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Eigenvalue problem of the Schro¨dinger equation via the finite-difference time-domain method
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Department of Electrical and Electronic Engineering, University of Bristol, BS8 1TR, United Kingdom

~Received 30 January 2003; published 31 March 2004!

We present a very efficient scheme to calculate the eigenvalue problem of the time-independent Schro¨dinger
equation. The eigenvalue problem can be solved via an initial-value procedure of the time-dependent Schro¨-
dinger equation. First, the time evolution of the wave function is calculated by the finite-difference time-
domain method. Then the eigenenergies of the electron system can be obtained through a fast Fourier trans-
formation along the time axis of the wave function after some point. The computing effort for this scheme is
roughly proportional to the total grid points involved in the structure and it is suitable for large scale quantum
systems. We have applied this approach to the three-dimensional GaN quantum dot system involving one
million grid points. It takes only 7 h to calculate the confined energies and the wave functions on a standard
2-GHz Pentium 4 computer. The proposed approach can be implemented in a parallel computer system to study
more complex systems.
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It is essential in condensed matter physics to solve
time-independent Schro¨dinger equation and obtain th
eigenenergies and the corresponding eigenwave functi
The electric and optical properties of the material are de
mined by the eigenvalues and eigenwave functions of
electrons involved. The eigenvalue problem of the Sch¨-
dinger equation usually leads to a matrix whose rank co
sponds to the dimensionality of the system in question.
accurate description of a three-dimensional system
volves handling matrices of the order of 106. The require-
ment of 100 grid points in each of the three directions
map a simple quantum dot~QD! results in a total of one
million grid points (N), with N2 matrix elements and the
numerical effort scales asN3. The problem therefore canno
be solved by means of direct matrix diagonalization@1–3#.
The eigenvalue problem of a large system usually relies
iteration techniques or variational techniques in a subsp
e.g., the generalized Davidson algorithm~GDA! @1,4#, the
Lanczos method, and the related recursion methods@2,5,6#.
The Lanczos method is the most common technique for
kind of problem and it works well when the ground state
few extreme eigenvalues are desired. However, there a
number of difficulties in using these methods, e.g., loss
orthogonality among the states due to finite-precision ar
metic, occurrence of spurious eigenvalues, and ghost st
To avoid these problems, an orthogonalization of the ba
set in a larger subspace is required, but this would be co
in terms of storage memory and computing time which lim
the variety of the system being less than 50 000@1,2,7#.

Glutsch et al. studied the susceptibility of the electro
system and introduced a very efficient way to calculate
optical response via an initial-value procedure. A number
electron systems in external optical/electric field were
plored successfully and the absorption spectra were obta
although the eigenenergies and wave functions could no
calculated explicitly@7–10#.

In this paper, we propose to use an initial-value schem
directly solve the eigenvalues of the Schro¨dinger equation.
We start with an initial wave function and calculate the ev
lution according to the time-dependent Schro¨dinger equation
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with proper boundary conditions by the finite-differen
time-domain~FDTD! method. We find that the wave func
tion evolves quickly to a stationary state and the eigenval
of the electron system can be given by the fast Fourier tra
formation ~FFT! along the time axis, as well as the eige
wave functions. In principle, all the required eigenvalues c
be given simultaneously. On the other hand, a number of
wave functions and a shift of energy are needed in the La
zos and GDA methods, and only one eigenvalue at one t
can be dealt with therefore more computing effort is need
to calculate a large number of eigenvalues. The initial-va
procedure is very efficient and the computing effort
roughly proportional to the total grid pointsN and there is no
need to use any parameter. More importantly, the scheme
be implemented in a parallel computer@10#. It is therefore
suitable to calculate the eigenvalues of a large-scale elec
system. The initial-value procedure has been applied to
Schrödinger equation in the past. For example, the wa
packet propagation method has been used to study dynam
features in atoms and molecules@11,12# and coherent tunnel
ling in quantum wells~QW’s! @13,14#. Here we use the
FDTD method in the calculation of the eigenvalue proble
for the Schro¨dinger equation. We describe the details of th
method. An example of the calculation of the confined sta
in a GaN/AlxGa12xN QD structure is also given to demon
strate the efficiency of the approach.

We first look at the stationary Schro¨dinger equation:

Hfn~r !5Enfn~r !, ~1!

where H is the time-independent Hamiltonian,En is the
eigenenergy,fn(r ) is the corresponding eigenwave functio
n is the index for different states and its integer number
confined states.

We look at this problem again but in the time domain. T
wave function including the time variablet for any stationary
state can be written as

C~r ,t !5 (
n51

Nl

anfn~r !expS 2 i
En

\
t D , ~2!
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wherean is constant. It is easy to see that this function s
isfies the time-dependent Schro¨dinger equation,

i\
]

]t
C~r ,t !5HC~r ,t !. ~3!

