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Generation and classification of localized waves by Lorentz transformations in Fourier space

Peeter Saari and Kaido Reivelt
Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia
(Received 15 August 2003; published 31 March 2004

The Lorentz transformations of propagation-invariant localized wdaé® known as nondispersive or
nondiffracting or undistorted progressive wavase studied in the frequency-momentum space. For supports
of wave functions in this space rules of transformation are derived which allow one to group all localized
waves into distinct classes: subluminal, luminal, and superluminal localized waves. It is shown that for each
class there is an inertial frame in which any given localized wave takes a particularly simple form. In other
words, any localized wave is nothing but a relativistically aberrated and Doppler shifted version of a simple
“seed” wave. Also discussed are the relations of the physisabluminal Lorentz tranformation to other
mathematical tranformations used in the literature on localized waves, as well as physical interpretation of the
substantial changes that localized waves undergo if observed and generated in different inertial frames.
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[. INTRODUCTION On the other hand, continuous-spectrum superpositions of
LWs [12,14 represent general finite-energy pulsed beams
The exploration of ultrawideband subcycle or few-cycle[31,32 that exactly obey the wave equation and consist of
pulsed fields has been expanding during the recent yeardtra-wide-band pulses converging to and expanding from
hand in hand with advancements in the generation of ulthe focus[33,34. Finally, another generalization of the con-
trashort optical, terahertz, and ultrasonic pulses. The theoretept of propagation-invariant LWs leads to periodically self-
ical study of a specific subclass of such fields—beams ofeconstructing field§see Refs[15,35-37 and references
bulletlike wave packets called localized waves—was trig-thereir.
gered by the discovery of several intriguing solutions to the Names of the LWs known so far—despite revealing some
linear source-free wave equatiofsee pioneering papers characteristics of a given LW—are of little help in system-
[1-11 and reviewq12—17]). The distinguishing feature of atizing the variety of them, all the more since the names are
all types of the localized waved Ws)-termed the Focus typically related to those LWs whose wave function has a
Wave Mode, X wave, Bessek and Bessel-Gauss pulses, particular closed-form mathematical expression, whereas the
etc.—is that their instantaneous intensigr energy distri-  latter circumstance is rather occasional. A physical classifi-
bution propagates without any spread or distortion in freecation of LWs according to geometrical properties of the
space or linear media up to infinity in a theoretical limit. In dependence between the frequency and longitudinal momen-
reality, for finite-energy, i.e., finite-aperture waves, the depthtum of their monochromatic constituents was first introduced
of such an invariant propagation of the pulse—which, e.g.jn Ref.[11]. This approach—actually based on considering
consists of an intense central peak with a diameter of théhe group velocity of the LW irrespective of its particular
order of its mean wavelength on a sparse low-intensityspectrum or wave function—has been developed further in
background—is of course finite, yet it considerably exceedsur paper§38—42, where LWs are divided into classes de-
the length of the waist of common focused wavefields. Durpending on how the support of the spectrum looks in mo-
ing the first 15 years of activity in theoretical research thementum space. Such a geometrical approach also reveals re-
ultrasonic X wave was the only LW whose feasibility had lationships between LWs hidden under different names. On
been verified 10]. Despite understandable obstacles encounthe other hand, it turns out that the Lorentz transformation
tered in the optical domain due to the large bandwidth andLT) in coordinate-space relates the FWM to the well-known
nonseparability inherent to LWs, to date opticgltype  monochromatic Gaussian bedf]. The coordinate-space LT
waves or Bessek pulses[18—27 and focus wave modes has been used for developing the so-called boost representa-
(FWMs) have been experimentally genera{@®]. Very re-  tion of LWSs [14], which not only relates some LWs to sim-
cently the formation ofX waves in a nonlinear crystal was pler waves considered in textbooks, but which also have
observed by an international research tef@#]. A theory  helped to find new closed-form LWs.
was developed for the propagation and diffraction of LWs in  In the present work we deal with Lorentz transformations
various optical elements and structurésee, e.g., Refs. in frequency-momentum space. The motivation is to develop
[25,26] and references therginn frequency doubling media a classification of LWs based on how the support of the
[27], and optical parametric generat¢s|. spectrum behaves under the Lorentz transformation. Our aim
In a more general context LWs are related, on the onés also to show how certain simple waves can be considered
hand, to monochromatic(pseudgnondiffracting beams, as parent or seed waves to families of LWs in the sense that
widely studied and applied since the intriguing paper on theany LW is nothing but an aberrated and Doppler shifted ver-
zeroth-order optical Bessel bed9]. In a sense an interme- sion of corresponding simple wave or, in other words, the
diate class is constituted by waveguide LWs composed of &atter observed in another inertial frame.
discrete spectrum of harmonics of a waveguide mi&s. For introducing the main idea of the present study, let us
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FIG. 2. BesseK wave field comprised of plane wave pulses
¢/vsc containing about three cycles. As grey-scale plots in a plane of the
(b) - propagation axisthez axis) and at a fixed instant, shown &@ the
Z real part of the wave function ar(®) its amplitude(modulus. The
20 arrow indicates propagation direction of the wave.

direct picture has been more or less distorted due to the finite
time the scattered light needs to travel to the observer.
observed in different framesa) in the primed frame that moves to Hence, we hfive a hint thgt thetype waves as well as. other
the right relative to the unprimed laboratory frame, dhdin the rr_10re complicated localized waves may be nothing bUt
unprimed frame that moves, conversely, to the left relative to theSiMple textbook-example-type waves observed from moving

primed one. frames_,. _ _
To introduce the Fourier representation of LWSs, let us

consider a pair of straight lines which move—remaining par-consider a simple case of an axially symmetrical LW if not
allel to thez’ axis in an inertial reference fram¢' —with a  Only its energy distributionmodulus squared of its wave
speedc in the (x',z') plane. The lines may represent, e.g., function but also the wave function itself is propagation
projections of phase or pulse fronts of plane waves that ardvariant. In cylindrical coordinates and in the form of ana-
perpendicular to the plang/(=0) [see Fig. a)]. If at the Iyt|_c signal it is given by a wideband superpositip8(k)
momentt’ =0 the lines coincide with the axig, they are  being the spectrufrof Bessel beams:

described by the equation’ = +|ct’| while the coordinate .

