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Defect-induced spatial coherence in the discrete nonlinear Schdinger equation

C. L. Pando Lt and E. J. Doed?l
YFUAP, Universidad Autooma de Puebla, Apartado Postal J-48. Puebla, Puebla 72570, Mexico
21455 Boulevard de Maisonneuve West, Montreal, Quebec H3G 1M8, Canada
(Received 21 July 2003; published 22 March 2004

We have considered the discrete nonlinear Sdinger equationlDNLSE) with periodic boundary condi-
tions in the context of coupled Kerr waveguides. The presence of a defect in the central oscillator equation can
induce quasiperiodic or large chaotic amplitude oscillations. As for the quasiperiodic dynamics, an enhance-
ment of the amplitude correlations in certain oscillator pairs can take place. However, when the array dynamics
becomes chaotic, these correlations are destroyed, and, for suitable defects, synchronization, in the information
sense, of certain signals arises in this Hamiltonian system. A numerical continuation analysis clarifies the onset
of this dynamical regime. In this case, phase synchronization follows with a peculiar distribution of the
Liapunov exponents. These effects occur for initial conditions in a small neighborhood of a family of stationary
solutions. We have also found a regime characterized by persistent localized chaotic amplitudes. We have
generalized these results to take into account birefringent effects in waveguides.
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I. INTRODUCTION ing behavior in these new solutions. Moreover, we study the
intensity correlations of the electromagnetic fields that arise
Nonlinear effects in waveguide arrays have been studieth certain pairs of waveguides when the system dynamics is
intensively in the past several years, both theoretiddl|g] quasiperiodic or chaotic. In this Hamiltonian system, we
and experimentally3—5]. The propagation of waves in these Show that it is possible to synchronize, in the information
arrays is associated with new and interesting effects not resense, certain chaotic signals generated by different wave-
flected in continuous medid.,2]. By injecting a strong op- guide pairs. Based on an information theory approach, chaos
tical field, certain field distributions propagate while keepingsynchronization has been considered recently in experimen-
a fixed spatial profile in a limited number of Kerr taltime series and theoretical modglg,15. We have found
waveguides. These stationary fields are known as discrefPecial properties in these solutions using order parameters,
spatial solitongDSS’s or breather$6]. In nonlinear optics, Liapunov exponents, and phase locking features. This article
the existence of DSS's was theoretically predicted for thehas seven sections. The DNLSE is discussed in Sec. Il in the
first time in Ref.[1]. The differences with the continuous framework of nonlinear optics. A family of stationary solu-
system become clear if the DSS are forced to move acrod#ns is discussed in Sec. lll. In Sec. IV, the quasiperiodic
the array. In this case, these DSS tend to propagate a|0ng tﬁ@gime of these solutions induced by a defect is considered.
waveguides. The equation that describes these waveguide & Sec. V, we discuss the chaotic case of this system. In Sec.
rays is referred to as the discrete nonlinear S«ﬂmger equa- VI, we consider a generalization of these solutions in a
tion (DNLSE). In contrast, the continuum limit of the DNLSE that takes into account elliptical birefringence in
DNLSE is translationally invariad2,5]. Recently, a compre- Wwaveguides. Finally, in Sec. VII we give the conclusions.
hensive review on the DNLSE was published in R&f. The
DNLSE describes, among other systems, localized modes in
long protein systemf8] and arrays of nonlinear mechanical
pendula[9]. The theoretical predictions of the DSS have We consider an array of one-dimensional coupled
been verified recently in experimental observations in Kerwaveguides. The neighboring waveguides are separated from
waveguide array$3,4,1Q typically using AlLGa, _,As as each other by the same distarttand therefore the coupling
Kerr media. Several types of defects in planar waveguideonstant between these is the same. We consider the case
arrays were studied experimentally in REf1]. As for ap-  with no losses and continuous excitation. Within the frame-
plications, recently a model describing diffraction managedvork of the coupled mode theory, the evolutionEf, the
nonlinear waveguide arrays has been repofte#] which  electric field envelope in theth waveguide, is given by the
supports modulated DSS as well as chaotic solutions. Th#ollowing equation|2]:
DNLSE also arises in models of Bose-Einstein condensates
(BEC's) trapped in periodic potentials generated by optical
standing wave$13]. Indeed, the dynamics of this BEC is ia—zn+,8nEn+ C(E, 1+En; 1)+ yEAE,=0. (D)
governed by the Gross-Pitaevskii equation and can be
mapped, in the tight binding approximation, to a DNLSE
[13]. This system is assumed to have periodic boundary condi-
In this work, we study a family of solutions of the tions. In Eq.(1), B, is the linear propagation constant of each
DNLSE with periodic boundary conditions and on-site de-waveguideC is the linear coupling coefficient, angdis the
fects. Small defects induce relevant bifurcations and interestionlinear parameter. By introducing the dimensionless field

