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Eigenvalue problem of the Schralinger equation via the finite-difference time-domain method
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We present a very efficient scheme to calculate the eigenvalue problem of the time-independetfin@ahro
equation. The eigenvalue problem can be solved via an initial-value procedure of the time-dependent Schro
dinger equation. First, the time evolution of the wave function is calculated by the finite-difference time-
domain method. Then the eigenenergies of the electron system can be obtained through a fast Fourier trans-
formation along the time axis of the wave function after some point. The computing effort for this scheme is
roughly proportional to the total grid points involved in the structure and it is suitable for large scale quantum
systems. We have applied this approach to the three-dimensional GaN quantum dot system involving one
million grid points. It takes oyl 7 h to calculate the confined energies and the wave functions on a standard
2-GHz Pentium 4 computer. The proposed approach can be implemented in a parallel computer system to study
more complex systems.
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It is essential in condensed matter physics to solve thevith proper boundary conditions by the finite-difference
time-independent Schdinger equation and obtain the time-domain(FDTD) method. We find that the wave func-
eigenenergies and the corresponding eigenwave functiontion evolves quickly to a stationary state and the eigenvalues
The electric and optical properties of the material are deterof the electron system can be given by the fast Fourier trans-
mined by the eigenvalues and eigenwave functions of théormation (FFT) along the time axis, as well as the eigen-
electrons involved. The eigenvalue problem of the $chrowave functions. In principle, all the required eigenvalues can
dinger equation usually leads to a matrix whose rank correb€ given simultaneously. On the other hand, a number of trial
sponds to the dimensionality of the system in question. Anvave functions and a shift of energy are needed in the Lanc-
accurate description of a three-dimensional system inzos and GDA methods, and only one eigenvalue at one time
volves handling matrices of the order of®10The require- can be dealt with therefore more computing effort is needed
ment of 100 grid points in each of the three directions toto calculate a large number of eigenvalues. The initial-value
map a simple quantum dd©D) results in a total of one procedure is very efficient and the computing effort is
million grid points (N), with N? matrix elements and the roughly proportional to the total grid pointéand there is no
numerical effort scales @$3. The problem therefore cannot need to use any parameter. More importantly, the scheme can
be solved by means of direct matrix diagonalizatjan-3].  be implemented in a parallel computei0]. It is therefore
The eigenvalue problem of a large system usually relies oguitable to calculate the eigenvalues of a large-scale electron
iteration techniques or variational techniques in a subspac8ystem. The initial-value procedure has been applied to the
e.g., the generalized Davidson algorit{@DA) [1,4], the ~ Schralinger equation in the past. For example, the wave-
Lanczos method, and the related recursion mettiadse.  Packet propagation method has been used to study dynamical
The Lanczos method is the most common technique for thiéeatures in atoms and molecules, 12 and coherent tunnel-
kind of problem and it works well when the ground state orling in quantum wells(QW's) [13,14. Here we use the
few extreme eigenvalues are desired. However, there are @PTD method in the calculation of the eigenvalue problem
number of difficulties in using these methods, e.g., loss ofor the Schrainger equation. We describe the details of this
orthogonality among the states due to finite-precision arithinethod. An example of the calculation of the confined states
metic, occurrence of spurious eigenvalues, and ghost statd8. @ GaN/ALGa _,N QD structure is also given to demon-
To avoid these problems, an orthogonalization of the basigtrate the efficiency of the approach.
set in a larger subspace is required, but this would be costly We first look at the stationary Schtimger equation:
in terms of storage memory and computing time which limits
the variety of the system being less than 50 (D@,7). Hn(r) =Enen(r), 1)

Glutsch et al. studied the susceptibility of the electron

system and introduced a very efficient way to calculate the'. . . . .
Plgenenergygi)n(r) is the corresponding eigenwave function,

optical response via an initial-value procedure. A number o the index for diff i stat dits int ber f
electron systems in external optical/electric field were ex! If\fingdmst;)fasor iterent states and IS integer number for

plored successfully and the absorption spectra were obtam&?We look at this problem again but in the time domain. The

although the eigenenergies and wave functions could not be R X - . .
calculated explicitly[7—10. wave function including the time variabtdor any stationary

In this paper, we propose to use an initial-value scheme ggtate can be written as

here H is the time-independent Hamiltonialk,, is the

directly solve the eigenvalues of the Sdtlirger equation. N, E
We start with an initial wave function and calculate the evo- W(r,t)= 2 an ¢ (r)exp{ —i —nt> )
lution according to the time-dependent Satinger equation =T ho)’
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wherea,, is constant. It is easy to see that this function sat-
isfies the time-dependent Schinger equation,

| F@(.n)| (arb. units)

9
iV () =HY(rb). 3

Energy (meV)

At any position, e.g.r, we carry out a Fourier transform
on the general wave functio# (r,t),
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: ime. (ps
F(‘I’(r,t))=f dteet> anqsn(r)exp(—i?nt)
— n=1 FIG. 1. The total energy evolution of the system in the GaN
QW. The inset shows the Fourier spectrum of the time-dependent

N
wave function after~10 ps.