z' is a freely running parameter for the lines. In a laboratory ‘I’x(Pvzyt):f dk Sk)Jo(k,p)expik,z—iwt). (3)
frame K, whose axes are parallel to thosekf, and with 0

respect to whichK’ is moving along the positive direction of ) _

the z axis with a subluminal speed, the coordinates are Herek=w/c=2m/\ is the wave number, anais the trans-

FIG. 1. Flight of two straightddepicted as thick grey lings

given by the Lorentz transformations versal distance from the propagation axighe zeroth-order
Bessel function of the first kindy(k,p) can be viewed as a
x=x', cylindrical counterpart of the lateral interference profile fac-
tor cosk, x) of the field of a pair of plane waves propagating
z=vy(z' + Bct’), (1)  with theirk vectors in the £,x) plane at anglest 6 relative
to thez axis. The componerk, of thek vector is transverse
ct=y(ct'+B2). to thez axis, |k, [=k,=k sin 6, andk,=k cos# is the wave

number along the propagation axis. If such a LW does not
Here B=v/c<1 is the speed oK’ in units of c and y  contain low-frequency components down to the dc one, i.e.,
=(1- % Y2 Through the use of Eq1) in the laboratory if S(k—0)=0, but the bandwidtiAk is still of the order of

frame the equation of the moving lines turns out to be the mean wave numbde the field shows both the Bessel-
~ B ~ - beam-type rings and the characteriskdike shape in its
x=*|y(z—Bct)|, y=1YB*-1. (2)  spatial distribution(Fig. 2). Therefore such a LW has been
) ) ~ 5 called the Bessek wave [18]. Since k,z—wt=k,(z
If one defines a superluminal speed=3""c=c“/v>cC,  —ct/cos#), temporal dependence enters into B).through

then y=(v?/c>~1)"* tums out to be the superluminal the propagation variable,=z—ot only, and therefore the
counterpart of the relativistic factoy. _Equatlon(Z) te_IIs Us  whole pulse propagates rigidly along thexis with super-
that for a laboratory observer the lines behave in a comy, .- speed =c/cosé

pletely different manner—instead of being parallel they are The paper has been organized as follows. In Sec. Il we

crossed under the anghe=arccoty and the crossing point as pyriefly introduce known general geometrical features of the
well as the wholex-like figure moves along the axis with  Fourier representations of the localized waves, and derive
the superluminal spead as shown in Fig. (b). (Parentheti- some general rules that govern the impact of aberration and
cally we remark that what ongbserveseing in a reference Doppler shift on the supports of the ultrawideband spectra of
frame is not what onseesor records by a camera, since the the LWs. In Sec. lll we discuss superluminal generalizations
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axisymmetric field as an analytic signal is then expressible as
an expansion over the zeroth-order Bessel beams propagat-
ing both forward and backward along thexis:

vipzn= [ dk, Ak 3K
S K,

X exp(ik,z—ikct). (4)

Here the two-dimensional integration covers the area of pro-
jection of the support on the cone onto the plakg,K) in
contrast to the one-dimensional integration in E).above.
For |W(p,zt)|? to be propagation invariant, i.e., to depend
on z andt through the propagation variabte-vct , where

vg IS a constant group velocity alormaxis in units ofc, the

FIG. 3. The conical surface in the Fourier space, which thevariablesk andk, must be bound linearlj38—-43,
support of any wave has to lie on. The akis depicts one of the k=v ko +b 5
transverse componentk, ,k, or—for cylindrically symmetric ZUgK,+D, ®)
waves—any transverse component of the wave Vd‘:t@ep'.aed whereb is a constant. Hence, the spectrum has to be singular
on the surface is the support line of a localized wave, which has a . . . .

) : . ) .~ and may be factorized in the following form:
subluminal velocity because—as seen in the figure—the projection
of the line onto the K, ,k) plane is a straight with a slope less than
1. Since for solutions to the wave equation as analytic signals the

!ower cone with negative freque.nc'es 1S a.‘bse.m andfoepresent- whereS(k) is any complex-valued function of one real posi-
ing the transverse components in the cylindrical system there are n[o

negative values, henceforth we deal with the rear-left half of the Ive variable and the_ Heaviside unit St@.ﬂx) has_ be_en In-
upper cone only. troduced as a factor in order to allow tkéntegration in Eq.

(4) to start fromk=0 instead ofk=|k,|. Thus, for an axi-

of the common Lorentz transformation and its modifications SYmmetric wave packet to be a propagation-invariant LW, its

Section IV contains our main results; there we systematiz&P€ctral support must be a line of intersection of the cone
LWs into families according to geometrical and Lorentz- SUrface by a plane perpendicular to the plakgK); see Fig.
transformational properties of their supports in frequency-3- 1he projection of the line onto the plan&, (k) is a
momentum space, and present an example for each famil§traight with the slopeq (Fig. 3). Let us notice that, ib
showing how an elementary simple wave field with a par-—0 and if the pulse is superluminal witbg|>1, the sup-
ticular spectrum gives birth—through a change of the speef0rt may streztch up to thze origk=k,=k,=0 (since in this

of the reference frame—to a more complicated LW with acase® (k*—kz)=0[k;(vg—1)]=1) and the expression for
corresponding spectral profile. The last section contains conthe field reduces to Eq3).

ments and conclusions on the results obtained in Sec. IV.

