 2q
(9+1)? g
4 q+1 9*+q°+2q
q+1 g°+2q
Q (9+1)° 2q
(9+1)° q
; i1y 4i-2 2
FIG. 2. (Color onling Recursive construction ok(2t). We : q+1 q |+_(21I +--~:q +2q
glue a native(or initial) clique of aK(2t—1) on each 2-clique of q+1 q “+---+a°t2q
K3 to constructk(2,t). In this figure we obtairk(2,3) from three T
copies ofK(2,2) as follows. The graph at the leftkg(2,2) with its (q+1)2 29

native 2-clique(the thick edge Three copies 0K(2,2) are glued (q+1) 1t q
by their natives 2-cliques to each of the three 2-cliquek pfcen- o
ter resulting inK(2,3) (right).
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k=q, 29,9°+2q,93+09%+2q,---," 2+q" %+ ---+g®> edges among all vertices adjacent xois £;(x)=q(q
+20,9"1+q""%+---+qg?+2q is equal to q+1)'"1,(@ —1)/2. Moreoverx belongs toq different q cliques, i.e.,
+1)t72,(q+1)t73'(q+1)t74,. : '!(q+1)r(q+1)1 respec- ICl(X)ZQ'

tively. Other values of the degree are absent. Clearly, for the Step 2 As the number ofj cliques inKg,, is q+1, we
large networkN(k,t) decreases as a powerlgfso the net- add this number of new vertices to the construction. But of
work can be called “scale free.” Spaces between degrees dhese,q will be forming—each—a differentd+1) clique
the spectrum grow with increasirig Therefore, to relate the with x. ThereforeN5(x)=2q and &(x) =q(q—1)/2+q(q
exponent of this discrete degree distribution to the stangtard —1). Now x will belong to K,(x)=K(X)+q(gq—1)=q°
exponent of a continuous degree distribution for randondifferentq cliques.

scale-free networks, we use a cumulative distribution Step 3We add now to the constructio,(x) new verti-

Peum(K) == = N(K’, t)/N;~KkL 7. ces which will each form ad+1) clique with x. &£3(x)
Herek andk’ are points of the discrete degree spectrum.=&,(x)+K,(x)(q—1)=q(q—1)/2+q(g—1)+g%(q—1).
For a degree Ka(x)=Ko(X) + Ko(x)(g—1)=0%+g%(q—1)=¢° and
Na(x)=(a*-1)/(q—1)+q-1.

- - q'-1 Step t.We add KC,_;(x) new verti formin h
=tl+tll+_._++=( +) ep._ea_t,l()e ertices fo g each a
k=q""+q a+ta=al -7 *1 (q+1) clique with x &()=& 1) + K 1()(q—1)

=q(q—1)/2+(q-1)=i24q' = (q—1)[a/l2+ (9"~ 1)/ (q

there are ¢+ 1)' ! vertices with this exact degree. —1)-1]. K (X) =K 1)+ K1) (q—1)=K,_1(X)q
We count now how many vertices have this and a higher_ q' andNj(x)=(q'—1)/(q—1)+q—1.
degree. From the distribution Therefore the clustering for vertexaftert iterations is
-1 |
(q+1)'-1 2&(X)
2 N(k'\)=2 (q+1)P+(g+1)=—"—+a. CX) = e 6
e = q 00 Mo -11° ©

As the total number of vertices at stejs given in Eq.(3) we  Notice that\;(x)=A, is precisely the maximum degree at

have stept.
| We see easily that there is a one-to-one correspondence
(@t -1 between the degree of a vertex and its clustering. In general,
q'-1 o q _(g+D)'-1+¢? we will have that for a vertex of degreek the clustering
q g—1 +1 C(q+D)t-1 (q+1)t-1+¢% parameter will be
q

2(q— 1)( k— g)
k(k—1) '

Therefore, fort large

(@ r=(q+ 1)t

Clv)= ()

Notice that forq=2 we haveC(v)=2/k as in Ref[11].