At any position, e.g.,r, we carry out a Fourier transform
on the general wave functionC(r ,t),

F„C~r ,t !…5E
2`

1`

dteivt (
n51

Nl

anfn~r !expS 2 i
En

\
t D

5 (
n51

Nl

anfn~r !d~v2vn!, ~4!

wherevn5En /\. The Fourier transformed spectrum is com
prised of a series of delta functions in the frequency dom
v ~or energy domain\v). The eigenenergies of the confine
states can be easily obtained by the standard FFT routin
C(r ,t) is known. The corresponding coefficients give t
eigenfunctions if we do the FFT at every point. The on
question remaining is how to calculate the time-depend
function C(r ,t). Therefore the eigenvalue problem of th
stationary Schro¨dinger equation becomes an initial-valu
problem of the time-dependent Schro¨dinger equation which
is relatively easier.

For a very large-scale system, we may not be able to
the FFT because of the very large amount of compu
memory required. We propose an alternative way of cal
lating the eigenwave functionfn(r ). Assuming there is only
a limited number (Nl) of states occurring~usually no more
than 50!, we can store the time-dependent wave funct
C(r ,t) at Ml different time stepstm for each spacial poin
(m51,2, . . . ,Ml>Nl). Then, we have

C~r ,tm!5 (
n51

Nl

anfn~r !expS 2 i
En

\
tmD , ~5!

whereEn are known from the Fourier transform spectru
The above equation then is a simple linear equation
fn(r ). Defining a matrixT with element

Tmn5exp~2 i t mEn /\!, m51 –Ml , n51 –Nl , ~6!

the eigenfunctionsfa5$anfn(r )% can be obtained by

fa5T21C, C5$C~r ,tm!, m51,2, . . . ,Ml%. ~7!

Ml5Nl is assumed in the above, otherwiseT21 should be
regarded as the least square algorithm. The eigenwave f
tions f5$fn(r ), n51 –Nl% can be obtained by applyin
Eq. ~7! at each point, and the coefficientsan can be elimi-
nated by normalization.

We study a GaN/Al0.2Ga0.8N QW where the widthW
55 nm, the effective massesm* are taken as 0.2me and
0.22me in the confined region and the barrier region, resp
tively. To demonstrate the suitability of this method, we a
sume the confining potential as

V~z!5369.8@12cos~pz/W!#2 meV, uzu,W/2. ~8!
03670
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It is also sketched in Fig. 2. We choose a simple initial wa
function from an infinitive QW, e.g.,

C~z,0!5H 1

A2W
FcosS p

2W
zD1sinS p

W
zD G , uzu,W/2

0, uzu.W/2.

The Schro¨dinger equation~3! can be rewritten as@15,16#

expS i
Dt

2\
H DC~r ,t1Dt !5expS 2 i

Dt

2\
H DC~r ,t !, ~9!

whereDt is the time step. For a one-dimensional QW sy
tem, we use the Cayley formula@13,14#,

S 11 i
Dt

2\
H DC~zk ,t j !5S 12 i

Dt

2\
H DC~zk ,t j 21!,

~10!

whereDt5t j2t j 21 and the HamiltonianH is

H52
\2

2m*

d2

dz2
1V~z!. ~11!

The effective mass Hamiltonian is a tridiagonal matrix af
discretization@17# and a stretching-grid mesh is used. Equ
tion ~10! is unconditionally stable from the von Neuman
analysis and it is solved by the LU factorization method. T
condition (11HiDt/2\)C50 is set at the outside boundar
which is suitable for the confined states.

We first check the time evolution of the total energy d
fined asE(t)5^C(r ,t)uHuC(r ,t)& (t.0). The results in
Fig. 1 show that the total energy evolves very quickly in t
first picosecond and changes very little after a few ps, in
cating that the system becomes stationary within a few
The time to approach the stationary state also depends o
boundary conditions. After about 10 ps, the FFT is carr
out on theC(r ,t) along the time axis at several random
selected points. The magnitude of the transformed spect
is shown in the inset of the Fig. 1. The results show that th
are two confined states, the ground level at 76.15 meV
the second level at 255.8 meV. The time transformat
method described by Eq.~7! has been used to calculate th
eigenwave functions and the results are shown in Fig. 2.

FIG. 1. The total energy evolution of the system in the G
QW. The inset shows the Fourier spectrum of the time-depend
wave function after;10 ps.
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results show that the ground level is symmetric and the s
ond level is antisymmetric as expected. Those results
confirmed by other conventional methods. The intensity
each peak in the spectrum is finite as the integration limi
the FFT has to be truncated. The accuracy of the calculat
depends on the time limit in the FFT, but it can be improv
easily as the truncation error of Eq.~9! is aso(Dt3). Further
details will be given elsewhere.

The FFT technique was used before by some group
study the optical response of electron systems. Glutschet al.
applied FFT to the polarization@7,10# to study the optical
response of the electrons. They calculated absorption sp
in semiconductors@7–10#, but cannot provide direct infor
mation on the eigenstates.