W (k, k) =S(k) 8(k—v4k,—b)® (k*~K?2), (6)

B. Lorentz transformation of wave vector

Il. LORENTZ TRANSFORMATIONS AND In order to study how dscalaj wave field given in one
SPECTRAL SUPPORTS system of coordinates changes if observed from another in-
A. Peculiarities of spectral supports of localized waves ertial reference frame, one may employ the Lorentz transfor-

) ] mation of the space and time variables of the wave function.
Despite a general solutiof (r,t) of the free-space scalar Thjs the approach the authors of REE4] is applied to de-
wave equation depends on four coordinatey, z, andct, e various localized wave solutions to the wave equation.
its transform domain K-space or spectralrepresentation  ajternatively, one may Lorentz transform the wave vectors
W (k,w/c) has only three independent arguments due to thef the single-frequency constituents of the field instead, and
dispersion-relation restrictiork’+k;+k>—(w/c)?=0 im-  leave the coordinates alone as free variables. In this case the
posed by the wave equation. In other words, the four-vectotransformation of the field, including the change of its spa-
(k,k=w/c) of a light wave is always an isotropic one. Thus, tiotemporal shape, is considered as a manifestation of the
the spectral functiof’ (k,k) is not equal to zero only on the distinct physical effects—the Doppler shift and the aberra-
surface of a cone given by equatith= k)2(+k§+k§ in the tion. This is the approach we e_mploy throughout the present
four-dimensional Fourier space. In other words, the suppor?tUdy' The Lorentz transformations of the components of the

L= . . wave vector read
of the function¥ (k,k) has to lie on that conical surface. In

the case of azimuthal symmetry one can introduce the cylin- k =k ,

drical coordinates by replacin§+ ki*) ki thus reducing the T

dimensionality of the support to 2 and gaining a possibility k,= y(k,+ BK), @)
to depict the support as a conical surface in Fourier space

with three axesk, ,k,,k (or w/c); see Fig. 3. The general k= y(k+ Bk,).
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the wave vector—with fixed triplet of values df,,k.k,
=k°— kzz. Such a support corresponds to a monochromatic
Bessel beam. So, Fig. 4 shows the transformation of a single-
point support as well. It follows from Fig. 4 particularly that,
for any monochromatic Bessel beam, there is an inertial
frame where the longitudinal componédgtvanishes; conse-
quently, in such a “rest” frame the beam becomes a
z-independent cylindrical monochromatic standing wave
with the wave functiondy(pk)exp(kct).

C. Lorentz transformation of support lines

As indicated above, for a wave packet to be propagation
invariant its support in th& space has to be degenerated into
a line, the projection of which onto thé(,k) plane has to
lie on a straightline. Henceforth, for brevity we shall use
term “support lines” for such one-dimensional supports and
their projections. In this subsection we consider some gen-
eral rules that govern the transformation of the support lines
of the localized waves, which will be useful for a classifica-
tion of the waves in Sec. Illl. The lines as conical-section-

FIG. 4. Geometrical representation of the Doppler shift and ab{ype curves change their parameters but retain the type of the
erration of a monochromatic plane wave as the Lorentz transformagenerally curveflline, as will be deduced below from Eq.
tion of its wave vector. Depicted are the wave vector projections(7). We shall consider both projections of the support, onto
(grey double-line arrows(a onto the k k) plane andb) onto the  the plane k,,k) and plane k; ,k,); see Fig. 3. The support
(k;.k,) plane. The unit of the scales is conventional but if it is |ine in the latter plane reveals well the composition of a
taken to be 10rad/m=10 radjum, values ofk from 1 to 2 units  given LW from plane wave constituents, e.g., a straightline in
fall into optical domain from red to near ultraviolet. The forbidden he plane Kzikp) says that the LW consists of common plane

region outside the conical surfacef. Fig. 3 is depicted by gray \yaye pulses, whereas a curved line means that the constitu-
shading. Thin black lines with arrows indicate projections of theents are tilted pulsei87]

trajectory of the tip of the wave vector as the relative spged
between the reference frames increases from the initial vglue
=0 up to3=0.8. The initial vector, i.e., the vector in the frar{é
(coinciding with the unprimed laboratory framegf=0) has been
taken—as an example—transverse to ztexis. The Doppler shift
to the blue as observed in the laboratory frame is manifesielly

-2 -1

In the plane k,,k) the line is straight given by Ed5)
and, as the transformatiofi§gs. (7)] are linear, the line re-
mains straight, but its parameters are changed according to
the following relations

growth of the vertical component of the vector in the (k) plane Vg M’

or, equivalently,(b) by increase of the length of the vector in the (1+Ug,3)

(k. ,k,) plane. (8)
. . . b

Unlike Eq. (1) the primes have been omitted here and ex- b= ———.

pression(7) is interpreted as follows: given a wave field in Y(1t+vgp)

the moving frameK’, we replace the wave vectors of its

cylindrical-wave constituents in order to get the wave func-By taking appropriate limits in the right-hand side of expres-
tion describing the field, as observable in the laboratorysion(8)—the first row of which is nothing but the relativistic
frame. The transformation is geometrically depicted in Fig.law for addition of velocities—we get the following rules.

4. We see that as the relative speed between the frames (1) vy=sgn(g) if |8|~1, i.e., no matter what the group
changes, the end point of the wave vector projection draws gelocity along the pulse’s propagation axis is in a given
hyperbola in the K, ,k) plane, while the change of the ordi- frame—equal ta (luminal) or sub- or superluminal, the lo-
natek of the point displays a Doppler shift and a change ofcalized wave turns out to be luminal if observed in another
the absciss&, (the aberration Let us note parenthetically reference frame that moves extremely relativistically with
that the vanishing derivative of the curve near the verticafrespect to the first one.

axis depicts the well-known quadratic smallnessa?/2) of (2) vg=sgn@y) if lvg|~1, i.e., no matter what the speed

the transverse Doppler effect. of another reference frame is, a luminal localized wave is
Equation(7) and Fig. 4 also indicate how tHedomain  also luminal in it.

support of a general axisymmetric field—see Ed—is (3) A subluminal (superlumingl localized wave remains

transformed if the field is observed in another referencesubluminal(superluminalin any possible frame, except the
frame: every point of the support has to move along surfacéirst case is an extreme one.

of the cone(Fig. 3) to a new location in accordance with Eq.  (4) Also invariant is the conditiob=0, which is possible
(7). The most singular support is a single point—the tip ofonly for superluminal localized waves—of course, if we do
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not consider common luminal plane waves—and results irapplies the subluminal LT to a wave, it is not inconceivable

an equality of the phase and group velocities of the wave, aghat a superluminal velocity =c?v may appear in the ex-

seen from Eq(4). . o pression of the transformed wave, as mentioned already in
To summarize, belonging to one of the distinct classes okec. 3.2 of Ref[14].