and Using this result, we can compute now the clustering of
In(q+1) the graph,
y=lt (5)
Inqg q
2(q+ 1)(q—1)(AI— 5)

so that < y<<2.584 96. C.=

Also, notice that whem gets large, the maximal degree of ‘ Ay(A—1)
a vertex is roughhg! ™t~ NP #n@FD=NV—1) q

Clustering distribution The clustering coefficier®(x) of -1 2(g+ 1) (g— 1)( A— —)
a vertexx is the ratio of the total number of existing connec- + 2 2 @)
tions between alk its nearest neighbors amgk—1)/2, the i= Ai(Ai—1)
number of all possible connections between them. The clus-
tering of the graph is obtained averaging over all its verticesFor t=7 and for anyg=3 we have
In what followsV;(x) will denote the total number of neigh-
bors whichx has at step, ;(x) will denote the number of C=> 39-2 9)
different q cligues which contairx at stepi, and & (x) will Y 3g-1°
denote the total number of edges among the neighbors of
vertexx also at step_ Thus the ClUStering is hlgh, and, Similarly to th‘ECOEf'

Next we compute the clustering parameter for a verex ficient of the power law, is tunable by choosing the right
at any step of iteration. value of g in particular, C ranges from? (in the caseq

Step 1.As x belongs toK,,,, i.e., the recursive clique =2) to a limit of 1 whenq gets large.
tree K(qg,t) at step 1, it is adjacent tg other vertices Diameter We recall that the diameter of a graph is the

[N1(x)=q] which form aK,. Therefore the number of maximum of all distances between any two vertices of the
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graph. Computing the exact diameterkofqg,t) can be done have both small-world and scale-free characteristics. By
analytically, and gives the result shown below. Here, wechoosing adequately the value gfit is possible to obtain
present the main ideas of this analysis. different clustering parameters and power-law exponghées
First, we note that for any steipthe diameter always lies clustering of the graph ranges from 0.8 to 1 while the power-
between a pair of vertices that have just been created at thigw exponent takes values between 2 and 2.584 96). It has
Step. We W|” Ca” SUCh VerticesuterverticeSThen, we note been Shown that many networks mode”ng Comp|ex Systems
that, by construction, no two outervertices created at thgych as the WWW, Internet, movie actors, the Brdamber,
same stefh can be connected. Henceif is an outervertex jnteractions in protein complexes Saccharomyces cerevi-
created at step, th_en vy has been co_nngcted_ tocaclique sag the metabolic network oEscherichia coli etc., have
composed of vertices created at pairwise different steps clustering and power-law parameters precisely in these
<1p<<- - - <lq and consequentlyy<t—q. Now we want to ranges, see, for example, R€f3,6,15,19,20 Moreover, the
know_ the dls_tance betweeT two outcirvertlueandvt.. The recursive clique trees are actually a deterministic tunable
;?(()ar?] '5’ tsotaurtlng ftrr?g:tt,otjo get St?;CkHé?](i((i]t,%e)lk?é J:tmrgist generalization of the scale-free growing networks introduced
abouttt/q ju;r;gs’, 0 go frotr_nilq’to K.(q 1). Then it takes at in Ref.[21] in which one vertex is created per unit time and
most as many jumps to go ;rOM(q,l,) to v, and we con- connects to both the ends of a_randomly chose? edge. These
clude that the diameter cannot be bigger thramghly) 2t/q. nefworks were further generalized and called pseudofrac-
More precisely, the exact formula for the diameter oftaI graphs in Ref.[ll], a_md corresponq t(.) the particular case
K(q.t), denoted DiafK(q,t)], is the following: q=2 of the recursive cllque_trees. V_ana_tlons of our construc-
tion, for example, by choosing that in different steps the new
vertices added are attached to cliques of different size, would
+1(q,1), (10 allow a richer structure and more flexibility in the control of
the clustering and power-law exponent and other relevant
where f(qg,t)=0 if t—|(t—2)/q]a<[(q+1)/2], and 1 oth- network parameters.

erwise. This value can be obtained by a sharp analytical ) )
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