Il. THE MODEL
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Q.= Vy/2CE, exd —i(B+2C)z], Eq. (1) transforms into the
discrete nonlinear Schdinger equation given by

- 9Qn
I&—g

where {=Cz is the normalized propagation distance and
6,=(B,— B)/C. The Hamiltonian equations related to the

+8,Qn+ (Qn_1+ Qns1—2Qn) +2|Q%Q,=0, (2

DNLSE can be obtained by transforming into action-angle

variables (,,6,), whereQ,=\/l,, exp(-i6,). The quantity
InEPrz1 stands for the light intensity of theth waveguide
[7]. The equations foP,, and 6, are the following:

dP . .

d_gfn: Pno1SiN(0_1—0p)+Ppyq SinN(0n,1—6),
%:2_5,1_ Pnfl COS(@n,l—Gn)
d¢ Pn

Pni1 cO40n_1— 0

_ op2
P 2P2.

3

IIl. NEW STATIONARY SOLUTIONS
AND THEIR STABILITY

We will consider two examples of a family of DNLSE

stationary solutions. These solutions depend harmonically Ofg
{. To find these, we deal with the nonlinear map approacfto 0) is elliptic for |I'|<2, for ['=2
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FIG. 1. Plot of the stationary fiel®, versusP,,, for (a) I’
=25 and(b) I'=2.6.

CM are (0,0) and £ yI'/2—1,+ {I'/2—1). After consider-
the linearization of the CM, it is found that the point
it is parabolic and

[16,17. We underline that there are different ways to find gyl for 1> 2, it becomes a saddle point. Instead, the fixed

stationary solutions of the DNLSE/], one of which relies
on the solution of a set of nonlinear algebraic equations for

given coupling constant and then makes use of continuatioB

methodd7]. In Ref.[16], it was shown that homoclinic and

heteroclinic orbits of a suitable Hamiltonian map support
breather solutions in the DNLSE. Instead, we will consider
those DNLSE stationary solutions which are determined b)?

the (elliptic) stable periodic orbits of the Hamiltonian map

oints (= yI'/2—1,* JI'/2—1) are elliptic for 2<I"<4, for

=4, these are parabolic and finally fbr>4, both points
ecome saddle points. Now, we proceed to illustrate the pres-
ence of resonances and island chains localized around the
elliptic points. Wherl"=2.5, we find a saddle point at (0,0)

nd two elliptic points at £ yI'/2—1,+T'/2—1). In Fig.

1(a), quasiperiodic orbits surround the elliptic point

mentioned above. These two types of DNLSE solutions aréVI'/2=1,I'/2—1) and further away, we identify a period

clearly different. Indeed, these elliptic and homoclinic orbits,
as is well known, have different origins and properfi28].

While the first are periodic, according to the Poineare
Birkhoff theorem, the homoclinic orbits have no periodicity,

i.e., repeated iteration of the associated map produces nei@un

homoclinic pointq 18]. These new solutions are obtained by
making dP,/d{=0 and 6,= 6, for any n#m. Moreover,
we can define the frequencies on the tigri= P2 by setting
dé,/d¢=N\, where\ is a constant. Therefore, the stationary
solutions have the forn®,({) =P, exp(—i\A{). As a result,
the following map is obtained:

Xn+1= Pn!

Pn+1:(rn_2|Pn|2)Pn_Xnv (4)

wherel',,=2—\—4,. The Jacobian) of this map is area
preserving, i.e.J=1. We will consider in this section the
casel'=2—N\ for which 6,=0. For the sake of definition, we
will label Eq. (4) as the cubic magCM). This map has the
symmetryX,— — X, andP,— — P, . The fixed points of the

seven island chain and its resonances. Surrounding these
resonances, we also observe the characteristic chaotic sea
[18]. When I'=2.6, (0,0) is a saddle point while
(x\I'2—1,+I'/2—1) are elliptic points. In Fig. (b), sur-
ding the elliptic point (I'/2—1,{I'/2—1), we find an
island chain of period 6. We will show that the resonances of
period M=6 andM =7 generate stable stationary DNLSE
solutions in a ring ofM coupled waveguides. These two
stationary solution®,, are shown in Fig. 2. The stability of
these solution®, was numerically studied by integrating the
DNLSE. We have carried out these integrations with slightly
different initial conditions[19]. That is, Q,({=0)=P,
+v,, wherev, stands for a small random perturbation. In
addition, we have considered the Liapunov exponents of the
corresponding linearized equatiofis3]. We have found nu-
merically that our stationary solutions are stable since all the
Liapunov exponents\, of this system converge towards
zero.