“families” of localized waves—subluminal, luminal, generic There is another superluminal version of the LT known

superluminal or superluminal with a propagation-invariantmainly in tachyon research, which is defined like the com-

wave function—is an invariant attribute of a localized wave.mon LT via Eq.(1), except that the quantitieg and 3 are

Thtl_s mv;:\:ﬁmce will be made use of in Sec. Il for classifi- replaced with their superluminal counterpagtsand B. Let
cation ot the waves. us note parenthetically that this replacement wilt result in

K Cl?ns?erm% prgjectlons_of ft.he \;;]upporth.ontlo the pLaneEq. (10). However, the physical meaning of this transforma-
(k;.ky), from Eq.(7) we notice first that in this plane in the 1, 4 stachyon world” remains controversial, since it in-

course of thel Lorentz trgnﬁformaltllﬂn cevery pom|:[| of the SUPyerts the sign of the interval, i.e., changes timelike quantities
port moves along a straight parallel to thgaxis. However, ., spacelike ones and vice versa; moreover, it loses a point-

due to the nonlinear relatide? =k +k; a support line given o _nqint correspondence between objects as observed in the
by Egs.(5) and (6) is generally not straight in thek¢,k,))  moving and laboratory reference frames. It is interesting to
plane or does not remain such under the Lorentz transformayote that thanks to the latter peculiarity the authors of Ref.
tion. The support line in this plane is generally a cone sect|0rp44] found that a tachyon should have a characteristic
instead, as is also obvious from Fig. 3. Only in a particuIarshape—essentially the same one we know nowXagpe
case, whe=0 in Egs.(5) and(6), is the support a straight- |gcalized wave has; also see Rdf7,45.

line in both planesK,,k) and k,,k,) simultaneously, and

remains straight under the Lorentz transformation in which

the slopea=tang in the equation of the support link, B. Lu-Zou-Greenleaf transformation
= ak, transforms in the following manner: Lu, Zou, and Greenled#6] proved a theorem indicating
1= how to get from a two-dimensional wave solution valid in
tang=tand 1-5 (9) the (x,y) plane to a three-dimensional solution rigidly mov-
1+ Blcose ing along thez axis with superluminal speed. For that pur-

pose one needs simply to replace the argumertsy()

=p’ andt’ of the two-dimensional wave function according
to the following rules:

if we use the Axicon angl@ under which all the plane wave
constituents propagate in the given case; see(8q.The
shape of the support in thé(,k,,) plane gives an idea about

the physical angular spectrum of the wave and possibilities 5, =Esin9
to generate it. ’
Il. RELATION TO OTHER TRANSFORMATIONS ct’'=ct—zcosé,

A. Superluminal Lorentz transformations

where 0< < r/2 is the angle introduced above as a charac-
eristic of the shape and a measure of superluminality of an
. ~ o ) -type wave. As scaling of all arguments by a constant—in
a superluminal speed of the frame, which in our designa- pariicular, division by sif—does not change the source-free

tions reads wave equation, the following transformation must do the

x=x' same job as the Lu’s does:

In Ref. [14] the Lorentz transformatiolLT) has been
generalized by introducing a superluminal LT for the case o

z=7(Bz +ct'), (10 o'=p,
ct="(Bet' +2'), .
- - - ct’=cot9(—t—z)=~(~ct—z).
whereB=v/c andy=(B?>—1) Y2 see Sec. |. The authors cos¢ A
of Ref.[14] use this superluminal LT as if it generates new

solutions to the_ scalar wave equation that are distinct fronHowever, the latter is an equivalent of E@.0), which in
those they obtain by using the common subluminal LT. HOW'turn was nothing but the common subluminal Lorentz trans-
ever, as one can make sure by setihg 8", all the right-  formation. Hence, as already noted in Ra#], the Lu trans-
hand sides of Eq10) turn out to be equal to that of EGL).  formation is a particular case of the Lorentz transformation
So, the superluminal LT defined by E(LO) cannot give  and this is the reason why the theorem works. The Lu trans-
anything different, and we prefer to work solely by the com-formation has been successfully exploited by various authors
mon subluminal LT of 4 vectors, all the more since the co-for different purposes, e.g., for deriving-shaped beams
ordinates in Eq(10) remain unchanged weirdly only in an propagating in cylindrical waveguides from known planar
extremely superluminal case, i.e.Af->«. Of course, if one  wave solutiong30].

036612-5



P. SAARI AND K. REIVELT PHYSICAL REVIEW E69, 036612 (2004

straight lines, whose slope in thé,(k) plane exceeds a
value 1 by its absolute value, are LT replicas of each other,
while the projection of the same superluminal support line
onto the k;,k,) plane is generally a hyperbola. Of particular
interest is the support line with a fixed valuelgf, in which
case the group velocity is infinitely large. We have chosen
this to be the case in the moving fraidé. Hence, according

to Fig. 5a) the larger the speed of the frame the smaller the
group velocity of the wave in the laboratory frame. However,
2 -1 0 Lk, 2 the velocity retains its superluminality. Only if the speed of
the frames relative to each other attains its limiting vadue
(I8|—1); the group velocity decreasesd®r [vg4|=1.

kp Let us consider a particular spectrum—an ultrawideband
> one with exponential decay toward higher frequencies, i.e.,
let EqQ. (6) take the form
0) X . (6)
> T (ky k) =€ 5(k,— ky0) O (K2 —kz) (11)
in the frameK’, whereA is a positive constant characteriz-
-2 -1 0 1 k. 2

7 ing the length of the wave pulse\(~0 for a white spec-

trum), kg is the fixed value ok, and the primes referring to
FIG. 5. The supports of superluminal localized waves and thevariables inK’ have been omitted for brevity. Inserting Eq.

relationship between them through the Lorentz transformation. Thé11) into Eq. (4) and integrating ovek, contained in thes

support lines are depicted as projectigasonto the k,,k) plane  function, one obtains

and (b) onto the k,,k,) plane. The support corresponding to

infinite-group-velocity LWs, all plane-wave constituents of which ) ® >

have the same valule,g= —0.5 of the longitudinal component of W(p,z,t) =explik,02) " Idk Jo(Vk“—kzp)

their wave vector, have been chosen as the initial support observed 0

in the frameK’ (or also in the laboratory framk if g=0). The xexgd —k(A+ict)]. (12)

final shape of the suppofin the laboratory framehas been de-

picted for $=0.8. The thick black line depicts the support of a The integral can be taken with the help of any Laplace trans-

band-limited LW, while the thin line beneath it depicts the supportsform table[e.g., Eq. 4.18) in Ref.[47]] and the wave ob-
of all possible LWs with given group velocity. Concerning the units tains a simple form

and other explanations, see the previous figure caption.

