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Recursive approach to random sequential adsorption
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We present a generalization of Renyfis. Renyi, Trans. Math. Stat. Pro#, 205(1963] classical solution
to the one-dimensional random sequential adsorpti8A) problem, to the case where particle sizes are
drawn from an arbitrary distribution, a process known as competitive RSA. We formulate the process using
recursive relations, and without explicitly solving the equations, we extract limiting behavior which leads to
exact analytic expressions for the final coverage. Our analysis is confirmed by computer simulations.
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The process of random sequential adsorp(®8A) mod-  expected on average to eventually occupy an initially empty
els a diverse collection of physical phenomena, ranging fronfengthx, then after the adsorption of the first blockdtthe
reactions on polymer chaifh4] to protein depositioh2], and  expectation becomes: f(x")+ f(x—1—x"). Averaging
even ecological systenj§]. As a result, RSA has been the over all possible initial sites’, we have
subject of intensive resear¢h—9] (see Ref[9] for review).

The simplest example of one-dimensior{aD) RSA is
the so called “car parking” problem: how many randomly
parking motorists, on average, can be accommodated on a
street of a given length? The 1D RSA problem has beenvhich, thanks to its symmetry, can be simplified to
solved analytically for the cases when all ‘cars’ are of equal )
length and “parking sites” are discrefé,10,11 or continu- =1
ous[12]. Efforts have also been made to understand the RSA fx)=1+ mfo dx’ 1(x"). @
of multiple lengths, so called competitive random sequential
adsorption(CRSA) [13-164. These have yielded some lim- This is Renyi's master equation, which is analogous to the
ited analytical expressions for the final coverage due to @ne first derived for the discrete case by FIpty. The initial
restricted class of adsorbant distributidd$,14), as well as  condition for this integral equation is
numerical values for the coverage due to more general dis-
tributions[15]. However, no exact analytic results appear in f(x)=0 for O=x<1 (3
the literature for the final coverage produced by a general
distribution. Determining the time dependant behavior of thddecause no blocks can be accommodated by a length less
coverage is considerably more challengj®d Recently, an than 1. Repeated substitutionfdqi) into the right-hand side
analytical solution has been found for the case of a binar@f equation(2) leads to
mixture [17], but this relies on a carefully constructed case-
specific ansatz, without suggesting a path to solutions of f)=1 for 1=x<2
more general cases. 3x—5

In this paper, we begin by reviewing Renyi’'s recursive =
formulation of the 1D RSA problem, where without explic- -1
ity solving the equations, the infinite length limit can be 7X—17—4 In(x—2)
extracted(using Laplace transformisleading to an exact =

. . . . x—1
analytic expression for the final coverage. We then generalize

this exact solution to the CRSA of a mixture described by an,q 55 on. The nested integration arising in the iterated form
arbitrary distribution function. This is our main result, from of Eq. (2) injects rapidly increasing number of terms, making
which we duly recover the analytical form for the saturation |ysed functional form fof (x) rather impractical i;1 con-
coverage due to a binary mixture, given by the infinite timey < 5 the discrete ca$e]. Numerically however, Eqg?2)

Ii_mit of R.Ef' [17]'. Finally, we present our computer simula- and(3) can be propagated to obtain the squtfoﬁN)’for any
tions which confirm the analytical results. X, providing a direct test of the asymptotic solution. For the

Consider an empty lengtt>1, onto which blocks of unit more interesting case of CRSA this numerical solution has
length may be adsorbed. The first block can be randomly g

placed over an available length »f- 1, after which its po- P T3’

sition is fixed, and any overlap of blocks is forbidden. There- =+ W - "
fore, upon the first block being adsorbed, two independent
gaps adding up tx—1 arise, see Fig. 1. The process of _
adsorption is sequential, such that two blocks cannot be ad-
sorbed simultaneously. Ldt(x) be the number of blocks FIG. 1. Adsorption of the first block.