= 2 anbo(r) o= wy), @
It is also sketched in Fig. 2. We choose a simple initial wave

wherew,=E/%. The Fourier transformed spectrum is com- function from an infinitive QW, e.g.,
prised of a series of delta functions in the frequency domain

o (or energy domaiti w). The eigenenergies of the confined 1 5( m il ) |z|<W/2
! . o ——|cod =—z|+sin —z||, |Z<
states can be easily obtained by the standard FFT routine if W(z,00={ 2W 2W W

W (r,t) is known. The corresponding coefficients give the
eigenfunctions if we do the FFT at every point. The only 0, |z|>Wi/2.
guestion remaining is how to calculate the time-dependent .
function W (r,t). Therefore the eigenvalue problem of the ~ The Schrainger equatiort3) can be rewritten afl5,16|
stationary Schrdinger equation becomes an initial-value
problem of the Fime-dependent Schioger equation which exp< i ﬂH)‘I’(r,tJrAt):exp( —j ﬂH)‘P(r,t), (9)
is relatively easier. 2h 2h

For a very large-scale system, we may not be able to do ) . ) )
the FFT because of the very large amount of computelvhereAt is the time step. For a one-dimensional QW sys-
memory required. We propose an alternative way of calcutém, we use the Cayley formuja3,14,
lating the eigenwave functiop,(r). Assuming there is only

o : At At
a limited number ;) of states oc_curnngjusually no more (1+| ﬁH \If(zk,tj)z(l—l ﬁH)\P(Zklt]’—l)v
than 50, we can store the time-dependent wave function
W(r,t) at M, different time steps,, for each spacial point (10

m=1,2,... M;=N)). Then, we have I .
( Mi=N) W v whereAt=t;—t; , and the HamiltoniarH is

N
W(r,t ):Elj and (r)ex;a(—iit ) (5) h? d?
Mg o H=— —+V(2). (11
2m* dz?

where E,, are known from the Fourier transform spectrum.
The above equation then is a simple linear equation foifhe effective mass Hamiltonian is a tridiagonal matrix after
¢,(r). Defining a matrixT with element discretization 17] and a stretching-grid mesh is used. Equa-
) tion (10) is unconditionally stable from the von Neumann
Ton=exp(—ityEq/fi), m=1-M;, n=1-N;, (6) apalysis and itis solved by the LU factorization method. The
condition (1+HiAt/2A)W =0 is set at the outside boundary
which is suitable for the confined states.
=T 2, U={U(rt,), m=12,...M}. (7 . We first check the time evolution of the total energy de-
fined asE(t)=(W(r,t)|H|W(r,t)) (t>0). The results in
M,=N, is assumed in the above, otherwise® should be Fig. 1 show that the total energy evolves very quickly in the
regarded as the least square algorithm. The eigenwave funtitst picosecond and changes very little after a few ps, indi-
tions ¢={¢,(r), n=1-N,} can be obtained by applying cating that the system becomes stationary within a few ps.
Eq. (7) at each point, and the coefficierds can be elimi-  The time to approach the stationary state also depends on the
nated by normalization. boundary conditions. After about 10 ps, the FFT is carried

We study a GaN/AJ,GagN QW where the widthw  out on theW(r,t) along the time axis at several randomly
=5 nm, the effective massas* are taken as o, and  Selected points. The magnitude of the transformed spectrum
022ne in the confined region and the barrier region, respecjs shown in the inset of the F|g 1. The results show that there

tively. To demonstrate the suitability of this method, we as-aré two confined states, the ground level at 76.15 meV and
sume the confining potential as the second level at 255.8 meV. The time transformation

method described by E@7) has been used to calculate the
V(2)=369.§1—cog 7z/W)]? meV, |z]<W/2. (8) eigenwave functions and the results are shown in Fig. 2. The

the eigenfunctiongb,={a,¢,(r)} can be obtained by
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FIG. 2. The eigenwave functions of the confined states gnd FIG. 4. (Color) Eigenwave function in th&-Y plane ¢=0) of
¢,) in the GaN QW. The confining potential has also been shown, . <ocond ssS eigenstate in the GaN QD
by a thick solid line. '

. ) the above can be solved by the standard ADI method. The
results show that the ground level is symmetric and the seG;on Neumann analysis gives the stable condition as
ond level is antisymmetric as expected. Those results are

confirmed by other conventional methods. The intensity for [1/(mE Ax?) + 1(mE Ay?) JhAt<16\2. (13

each peak in the spectrum is finite as the integration limit in X Y

the FFT has to be truncated. The accuracy of the calculationghe accuracy of Eq(12) is much better compared with the

depends on the time limit in the FFT, but it can be improvedstandard SO scheme.