B 3
IV. GENEALOGY OF LOCALIZED WAVES V(p,z,t)= exp |k22°| P +(A+2'Ct) )exp(ikzoz)
- w Jp?+ (A+ict '

All localized waves belong to one of the three families— Pl ) (13)

superluminal, subluminal, and luminal—according to the

slope of the straight representing the support in the plange., it turns out to be a simple cylindrical pulse modulated
(k;,k). Inside each family the LWs differ—besides values of harmonically in the axial direction and radially converging to
the support parametetg, andb; see Eq.(6)—by their par-  the axis and thereafter expanding from it, the intensity dis-
ticular one-dimensional spectrud(k) along the support tribution resembling an infinitely long tube coaxial with the
line: it may be more or less wide band, may or may not resulaixis and with time-dependent diameter; see Fig. 6. To our
in a closed-form expression fo¥(p,z,t) according to Eq. best knowledge, this wave was first considered as a localized
(4), etc. However, all waves with similar shagdesaling may  wave of infinite group velocity in Ref438,42. This cylin-
differ) of the spectrum can be considered as one and thérical wave is a “seed” one for all superluminal localized
same, no matter what the particular value of the subluminalvaves possessing the exponential spectrum, as we will see
or superluminal velocity is, since all these waves are relatetdy redoing the derivation for the laboratory frame variables.
through the LT. In other words, all these waves are one anthserting Eq.(11) into Eq. (4) for the laboratory frame, we
the same, but observed in different reference frames. If this ibear in mind that under the integral Lorentz invariants are
the case, a reference frame should exist where the wave hasz—kct, kz—kg, anddk,dk, while, according to Eq(7),

the simplest form. Such a wave can be considered as a

“seed” for corresponding localized waves. In this main sec- e K4 8(k,— k,o)=exd — y(k— Bk,)A]

tion of the paper we show that the “seed” waves have infi- _

nitely large or vanishing values of the group velocity. Xy~ 1ok = Bk—kz0! 7). (14

The new argument of thé function obeys the relations con-
sidered in Sec. Il C. Performing the integration okgmow

The tranformation of the support lines, as analyzed in Seccomplicates the arguments of the Bessel and Heaviside func-
IIC, is illustrated graphically in Fig. 5. We see that the tions:

A. Generic superluminal family
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(b)

Re¥(x,z,1)
¥(0,0,0)
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e\
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‘

FIG. 6. The cylindrically converging-expanding wave given by

Eq. (13). Shown are the dependendéa) and (c)] of the real part
and[(b) and(d)] of the modulus of the wave function on the coor-
dinatez (increasing from the left to the righand on a transverse
coordinatex= = p at two time instants:(a) and(b)] ct=0 and[(c)

and (d)] ct=1/10 um. The distance between the grid lines on the
basal planeX,z) is 1/10 um. The chosen values of the parameters

are A=1/80 um andk,= —2m/\ with A=1/2 um (the plots re-
main the same with any other unit length instead ofuh). The
grey-scale plots of¥ (x,z,t)| are normalized to “white” at the plot
maximum, so that the “white” level in the plaid) is actually five
times weaker than in pldb). The grey shading in plot&) and(c)

is a result of “lighting” used for better revealing the relief of the
surface.

K= k= k= (Bk+ k0! )%

however, the resulting integral ovkrcan be given the same
familiar form [Eq. 4.1%9) in Ref. [47]] by change of the
variablek= y(k+ Bk,o) and we finally obtain

exp(— |yl Vo +[A—iy(Bz—ct)]?)
Vp?+[A—iy(Bz—ct)]?
Xexfdiykyo(z— Bct)].

W(p,z,t)=

(19

This wave differs from that given by EL3) qualitatively in
the same manner as Fig(b]l from Fig. 1(a) in Sec. I; see
Fig. 7. Of course, Eq(15) can be derived from Eq13) by
the LT of the coordinates given by E@l) as well. Earlier

this type of localized wave was derived and studied theoreti-

cally in Ref.[14] from what the authors term “superluminal
boost representation” and in Ref48] by another general

PHYSICAL REVIEW EB9, 036612 (2004

Re¥(p,2,0)
¥(0,0,0)

FIG. 7. The superluminal FXW given by Edq15) or (16).
Shown are the dependendesof the real part andb) of the modu-
lus of the wave function on the longitudinal and transverse coordi-
nates. The distance between the grid lines on the basal pkane (
is 1/10 um. Chosen values of the parameters are1/15 um and
K,o=—27/\ with \=1/30 um and8=0.8 orv=1.25. Also see
the previous figure caption.

the wave resembles to a certain extent both the FWM and the
X-type waves. For a better comparison with thevave ex-
pression in Sec. IVB and with Eq4.4) of Ref. [14] we

rewrite Eq.(15) using the superluminal quantitiesandy
[see Egs(2) and(10) and the text after theim

expt — kol Vp2+[A—i Y (z—21) ]2)

Vp?+[A—iYz-o) 2

(v
X ex;{ i ykzo( —z— ct) 1 .
c

The FXW has a tight{exponential transversal localization
but is yet an infinite-energy wave. Its intensity distribution
(modulus squared propagates invariantly with velocity

W(p,z,t)=

(16)

v>c; however, the wave function itself has a fine modula-

tional structure(see Fig. 7, copropagating or counterpropa-
gating with luminal velocity depending on the signlgf. Of
course, the FXW represents only one possible superluminal
localized wave, cylindrical waves with spectra which differ
from that given by Eq(13) give birth through LT to other
superluminal waves that need not have closed-form math-
ematical expressions but all share the same general proper-
ties, in particular, the hyperbolic support of the angular spec-
trum in the K,k ,k,)-space.