1 x—1
f(x)=1+ mfo dx'[f(x")+f(x—=1-x")] ()

for 2=x<3

for 3=x<4,

X -
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b7 we can write the solution of Eq7) as
) K u(wye ™
ot Fp)=wip) | Flo+ [ % —aw], @
P w
82_ which is independent of the choice kfWe now make this
b solution explicit by takingk to « as follows. Since we know
the initial form of f(x) (see Fig. 1, we can deduce the func-
1r tional form of F(p) in the limit p—o, where, knowing
f(x)=0 on[0,1) andf(1)=1:
0 L L 1 L 1 L 1 L - -p
e
! 20 4 5 lim F(p)=f(1)fl e = (10)
p—®
FIG. 2. The expectation of the number of blocks occupying an ) ) )
initially empty lengthx at saturationf (x). This allows us to rewrite the solution, E@), in the form

-p

k
F(p)=lim—2[kg(p,k)+f g(p,W)dW}, 1D
p P

Kk— oo

been used to test the saturation coverage of some specific
distributions[15]. However, the numerical propagation for
general distributions is rather cumbersome, and we turn to
direct computer simulation. Figure 2 shows the functionwith function g defined as
f(x). B

In the limit of largex, since the boundary effect decays _ o [e1l-e”

- . g(p,q)=exg —2 du

over a finite lengtf 9,18 we expect the saturation coverage P
to increase linearly withx:

. (12

For consistency, it can be readily checked that the above

lim f(x)= 6x (4) expressions recover the limit0) for p—«~. Now we con-
X—o0 siderF(p) in the p—0 limit. Since

and we are interested in this saturation coverage efficiéncy ) 1

which can be extracted from the Laplace transforni (of), ) Ia'cm . kg(p,k)o 3 —0 (13

F(p)=L[f], as the coefficient of the 2 term in the limit e

of p—0: the first term in Eq(11) may be dropped, which leads to
lim F(p)=—2. (5) lim F(p)=—2J g(Ow)dw. (14
p—0 p p—0 p=/o

Note that, only in the limit ofp—0 is the Laplace integral The final coverage efficiency is the coefficient op~2, cf.,
dominated by large for which f(x) = 6x is justified. Eq. (5):

It is now possible, without explicitly solving the master . wil_eu
equation(2), to obtain the efficiency. First differentiate the 0:f exp{ _ZJ du
master equatior{2) with respect tox, and then make the 0 0 u
change of variables—x+ 1 so that the equation is valid for (15
all x>0:

dw=0.74% ... .

This is theRenyi limitwhich may equivalently be obtained
/ _ _ by numerical propagation of the Eq®) and (3).
f'(x+1)=2f f(x+1)+1. 6 )
xP{x+1) 0)—f(x+1) © We now extend the analysis to the more general case of
The dash denotes differentiation with respect to the deperf=RSA, where adsorbing blocksf lengthl) are randomly
dent variable. Taking the Laplace transform, we find thadrawn from a normalized distributiop(l). Again we start

F(p)=L[f] obeys with an empty lengthx>1,,.x, wherel.x (Imin) are the
largest(smalles} sized blocks in the distribution. The prob-
26 P e P ability of a lengthl block landing withinx is:
F'(p)+ 1+—)F(p)=——2, (7
P p (x=1)p(l)
P(l,x)= T (16)
X_

a linear first-order differential equation. By introducing the
integrating factor

M(p)=exr{—fpk

where average length is given by

2e Y — (=
1+ u )du}, (8) I=folp(l)dl. 17)
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The previous master equati@®) is then averaged over the o T o -
landing probabilityP(l,x) to obtain an equation for the av- olp()]= jo dw2we P (w) JO p(s)e”"*ds
erage length covered,(x), given a distributionp(l)