easily as the truncation error of E@) is aso(At®). Further We have used this modified method in the simulation of a

details will be given elsewhere. 6X 6% 6-nnt GaN/Al, Ga,-N QD. The QD is at the center
The FFT technique was used before by some groups tgf the structure. The grid celAXAyxAz=1.8x1.8

study the optical response of electron systems. Glutsah.  x 1.8 A at the center, and it is gradually stretched to 10

applied FFT to the polarizatiof7,10] to study the optical x10x10 A at the outside boundary. The total grid points are

response of the electrons. They calculated absorption spectraj . The time stepit is 0.15 fs, the effective masses are

in semiconductor$7—-10], but cannot provide direct infor- (5yen asm} ,m} =0.21m,, andmj =0.24m,, for the alloy

mation on the eigenstates. _ _ in the barrier region. The confining potential is assumed as
We apply our method to a three-dimensiof@D) system (W=6 nm andV,=554.7 meV),

to check the suitability and efficiency. We combine the

Douglas-Rachford/alternating direction implicit(ADI) Vo{1—[cog mx/W)cog my/W)cog wz/W) Y34, (14)

method[18] and split-operatoSO) [19] method to solve

Eq. (9). We separate the 3D Hamiltonian into two parts and  To save CPU time, we have used a symmetric condition

expand the operator exgH) as follows: for the wave functions because of the symmetric confining
. ] ] potential. SSS indicates symmetric wave functionXiny,
exp(i2BH) =exdi2B(Hy+Hy)+i2BH,] andZ directions, SSA indicates symmetric ¥handY direc-
; ; tions and antisymmetric in thé direction. There is a total of
= Hy+H 2BH
X B(Ht Hy) lexpli2H,) 17 confined levels, 6 of them are double degenefdt
xXexdiB(Hy+Hy)] while the spin degeneracy is excluded. Three eigenstates at
) , 119.9, 400.7, and 421 (6ld) meV appear in the Fourier spec-
=[1+iB(H\+tH)(1+i28H,) trum with the SSS symmetry, while two eigenstates at 230.7
X[1+iB(Hy+Hy)], (12) and 526.5dd) meV appear with the SSA symmetry. In Fig.

3 we show the total energy evolution of the system with the
where B=*At/4f, H,~3d*lox?, Hy~d*dy? and H, SSS symmetry. The results in Fig. 3 show that the total en-

~ d?19z%. The two-dimensional operator+li B(H,+H,) in €9y evolves quickly to a constant with a very small fluctua-
tion, and the system becomes stationary in a few ps. The
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FIG. 3. The total energy evolution of the system in the GaN QD
with SSS symmetry. The inset shows the Fourier spectrum of the FIG. 5. (Color) Wave function in theX-Z plane (Y=0) of the

wave function after it becomes stationary. second SSS eigenstate in the GaN QD.
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FIG. 6. (Color) Wave function in theX-Y plane £=1.9 nm off FIG. 7. (Color) Wave function in theX-Z plane (Y=0) of the
the middle of the second SSA eigenstate in the GaN QD. second SSA eigenstate in the GaN QD.

inset in Fig. 3 shows the energy spectrum from the FFT ofhe Schrdinger e_;quation. l_Jsing the FDTD method, we _have
the time-dependent wave functions after a few ps. We hav alculated the eigenenergies and the eigenwave functions of

calculated all 17 eigenwave functions by Eg). Some of € confined states in GaN/&a,_xN QW and QD systems.

them are shown below. Figures 4 and 5 show the eigenfunc. '€ COmputing effort is roughly proportional to the total grid
tion of the second Ssé eigenstate in ¥ plane andX-Z points involved in the structure. The algorithm can be easily

implemented in a parallel computing system and therefore is

plane, respectively. The contours are also shown at the bo uitable to simulate a larger system or more realistic model.

tom of these figures. Figures 6 and 7 show the wave funCtiorN/lany-body problems can be reduced to a set of self-

of the second SSA eigenstate in tKeY plane and thX-Z . djstent single-particle equations under the density func-
plane, respectively. Notice that E(p) can be treated as a o4 theory{20]. We expect that our method can be used to

group of nonlinear equations f&, which is easily solved by 5cjate electronic structures in atoms, molecules, clusters,
the least square method to improve the accuracy. Combining, scalized states in semiconductors. It should also be ap-

with the FFT, we are able to obtain all the resufivih on a  yjicapie in first principles or pseudomethods to study the
2-GHz Pentium 4 PC with RAM of 768 MB. The typical pang structures in condensed matter systems.

orthogonality valug¢;| ¢;) is 10 ¢ indicating the accuracy

of our calculation. G.B.R. is grateful to Dr. H. Summers of the Department
In conclusion, we have demonstrated that the initial-valueof Physics and Astronomy, Cardiff University, U.K., for

procedure can be used to calculate the eigenvalue problem bélpful discussions.
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