B. Subfamily of superluminal pulses with a
propagation-invariant wave function

In casek,,=0 the support line in both planeg,k,) and
(k, k) lies on a straight which goes through the origfig.
8), i.e., the hyperbolic support degenerates into a straightline.

approach based on complex space-time ray theory. The attence, in the momentum space of the laboratory frame all

thors of Ref[14] called it a “focusedX wave” (FXW), since

wave vectors lie on the surface of a cone, or, in other words,

036612-7



P. SAARI AND K. REIVELT PHYSICAL REVIEW E69, 036612 (2004

2
k (a)
—/1
(@) L
oy
-2 -1 0 1 k. 2 ~Im¥(x,2,)
£ w(00)
b
5 (b) 05
kp 0
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(b) 1>
FIG. 9. The superluminaX wave given by Eq(18). Shown are
> the dependences of the réal and imaginary(b) parts of the wave
5 a 0 1 K 2 function on the propagation variabg=z—vt and the transverse

z coordinate. The distance between the white grid lines on the basal
plane is the same as in Fig. 7, but in the transverse direction the
FIG. 8. The supports of superluminal localized waves with ajength scale has been compressed by factor of 2. Chosen values of
propagation-invariant wave function, and the relationship betweerghe parameters a&=1/15 um and8=0.8 orp = 1.25.
them through the Lorentz transformation. The shape of the support
in the laboratory frame has been depicted fier 0.8 (see Fig. 5.

are straights in both planek/k) and k,,k,) and their

all plane-wave constituents of the LW propagate under th@rolongations cross the origin.

same fixed anglé@ relative to thez axis and we recognize the
superluminalX wave considered in Sec. |. The moving frame C. Subluminal family

expressior£q. (13] reduces foikyo=0 to As seen in Figs. 10 and 3, the support line of a subluminal

1 LW—i.e., if the slope in theK, k) plane is less than 1 by its
V(p,z,t)= ————, 17 absolute value—cannot cross the origin. Hence, for sublumi-
\/;02+(A+|Ct)z nal LWs, i.e., ifu <1 the parametel cannot vanish in Egs.

(5) and (6), and Eq.(8). We also see that the projection of
which represents a simple two-dimensional pulsed wave cyany subluminal-type support line onto thie, (k,) plane is
lindrically converging to and expanding from thexis like  generally an ellipse. Of particular interest is the support line
the modulus of the wave of the preceding subsection. In th@ith a fixed value ok=b, in which caseyy=0. Physically

laboratory frame, instead of Eq&l5) and (16) we now ob-  this is understandable as the spatial distribution of energy
tain remains still for a strictly monochromatic field. Let such a

rest frame beK’. According to Fig. 108) the larger the
speed of the fram&’, the larger the group velocity and the

V(p,z,t)= L bandwidth of _the wave i_n th_e Iaboratory frame. However, the
Vo2 +[A—iy(Bz—ct)]? wave retains its subluminality only if the speed of the frames
relative to each other attains its limiting valegthe group
1 velocity increases also to
= , (18 In much the same way as in Sec. IVA, let us present an
\/p2+[A—i§/(z—5t)]2 example showing how a “seed” wave possessing a simple

form in its rest frame transforms into corresponding sublu-
minal LW in the laboratory frame. We consider a particularly

which are nothing but the fundamentfl wave solutions "' _ X :
simple “seed” wave, a monochromatic spherical standing

known since pioneering papef$0] and[12]. Despite vari-
ous plots depicting th& wave can be found in numerous Wave

papers, just for convenience and comparison we present one sin(br)

in Fig. 9. Had we taken another spectrum, eW(k, k) Wipzt)=—  —exp—iot), r= p°+z°, (19
=Kk"e ¥ §k,)O(K) in Eq. (11), we would have obtained

higher-orderX waves[15] corresponding tanth-order de-

rivatives with respect to time in Eq18). In any case, all where the temporal frequency=cb corresponds to a
X-type waves share the following main features: invariantlymonochromatic fixed value df=b. Equation(19) has been
and superluminally propagating wave function, support linesiormalized to a unit peak at the origin and the expression can
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2
Kk
(a) 1
b 4
N
2 -1 0 Lk, 2
2
ky
(b) 1
m FIG. 11. The subluminal Mackinnon’s pulse given by E2Q).
f > Shown are the dependendesof the real part andb) of the modu-
5 ) 0 1 k. 2 lus of the wave function on the longitudinal and transverse coordi-
24 nates. The distance between the white grid lines on the basal plane

] ) is the same as in Fig. 7, but in the transverse direction the length
~ FIG. 10. The supports of subluminal localized waves and relascale has been compressed by factor of 2; therefore the modulus at
tionship _between the_m through f[he_Lorentz transformation. The; gt glance seems to be circularly symmetiie., spherically sym-
support lines are depicted as projectidgasonto the & k) plane  metric in spackin spite of the Fitzgerald-Lorentz contraction in the

and (b) onto the k;,k,) plane. The support corresponding to a ayia| direction. Chosen values of the parametersbar@ /X with
monochromatic beam, all plane-wave constituents of which hav‘:/*‘\:lm,um and 8=0.8 orp=1.25 (again, the plots remain the

the same frequency/c=b=—0.5 and propagate in the positive ith h it | hi
direction of thez axis, have been chosen as initial support observedsame with any other unit length instead oftn).

in the frameK’. This support and its Lorentz-tranformed equivalent i b\/—2+_zz——t)z

in the laboratory frame witl#8=0.8 are depicted by the thick black - sinbyp™+ ¥y (z—v0)7] ib _7