We underline that the parametaris relevant to find
the resonance under consideration in the CM of Hj.
and, thereforeh parametrizes the actiorg= Pﬁ. We also
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FIG. 3. Plot of I,(¢) versusl,({) for (a) §3=0.025, (b) 55
=0.4, and(c) 83=1.25. (a) Plot of I,—1, versus{ for §3=0.025
(solid line), 53=0.4 (dashed ling and ;= 1.25 (dotted line.
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FIG. 2. Plot of the stationary field amplitud®s, versus wave-
guide indexn. (a) Period seven resonance dng 2.5 and(b) period

R=
six resonance and=2.6. N N
;[Ijm—mz 21 [h(i) = (1)1

have observed that our DNLSE solutions are robust
with respect to perturbations of the kin@®,|?’Q,,, where
o~1. The DNLSE stationary solution, which is generated

and(---) stands for spatial average. The significance level
of R in our calculations is good enough. The intensities of

by the lrgasonancellzgf .period 7 a_round the.elliptic pOintthe second and fourth waveguides have the least degree of
[(=A/2)7%(=N/2)"*] in the associated map, is still stable. ¢ relation among all waveguide pairs. Féy=0.025, Fig.

The map eigenvalues of this equilibrium point are given bys(g) shows thatl, and1, have a slight correlation but still
1+oN= \?¢?+2\o. This more general equation is their oscillation amplitudes are similar to the maximum of
known as the generalized DNLSEEDNLSE) [7]. We note  [|,—1,|.
that the elliptic points of the CM were considered as stan- |nstead, whens;=0.4 and5=1.25, as observed in Figs.
ding wave solutions of a DNLSE consisting of a large num-3(b) and 3c), respectively, the intensities, and 1, have
ber of oscillatord20]. In our solutions, instead, the number increased largely their degree of correlation. In these figures,
of oscillators, i.e., waveguides, coincides with the periodthe magnitude of the intensity oscillations has increased
of the map resonance and, moreover, the phases of the osaikore than 10 times with respect to the case wh&n
lators differ by a small perturbation, i.e., these are phase=0.025. However, as shown in Fig(d3, the boundaries of
locked. the differenceAl =|1,—1,4| remain basically unchanged as
the defects; takes on different values. As long as the dy-
namics is quasiperiodic, this explains wRy—1 as &3 in-
IV. QUASIPERIODIC SOLUTIONS créases.
To qualitatively understand the linear correlation growth
—1 asd; increases, it is enough to consider a simplified
odel consisting of three waveguid€s ;, Qq, and Qq,
hereQ_,~Q, | 5|<1, andé;=6_,=0. This simplified
model explains, on the one hand, the enhancement of the
oscillation amplitudes of) _;~Q; and, on the other hand,
the stability of the small oscillations of,— 6_, and|Q_,]
—]Q4/, which on average vanish. This agrees with the typi-

In this section, we add a defect to the linear propagatiorB
constant of the central waveguide and consider the quasiﬁ]-1
eriodic solutions of this system. That is, we study the cas
where§3>0 andé,=0 for n#0. The central waveguide, in
both Figs. 2a) and 2b), has precisely the largest intensity.
We make use of the stationary DNLSE solutions of the pre
vious section as initial conditions for this perturbed DNLSE.Cal behavior of symmetric waveguides suchQsand Q.
This defect induces correlations between the intensities of Rhus. the system for the three modes takes the form
given pair of waveguides. We consider the linear correlation '
functionR to estimate the level of association between these
intensities. The intensities of the waveguidesdj are fully .dQo

— 2 =
correlated(uncorrelatefiwhenR=1 (R=0), where "¢ *50Q0+2|Qol*Qo+2Q:1=0,
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dQ ) simplified model consisting _of three waveguidesl,_ Qo
Id_§+2|Q1| Q1+ Qo+ Q1=0, (9  andQ,, whereQ ;~Q;. Using Eq.(3), the expression
=P; exp(-i#) and the apprOX|mat|0|110i—6j|<1 for i,]
where the labels are the same as in E2).and ,=(8, — 0.1, we get the following equations féy:
—B1)/C. To explain the enhancement of the oscillation am- de, ) i1 Pia
plitudes ofQ, andQ;, we have imposed the symmetry re- d_§+2Pj +<Tj+ P, = 6000 » (8)

lation Q;=Q_;. By using the set of variableS,=|Q|?
+2|Q1l?% $1=[Qol*~2|Q4|% $=1(Q:Q5 ~QoQ%), and  where §=1 and ;=0 for j==1. &, stands for the de-