y
f p(DI(y—=1)dl
% 2 x—1 © Jo
fp(x)zf dl P(l,x) I+Tf f (y)dy}, (18 xf — e "Wdy
0 x=lJo °° o (VY
| stry-na
which is valid for all x>1,,«. The functionf (x) is the o _
generalization off(x). f,(x) is still expected to increase +f dw ! ~ImadWd (w)
linearly in the limit of largex so that the Laplace analysis 0
remains valid, cf., Eqg4) and(5). For the sake of simplicity r %
and clarity, we shall present here the results for the restricted X Wf p(I)I(ImaX—I)dI+ﬂ, (25
case Ofly=2lnin, €.9., Ref.[17]. In this case, forx L 70
<l max, Only a single adsorption event occurs before saturag oo
tion, and the initialf ,(x) is given by a limited average:
1—f p(hHe {dl
X w 0
fop(l)l(x—l)dl d(w)=exp —Zfo ; dul. (26
f(x)="— (19 -
f p(hH(x—1)dl Equation(25) is our main result, which allows the determi-
0 nation of final coverage efficiency for adsorbing particles

described by aarbitrary distribution functionp(l) provided

The more general case bf > 2!, is straightforward ' max=2lmin (fOr Ima,> 2l min, the expression would be much
in principle with calculations becoming more cumbersome agnore complicater The infinite time limit predicted by the

the ratiol .,/ i increaseg19]. The CRSA equivalent of analytic work of Hassalet_ al.[17] for a binary mixture is a
Eq. (7) is now given by special case of our solution.
For the purpose of illustration, we take the adsorption of

an equal binary mixture of lengths 1 and(m=2):
(20 po()=3[8(1=1)+ 8(1—m)], 27)

which leads to

F'(p)+R(p)F(p)=U"(p)+IU(p)—S(p)e Pmax

where
0(m)=f h(m,w)G(0,w)dw, (28
2 (= 0
R =|+—f e Pldl, 21
(p) m Op( )e (21 where
Wz_efu_efmu
Imax G(p,w)=exp(—f ——  du],
U(p)=J f,(x)e”PXdx, (22) P u
0
and
S(p)= (Imax—l_)fpilmax)pﬂ—. 23 h(m,w)=el(M=3/2Iw_t gl~(1+m)/2w m;le[,(mfl)IZ]W_
p

Our analytic result, Eq(28), agrees(after integration by

It is again possible to introduce an integrating factor andParts with the infinite time limit of the equal weight case of
write down a solution analogous to E(). Noting that the Hassaret al.[17]. Similarly, we can specify a top hat distri-

first nonzero value of ,(x) is f,(Imin) = I min then bution between 1 anth (m=2) as
1
e Plmin pr(h=——7[HI=1)—H({—m)] (29)
limF(p)= D (29
P or a wedge function as
which allows us to write the solution explicitly, and our limit 2 A . _
analysis forp— 0 leads to the final coverage, cf. E44): pull)= m—l[H(I D=HA=m](=1), (30
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' ' ' ' T results of computer simulations we carried out separately.

0.84r T The simulation points in Fig. 3 were obtained over days, and
/4—/ 1 are in agreement with our analytic results to three significant
0.82} e N figures.
AT e ) It should be noted that this recursive technique may also
prad e be used to determine the distribution of gaps between neigh-
0 0.8 X | boring blocks at saturation. Leg(x,l)dl be the expected

number of gaps in the rande,l +dl], after saturating an
— Binary Mixture ] initially empty lengthx with unit length blocks, then we have

- Top Hat 1
- - Wedge 2 x—1

0.78

0.76 % Top Hat Simulation | | v(X,1)=—= v(y,l)dy. (31
d Wedge Simulation | A X—=1Jo

074 ) | L | L | | '

1 1.2 1.4 1.6 1.8 2 This equation is readily generalized to the case of a dis-

m tribution of block lengths and solved using the same tech-
FIG. 3. The saturation coveragefor three distributions where Nidue as described aboy&9)]. . _
= = In summary, we have generalized the recursive formula-
Imin=1 andl = m.

tion of the 1D RSA problem to find agexact analyticexpres-

, . . _sion for the final coverage produced by the CRSA of a gen-
whereH(l) is the standard Heaviside step function. Substi-grg| gistribution of sizes. These analytic results have been
tution of these distribution functions into our E5) allows  gnfirmed by our computer simulations.

the final coverage to be computed within secoridsing
standard software packages suclvasHEMATICA on a mod- We would like to thank D. E. Khmelnitskii, P. D. Haynes,
ern PQ. The results are presented in Fig. 3, along with theand R. Haydock for helpful discussions.
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