; o s ) V(p,z1t) exdibBy(z—vt)],

line. The thin line beneath it depicts the supports of fields, plane- b\/p7+ yz(z—ut)2

wave constituents of which propagate in both directions ofzhe (22
axis, i.e., in all possible directions as it is in the particular case of ) L

fields given by Eqs(19)—(22) (see Figs. 5 and)8 which gives a LW whose envelope moves rigidly along zhe

axis with the subluminal velocity = 8c, whereas the phase

be obtained as an isotropic superposition of plane wavemodulation moves superluminally with=8"*c=c?/v. In
propagating in all possible directions. For this wave H). addition, itssincfunction-like amplitude distribution is no
takes the form longer spherically symmetric as it was in the wave’s rest
frame. Instead, it has been compressed in the axial direction
due to the Fitzgerald-Lorentz contraction; see Fig. 11.
Equivalently, Eq.(22) can be obtained through the LT of
coordinates in Eq(19) [14], that proves our momentum-
since inserting Eq(20) into Eqg.(4), and integrating with the domain derivation. It is interesting to note that the pulse
help of a table of the Fourier transforms of the Bessel funcgiven by Eq.(22) was derived long ago by Mackinnon in
tions, returns the right-hand side of E49). another context of theoretical physi49]. Saloet al. [50]
If we perform the same procedure for the laboratorycalculated subsonic acoustical LWs inserting nonisotropic
frame, the support line has to be Lorentz-transforrfféid.  spectral functions into an equivalent of our E4). However,
10), i.e., the spectra used have not resulted in closed-form expressions
for the field. By consulting Fig. 10 it becomes obvious that
5(k—b)=8(k— Bk,—bly)y L. (21)  any monochromatic field—including more or less narrow
beams—must turn out to be a subluminal LW if observed in
Everything else under the sign of integration remains invarianother reference frame. We have obtained an interesting
ant; however, carrying out the integration okenow com-  heamed version of the Mackinnon’s pulse from an aniso-
plicates the arguments of the Bessel and Heaviside functiongiopic version of the wave given by E¢L9) in which the
origin had been shifted to an imaginary locatiyid, i.e.,
k?—kZ=(Bk,+bly)?—KZ. the “seed” wave was the nonparaxial Gaussian beage
Ref.[34] and references therginThe resulting field of such
Again, the remaining integral ovés, can be given the same 3 new subluminal LW is given by the same closed-form ex-
familiar form of the Fourier integral Oﬂo(\/bz—kzzp) by  pression of Eq(22); however, in the roots the axial variable
change of the variable,= y(k,+ 8b), and we finally obtain  zis to be replaced by—id.

- 2
\I’(kz,k)=56(k—b)®(k2—k§), (20)
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2 o)
k \If(p,z,t)=exp[—ib(z+ct)/2]f0 dk, Jo(V2bk,p)
Xexp —2Ak,)exgik,(z—ct)].
a 1
@ The integral is nothing but a known Laplace transfdsae,
Y e.g., Eq. 4.1@5) in Ref. [47]] and we finally obtain
\\
A
exp{— p?b/2[2A—i(z—ct)]}
-2 -1 0 1 k, 2 V(p,z,t)= [2A—i(z—cD)]
2 Xexd —ib(z+ct)/2], (24)
k
o
which we recognize as the fundamental focus wave mode
1 propagating in the positive direction of tlzeaxis. Equation
(b) (24) coincides with the well-known expression of the FWM
> [12,14 if we complex conjugate Eq24) and change desig-
o nations of the parametets2= B’ and 2A=a;. Since the
5 s} 0 1 k. 2 FWM has been studied in a large number of publications,
Z here we omit plotting its spatial structure, all the more since

it is quite similar to that of the FXW depicted in Fig. 7.
Equation(23) and Fig. 12 indicate the well-known cir-
umstance in which the FWM is comprised not only of plane

waves propagating into the positive hemisphére., those
with k,>0), but also of transversally propagating oifeith
k,=0 andk,=k=Db) as well as of backward propagating
ones(with k,<0). Due to the extremely strong Doppler ef-
_ _ fect and aberration whefpi— oo this is the case irrespective
D. Luminal family—focus wave modes of how narrow(around the direction-z) the angular spec-

Figure 12 depicts, in terms of the supports, how a monotrum of the “seed” monochromatic beam in the frame is.
chromatic collimated beam, propagating in an ultrarelativis-Moreover, as shown in Reff6] the common monochromatic
tic frame in the negative direction of tfeaxis, in the labo- ~Gaussian beam propagating in the negative direction of the
ratory frame turns out to be a wideband LW propagating®<S; which 'only in the paramal appromma'tlon satisfies the
almost luminally in the positive direction of theaxis. The ~Wave equation, transforms into the FWM in the laboratory
closer the relative speed between the frames to the fimit Fame in the limitss—1 andy—ce. In this limit, as follows,
—1, the closer the support to that of a luminal one is. 0b-*-9- from Eq.(_7) and Fig. 12’.'” the laboratory frame one
viously, a luminal support line implies & function in the can get a luminal LW containing only forward-propggatmg
spectrum of EqJ6) in the form S(k—k,—b) with b>0, _opt;]calléflriquen%y constltuents, r|]f the monochr(?mang be?m
which results from e.ithe_r a sup_erluminal or sgplgminal cas%?]é ?)ackvrvzr:]de—pr(c))f)?g;ggStacl:g;s'ﬁtllor?tggggaﬂ?thpccgﬁ;g
through an ultrarelativistic LT withlB— 1. If the initial wave

. b din th ing fraime tak b k,=—k’). In other words, for an optical-domain luminal
(e., as observed in the m0\,/|ng Ea}ne taken to PE MONO- )\ in the laboratory frame its “seed” monochromatic beam
chromatic with a frequency’=cb’, then according to Eg.

