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Recursive graphs with small-world scale-free properties
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We discuss a category of graphs, recursive clique trees, which have small-world and scale-free properties
and allow a fine tuning of the clustering and the power-law exponent of their discrete degree distribution. We
determine relevant characteristics of those graphs: the diameter, degree distribution, and clustering parameter.
The graphs have also an interesting recursive property, and generalize recent constructions with fixed degree
distributions.
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In a complex system a large number of agents inte
showing a cooperative behavior which does not depend o
on the individual features of its parts, but also on its struct
and on the different sorts of relations which can be est
lished between them and the environment. This global
havior allows the system to attain certain achievements w
out the presence of an administrative hierarchy or a cen
control mechanism. A swarm of bees, an ant colony, com
nies which supply a big city~water, electricity, telephone
etc.!, even biological mechanisms or social relationships
all complex systems where global patterns emerge from
interaction of a large number of similar elements. In rec
years, there has been an increase in understanding of
complex systems in terms of networks, modeled by gra
composed of vertices and edges, where vertices represen
basic elements and edges their interactions. The World W
Web ~WWW!, Internet, transportation systems, and ma
biological and social systems have been characterized
small-world scale-free networks@2,1# which have a strong
local clustering~nodes have many mutual neighbors!, a small
diameter~maximum distance between any two nodes! and a
distribution of the number of nearest neighbors for each n
according to a power law~scale-free property!; see for ex-
ample, Refs.@3–6#. To model these networks and the
growth very often stochastic models and methods from
tistical physics have been considered; see Ref.@7#. However,
the use of exact deterministic models allows a quick de
mination of the relevant parameters of the associated g
that may be compared with experimental data from real
simulated networks. Previous work, for example, conside
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deterministic small-world networks comparable to those
tained stochastically by Watts and Strogatz@8#, node replace-
ment and node addition methods to produce small-world
scale-free networks from a low diameter ‘‘backbone’’ ne
work @9#, specific recursive scale-free constructions w
fixed degree distributions@10–13#, and scale-free tree
~without clustering! @14#. In this paper we present a recursiv
graph construction which produces scale-free small-wo
networks with an adjustable clustering and such that the
rameter of the power law associated with the degree dis
bution, g, takes values between 2 and 11 ln 3/ln 2
52.584 96. It has been shown that the values for the sca
exponent of most real technical networks@15# are in this
range. Moreover, the addition of one-degree nodes to
construction allows a model which is not far from the re
topology of the Internet at the autonomous system level, a
described in Ref.@16#.

Therefore, we introduce here a deterministic exact n
work model of complex systems for which we can adju
both the clustering parameter and the power-law expon
providing a complementary tool to stochastic approaches

Recursive clique tree K(q,t), q>2. Definition.—a com-
plete graphKq ~also referred in the literature asq clique; see
Ref. @17#! is a graph without loops whoseq vertices are
pairwise adjacent. The recursive clique treeK(q,t) is the
graph constructed as follows. Fort50, K(q,0) is the com-
plete graphKq ~or q clique!. For t>1, K(q,t) is obtained
from K(q,t21) by adding for each of its existing subgrap
isomorphic to aq clique a new vertex and joining it to all th
vertices of this subgraph~see Fig. 1 for the caseq53).
Then, att51, K(q,1) results in the complete graph withq
11 vertices,Kq11, and att52 we addq11 new vertices,
each of them connected to all the vertices of one of thq
cliques Kq ~subgraphs ofKq11), and so on.

This algorithm produces a complex growing graph with
tunable parameterq which controls all its relevant characte
istics. In the particular caseq52 we obtain the same grap
©2004 The American Physical Society04-1
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as in Ref.@11#. However, our family is infinite asq can take
any natural value starting from 2.

Notice that although we call the graph a recursive cliq
tree, the graph contains numerous cycles and hence is n
tree in the strict sense. Recursive clique treesK(q,t) are a
natural generalization of trees~if one considers the caseq
51, then we obtain a subfamily of the ‘‘usual’’ trees!. Simi-
lar constructions in which new vertices are joined to ev
vertex of a givenq clique have been considered, in anoth
context, in Ref.@18# and termed ‘‘k trees.’’

Recursive construction of K(q,t). There exists another in
teresting way to constructK(q,t), which clearly shows the
recursive structure of such networks. We callnative cliqueof
K(q,t) its initial q clique at t50. Then K(q,t) is con-
structed as follows.

At step 0, we have the native cliqueKq . For any stept
>1, K(q,t) is constructed as follows. Consider a (q11)
clique, then every subgraph of it isomorphic to aq clique
~there areq11 such cliques! is a native clique of aK(q,t
21); see Fig. 2.

Size and order of K(q,t). Table I gives the number of new
edges added to the tree at each step and the total numb
Kq at this step. Therefore we can easily compute the tota
edges at stept,

uEu t5
q~q21!

2
1q(

i 50

t21

~q11! i5
q~q21!

2
1~q11! t21.

~1!