We apply our method to a three-dimensional~3D! system
to check the suitability and efficiency. We combine t
Douglas-Rachford/alternating direction implicit~ADI !
method @18# and split-operator~SO! @19# method to solve
Eq. ~9!. We separate the 3D Hamiltonian into two parts a
expand the operator exp(i2bH) as follows:

exp~ i2bH !5exp@ i2b~Hx1Hy!1 i2bHz#

.exp@ ib~Hx1Hy!#exp~ i2bHz!

3exp@ ib~Hx1Hy!#

.@11 ib~Hx1Hy!#~11 i2bHz!

3@11 ib~Hx1Hy!#, ~12!

where b56Dt/4\, Hx;]2/]x2, Hy;]2/]y2, and Hz
;]2/]z2. The two-dimensional operator 11 ib(Hx1Hy) in

FIG. 3. The total energy evolution of the system in the GaN Q
with SSS symmetry. The inset shows the Fourier spectrum of
wave function after it becomes stationary.

FIG. 2. The eigenwave functions of the confined states (f1 and
f2) in the GaN QW. The confining potential has also been sho
by a thick solid line.
03670
c-
re
r
n
ns
d

to

tra

d

the above can be solved by the standard ADI method.
von Neumann analysis gives the stable condition as

@1/~mx* Dx2!11/~my* Dy2!#\Dt<16A2. ~13!

The accuracy of Eq.~12! is much better compared with th
standard SO scheme.

We have used this modified method in the simulation o
63636-nm3 GaN/Al0.3Ga0.7N QD. The QD is at the cente
of the structure. The grid cellD3Dy3Dz.1.831.8
31.8 Å at the center, and it is gradually stretched to
310310 Å at the outside boundary. The total grid points a
;106. The time stepDt is 0.15 fs, the effective masses a
taken asmx* ,my* 50.21me , andmz* 50.24me , for the alloy
in the barrier region. The confining potential is assumed
(W56 nm andV05554.7 meV),

V0$12@cos~px/W!cos~py/W!cos~pz/W!#1/3%4. ~14!

To save CPU time, we have used a symmetric condit
for the wave functions because of the symmetric confin
potential. SSS indicates symmetric wave function inX, Y,
andZ directions, SSA indicates symmetric inX andY direc-
tions and antisymmetric in theZ direction. There is a total of
17 confined levels, 6 of them are double degenerate~dd!
while the spin degeneracy is excluded. Three eigenstate
119.9, 400.7, and 421.6~dd! meV appear in the Fourier spec
trum with the SSS symmetry, while two eigenstates at 23
and 526.5~dd! meV appear with the SSA symmetry. In Fig
3 we show the total energy evolution of the system with
SSS symmetry. The results in Fig. 3 show that the total
ergy evolves quickly to a constant with a very small fluctu
tion, and the system becomes stationary in a few ps.

e

FIG. 4. ~Color! Eigenwave function in theX-Y plane (Z50) of
the second SSS eigenstate in the GaN QD.

FIG. 5. ~Color! Wave function in theX-Z plane (Y50) of the
second SSS eigenstate in the GaN QD.
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inset in Fig. 3 shows the energy spectrum from the FFT
the time-dependent wave functions after a few ps. We h
calculated all 17 eigenwave functions by Eq.~7!. Some of
them are shown below. Figures 4 and 5 show the eigenfu
tion of the second SSS eigenstate in theX-Y plane andX-Z
plane, respectively. The contours are also shown at the
tom of these figures. Figures 6 and 7 show the wave func
of the second SSA eigenstate in theX-Y plane and theX-Z
plane, respectively. Notice that Eq.~5! can be treated as
group of nonlinear equations forEn which is easily solved by
the least square method to improve the accuracy. Combi
with the FFT, we are able to obtain all the results in 7 h on a
2-GHz Pentium 4 PC with RAM of 768 MB. The typica
orthogonality valuê f i uf j& is 1026 indicating the accuracy
of our calculation.

In conclusion, we have demonstrated that the initial-va
procedure can be used to calculate the eigenvalue proble

FIG. 6. ~Color! Wave function in theX-Y plane (Z51.9 nm off
the middle! of the second SSA eigenstate in the GaN QD.
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the Schro¨dinger equation. Using the FDTD method, we ha
calculated the eigenenergies and the eigenwave function
the confined states in GaN/AlxGa12xN QW and QD systems
The computing effort is roughly proportional to the total gr
points involved in the structure. The algorithm can be eas
implemented in a parallel computing system and therefor
suitable to simulate a larger system or more realistic mo
Many-body problems can be reduced to a set of s
consistent single-particle equations under the density fu
tional theory@20#. We expect that our method can be used
calculate electronic structures in atoms, molecules, clust
and localized states in semiconductors. It should also be
plicable in first principles or pseudomethods to study
band structures in condensed matter systems.

G.B.R. is grateful to Dr. H. Summers of the Departme
of Physics and Astronomy, Cardiff University, U.K., fo
helpful discussions.

FIG. 7. ~Color! Wave function in theX-Z plane (Y50) of the
second SSA eigenstate in the GaN QD.
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