- in the ultrarelativistically moving frameK’ has to be a
(21) [also see Eq(8)] the frequency must run to infinity a8 packward-propagating Bessel beam with a small spread of
in order to retain the lateral structure and localization of the,’

: ; p
wave. Indeed, thé factor in the formd(k—k;) would imply In conclusion, no matter what the particular spectrum is—
a degeneration of the parabolic support line in thek()  whether it covers with an exponential amplitude the whole
plane into straight starting from the origin, i.e., the supportpossible length of the support line as in the case of the fun-
line would become that of a plane wave pulse propagatingiamental FWM or the amplitude is distributed around some
along thez axis. Let us take the spectrum in the laboratorypoint(s) of the line—the distinguishing common feature of

FIG. 12. Ultrarelativistic Lorentz transformation wif=0.99
of the support of a monochromatic beam into the support of
FWM-type luminal wave. The initial suppofas observed in the
frame K') corresponds to a beam, all plane-wave constituents o
which have the same frequeney/c=b=—0.5 and propagation
directions close to the negative direction of thaxis (see Fig. 10

frame with an exponential amplitude, i.e., in the form all luminal LWs is that their support lies on a straight of
- slope 1 in the planek;,k) and on a parabola in the space
W(k,,k)=6(k—k,—b)exd — A(k+k,) 10 (k?—k3). (k; .k, k) (Fig. 3.
(23)

V. DISCUSSION AND CONCLUSIONS

Inserting Eq.(23) into Eq. (4), carrying out the integration The Lorentz transformation of LWs can be carried out
overk, and changing the variable=k,—b/2 results in the either in the coordinate-time space or, equivalently, in the
integral expression for the wave function: momentum-frequency spa¢ee have used “momentum” as
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a synonym for “wave vectok” for brevity, implying that the “;eed" wave related through the LT needs further investiga-
guantum terminology can be adopted for the LWs as)well tion.
The latter approach requires a bit more mathematical effort if As to practically feasible finite-aperture realizations of the
the transformed spectrum is to be returned from the FouriekWs, the conclusions obtained remain valid since in the ap-
domain into the wave function in the,t) representation. Proach based on the spectral supports the condition of finite
However, working in the momentum space with thee€nergy can be easily taken into account by allowing the sup-
Fourief-Bessel representation has certain advantages sinc@0rt lines to acquire a finite thicknegas, in fact, it is de-
it allows for better control and a physical insight into what is picted in the figures
going on with the wave when the observer jumps into an- Despite the fact that we have considered scalar LWs here,
other inertial reference frame. We can easily track eacfihe treatment and results hafdutatis mutandidor a vecto-
plane-wave constituer(br Bessel-beam constituéninder-  rial electromagnetic field as well through the association of
going the Doppler shift and aberration. For example, fromany scalar LW with components of the electromagnetic po-
Fig. 5 and Sec. IV A. it is obvious that if the sign kf, of  tential or the Hertz vector. For acoustic fields a somewhat
the “seed” cylindrical wave is positive, the FXW in the labo- intriguing operationalistic question arises concerning obser-
ratory frame contains forward_propagating ConstituentglatiOnS of LW in different reference frames: of course, an
only—i.e., is “causal” in the jargon adopted in the literature acoustic field—like any field obeying the wave equation—
on LWs—while the presence of the backward-propagatingan be invariantly Lorentz transformed if the speed of sound
constituents has been considered as a characteristic featurel®finserted into the formulas, but what is supposed to be the
the FXW. As to the task of finding new types of LWs, car- inertial frame in which we could observe the drastically
rying out the subluminal LT on the spectral representatiorthanged wave? For an electromagnetic field, such question
ensures that the result is really a source-free field everydOGS not arise since there is no other speed involved than the
where, i.e., it consists of homogeneous-wave componenighiversal constant determining the fundamental properties
and does not contain evanescent ones. of space and time. Let us stress that throughout this study if
In contradistinction to the group velocity, the phase veloc-We say that a wave turns out to be quite differerdbferved
ity cannot serve as a basis of classification of the LWs. Sinc# another reference frame, we do not mean that it simply
all LWs have plane-wave constituents that propagate a$€ems different, we mean thati& different as verified by
anglesé (0# 6+ ) with respect to the axis, the net phase any appropriate physical means of measurement. All the
velocity along the axis is necessarily larger thaat least to more we do not mean what we caee since, as is well
a vanishingly small extent. Indeed, McKinnon’s pulse hasknown in the special theory of relativity, due to the finite
according to Eq(22), a phase velocity that in units ofis the ~ speed of lightvisible shapes of relativistically moving ob-
reciprocal of its subluminal group velocity. The absolutejects are substantially distortéal additionto the Fitzgerald-
value of the phase velocity along the axis for both the FXwLorentz contraction. In fact, if we do not use indirect means
and FWM's is almost exactly equal toexcept in the vicinity  like light scattering from small particles suspended in space,
of the moving center of the pulse, where it is slightly higherwe see nothing if looking at the pulse from a side.
due to the Gouy-effect-type phase shift fremr/2 to + /2, Apart from enabling a deeper comprehension of the
which follows from the denominator in both E(_‘KQ_S) and phySicaI nature of LWs and of the Lorentz transformation in
(24). The superluminal LWs with a propagation-invariant Wave optics in general, the present study might also be of
wave function ofX-type waves considered in Sec. IV B have Practical significance, e.g., in finding new LWs with pre-
a phase Ve|ocity equa| to their Super|umina| group Ve|ocity,scribed properties. Of course, tranSforming into a relativisti-
i.e., there is no dispersion since all the plane-wave constitucally moving frame can hardly be viewed as a physical tool
ents propagate at a fixed anglewith respect to the axis. ~ for the generation of a LW; however, it may be practically
As far as axisymmetric LWs are Considered, their Supportgseful f0r a treatment Of the interactior-] betWeen-relatiVistiC
in the three-dimensional momentum spadg k, k,) are particles and localized electromagnetic waves in research
surfaces of rotation: for superluminal LWs the support is afi€lds like laser-driven acceleration, etc.
hyperboloid(which degenerates into a cone #itype LWS9,
for subluminal LWs it is an ellipsoid, and for luminal LWs it

is a paraboloid. As to more general cases of nonaxisymmet- ACKNOWLEDGMENTS
ric waves—those possessing orbital angular momentum and
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