FIG. 1. ~Color online! First stages of a growing recursive cliqu
treeK(3,t). K(3,0) is the complete graph or cliqueK3 ~the triangle
with thick edges!. At each step a vertex is connected to each
existing K3. Therefore att51 only one vertex is added, but att
52, four new vertices should be connected to the four differ
cliquesK3.

FIG. 2. ~Color online! Recursive construction ofK(2,t). We
glue a native~or initial! clique of aK(2,t21) on each 2-clique of
K3 to constructK(2,t). In this figure we obtainK(2,3) from three
copies ofK(2,2) as follows. The graph at the left isK(2,2) with its
native 2-clique~the thick edge!. Three copies ofK(2,2) are glued
by their natives 2-cliques to each of the three 2-cliques ofK3 ~cen-
ter! resulting inK(2,3) ~right!.
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The distribution of vertices and degrees is given in Table
The maximum degree at stepi is

D i5
q2qi

12q
1q5

qi21

q21
1q21. ~2!

Adding up the number of vertices gives the result

Nt5(
j 51

t

~q11! j1~q11!5
~q11! t21

q
1q ~3!

The average degree is then

k̄t5
2uEu t

Nt
5

q@q22q12~q11! t22#

~q11! t211q2
~4!

@for q52, it is 4/(11312t)].
Degree distribution. The degree spectrum of the graph

discrete: at timet, the numberN(k,t) of vertices of degree

f

t

TABLE I. Number of new edges added to the recursive cliq
treeK(q,t) at each stept and total number of complete graphsKq

at this step.

Step~t! New edges Number ofKq

0 q(q21)
2

1

1 q q11
2 q(q11) q(q11)1(q11)5(q11)2

3 q(q11)2 q(q11)21(q11)25(q11)3

••• ••• •••

i q(q11)i 21 (q11)i

i 11 q(q11)i q(q11)i1(q11)i5(q11)i 11

••• ••• •••

TABLE II. Distribution of vertices and degrees for the recursi
clique treeK(q,t) at each stept.

Step~t! Num. vertices Degree

1 q11 q
2 q11 2q

q11 q
3 q11 q212q

q11 2q
(q11)2 q

4 q11 q31q212q
q11 q212q

(q11)2 2q
(q11)3 q

••• ••• •••

i q11 qi 211qi 221•••1q212q
q11 qi 221•••1q212q
•••

(q11)i 22 2q
(q11)i 21 q

••• ••• •••
4-2
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k5q, 2q,q212q,q31q212q,•••,qt221qt231 •••1q2

12q,qt211qt221•••1q212q is equal to (q11)t21,(q
11)t22,(q11)t23,(q11)t24,•••,(q11),(q11), respec-
tively. Other values of the degree are absent. Clearly, for
large network,N(k,t) decreases as a power ofk, so the net-
work can be called ‘‘scale free.’’ Spaces between degree
the spectrum grow with increasingk. Therefore, to relate the
exponent of this discrete degree distribution to the standag
exponent of a continuous degree distribution for rand
scale-free networks, we use a cumulative distribut
Pcum(k)[(k8>kN(k8,t)/Nt;k12g.

Herek andk8 are points of the discrete degree spectru
For a degree

k5qt2 l1qt2 l 211•••1q1q5qS qt2 l21

q21
11D

there are (q11)l 21 vertices with this exact degree.
We count now how many vertices have this and a hig

degree. From the distribution

(
k8>k

N~k8,t !5 (
p51

l 21

~q11!p1~q11!5
~q11! l21

q
1q.

As the total number of vertices at stept is given in Eq.~3! we
have

FqS qt2 l21

q21
11D G12g

5

~q11! l21

q
1q

~q11! t21

q
1q

5
~q11! l211q2

~q11! t211q2
.

Therefore, fort large

~qt2 l !12g5~q11! l 2t

and

g'11
ln~q11!

ln q
~5!

so that 2,g,2.584 96.
Also, notice that whent gets large, the maximal degree

a vertex is roughlyqt21;Nt
ln q/ln(q11)5Nt

1/(g21) .
Clustering distribution. The clustering coefficientC(x) of

a vertexx is the ratio of the total number of existing conne
tions between allk its nearest neighbors andk(k21)/2, the
number of all possible connections between them. The c
tering of the graph is obtained averaging over all its vertic
In what followsNi(x) will denote the total number of neigh
bors whichx has at stepi, Ki(x) will denote the number of
different q cliques which containx at stepi, andEi(x) will
denote the total number of edges among the neighbor
vertexx also at stepi.

Next we compute the clustering parameter for a vertex
at any step of iteration.

Step 1.As x belongs toKq11, i.e., the recursive clique
tree K(q,t) at step 1, it is adjacent toq other vertices
@N1(x)5q# which form a Kq . Therefore the number o
03710
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edges among all vertices adjacent tox is E1(x)5q(q
21)/2. Moreover,x belongs toq different q cliques, i.e.,
K1(x)5q.

Step 2.As the number ofq cliques inKq11 is q11, we
add this number of new vertices to the construction. But
these,q will be forming—each—a different (q11) clique
with x. ThereforeN2(x)52q and E2(x)5q(q21)/21q(q
21). Now x will belong to K2(x)5K1(x)1q(q21)5q2

different q cliques.
Step 3.We add now to the constructionK2(x) new verti-

ces which will each form a (q11) clique with x. E3(x)
5E2(x)1K2(x)(q21)5q(q21)/21q(q21)1q2(q21).
K3(x)5K2(x)1K2(x)(q21)5q21q2(q21)5q3 and
N3(x)5(q321)/(q21)1q21.

Step t. We add Kt21(x) new vertices forming each a
(q11) clique with x. Et(x)5Et21(x) 1 Kt21(x)(q21)
5q(q2 1) /21 (q21)( i 5 1

t21 qi 5 (q21)@q/21 (qt 2 1) / (q
21)21#. Kt(x)5Kt21(x)1Kt21(x)(q21)5Kt21(x)q
5qt andNt(x)5(qt21)/(q21)1q21.

Therefore the clustering for vertexx after t iterations is

C~x!5
2Et~x!

Nt~x!@Nt~x!21#
. ~6!

Notice thatNt(x)5D t is precisely the maximum degree
stept.

We see easily that there is a one-to-one corresponde
between the degree of a vertex and its clustering. In gene
we will have that for a vertexv of degreek the clustering
parameter will be

C~v !5

2~q21!S k2
q

2D
k~k21!

. ~7!

Notice that forq52 we haveC(v)52/k as in Ref.@11#.
Using this result, we can compute now the clustering

the graph,

C̄t5

2~q11!~q21!S D t2
q

2D
D t~D t21!

1(
i 51

t21 2~q11! t2 i~q21!S D i2
q

2D
D i~D i21!

. ~8!

For t>7 and for anyq>3 we have

C̄t>
3q22

3q21
. ~9!

Thus the clustering is high, and, similarly to theg coef-
ficient of the power law, is tunable by choosing the rig
value of q: in particular, C̄ ranges from4

5 ~in the caseq
52) to a limit of 1 whenq gets large.

Diameter. We recall that the diameter of a graph is th
maximum of all distances between any two vertices of
4-3
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graph. Computing the exact diameter ofK(q,t) can be done
analytically, and gives the result shown below. Here,
present the main ideas of this analysis.

First, we note that for any stept, the diameter always lies
between a pair of vertices that have just been created at
step. We will call such verticesoutervertices. Then, we note
that, by construction, no two outervertices created at
same stept can be connected. Hence, ifv t is an outervertex
created at stept, then v t has been connected to aq clique
composed of vertices created at pairwise different stept1
,t2,•••,tq and consequently,t1<t2q. Now we want to
know the distance between two outerverticesut andv t . The
idea is, starting fromut , to ‘‘get back’’ to K(q,1) by jumps
from ut to ut2q , then tout22q , etc. Hence it takes at mos
about t/q jumps to go fromut to K(q,1). Then it takes at
most as many jumps to go fromK(q,1) to v t and we con-
clude that the diameter cannot be bigger than~roughly! 2t/q.

More precisely, the exact formula for the diameter
K(q,t), denoted Diam@K(q,t)#, is the following:

Diam@K~q,t !#52S b t22

q
c11D1 f ~q,t !, ~10!

where f (q,t)50 if t2 b(t22)/qcq< d(q11)/2e, and 1 oth-
erwise. This value can be obtained by a sharp analyt
proof.

When t gets large, then Diam@K(q,t)#;2t/q, while Nt
;qt21, thus the diameter clearly grows logarithmically wi
the number of vertices.

Discussion. The recursive clique treesK(q,t) which we
study in this paper are recursively constructed graphs wh
om

e
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have both small-world and scale-free characteristics.
choosing adequately the value ofq it is possible to obtain
different clustering parameters and power-law exponents~the
clustering of the graph ranges from 0.8 to 1 while the pow
law exponent takes values between 2 and 2.584 96). It
been shown that many networks modeling complex syste
such as the WWW, Internet, movie actors, the Erdo¨s number,
interactions in protein complexes ofSaccharomyces cerev
sae, the metabolic network ofEscherichia coli, etc., have
clustering and power-law parameters precisely in th
ranges, see, for example, Refs.@2,6,15,19,20#. Moreover, the
recursive clique trees are actually a deterministic tuna
generalization of the scale-free growing networks introduc
in Ref. @21# in which one vertex is created per unit time an
connects to both the ends of a randomly chosen edge. T
networks were further generalized and called ‘‘pseudofr
tal’’ graphs in Ref.@11#, and correspond to the particular ca
q52 of the recursive clique trees. Variations of our constru
tion, for example, by choosing that in different steps the n
vertices added are attached to cliques of different size, wo
allow a richer structure and more flexibility in the control
the clustering and power-law exponent and other relev
network parameters.
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