S;=(Q1Q5 +QoQ7), Eq. (5) becomes fect. Taking into account the small order parametet &f
—60_4/<1 and |P;—P_;|<P;_;, we get the equations

ds, d?A1,/d?(+ QA1 ,=0,  where Q=(2P;+Pg)(2/P;

E:452’ +PO/P%_4P1)1 A]_E 01_0_1, AzEpl_P_l. We have
assumed that the variablé%, have a negligible variation

ds, (3 1 since| 8y| < 1. The stability of these solutions is determined
aC = (§S°+ 80— 581— 1) $-2S;, by (>0. ThereforeA; andA, are stable and do not depend
on &,. Thus, both the enhancement of the intensity oscilla-
ds, 3 1 jtions and the _l:)ounded_nessm{,z suggest _thalR grows asdy
Y - (ESOJF So— Esl_ l) S,. (6) |?r’1creases. This behavior agrees qualitatively with that of Fig.

To further estimate the stability of our solutions, we have
The quantityS, is a constant of the motion of E€6) and,  considered several random initial conditions in the interval
additionally, a second invariant is given I8f+2S5+2S3 (P, — VmaxPnt Yma) With vmam=10"3, i.e., within a small
=S§. We can find the solution of E@6) with an integration neighborhood of,=0. The P, are given in Fig. 2. In this
scheme used to study the propagation of polarized light irtase, stable quasiperiodic evolution Ig{¢) has typically

birefringent Kerr waveguidef21]. Thus, we obtain been found for distances as large as10° for §;=0.025,
03=0.4, andd;=1.25. The calculated Liapunov exponents
SI(W)=4W+S;(0), confirm that the dynamics in all these cases is quasiperiodic.

The modulus of the following complex order parameter
1 3 measures the coherence of the system. This is defined as
Sy(W) =W+ 5S1(0)+1= 58— 6 |W+S5(0), (7)) follows:
N
where W= [§S,(7)d7. We use the second invariant to > exp(—i6)
find the variableW, which is determined from an equation 7— =1 9)
of motion for the conservative systens(dW/d¢)? N '

+V(W)=0, whereV(W) =4S+ 1S3— 1S5, Any trajectory

. . ) . whereN stands for the number of waveguides. This param-
in this potential starts af={o=0 andW=0 with dW(o  gter \yas introduced by Kuramoto in thegcontext of c?)upled
=0)/d{=S,(0). Moreover, dV(W=0)/dW=2S,(0) phase oscillator§22,23. If Z=1, all the oscillators are in
+S5(0)[5S1(0)+1-3S— &] and d*V(W=0)/dW=8  phase. Wherz=0, the phases, are typically distributed
+2S5(0)+[2S,(0)+1—25,— 5(2)]_ We choose a trajectory uniformly between 0 and2 Z is an indicator of the tempo-
whose initial conditions coincide with a fixed point ral distribution of §; when these are either locked or un-

[S1(0),5,(0),55(0)] of Eq. (6) when 8,=0. As a result, locked. As shown below, frequent and large dropZiare
dV(W=0)/dW=25,(0)+ S4(0)[35,(0)+ 1— £S,]=0. In correlated with the presence of unlocked states. The center of
- - 2 2 Ve

addition, the assumptiofQ,|?>2|Q,|? at =0 implies that massp and the dispersiodp are defined as
S1(0)>0. Moreover, we suppose th@, and Q, have the N
same phase af=0. As a result,S;(0)>0 and S,(0)=0. 2 il
Therefore, the positive sign of the second derivative _ =t
d?V(W=0)/dW? indicates that the fixed point P
[S:(0),5,(0),S5(0)] is an elliptic (equilibrium) point. A
small value of6,# 0 with these initial conditions, according
to the expression for the first derivativéV(W=0)/dW N
= — §y3;(0), induces a shift of the local minimuM(W,,;,) E il
either to the right or to the left dfv=0. As a result, when (Ap)2=] - 2 (10)
60+ 0, the trajectory starts at a turning point of the shifted
potential V(W) sincedW({,=0)/d{=0 and, therefore, the Z y
intensity oscillations are amplified.
To complete this qualitative explanation, we need toThese last two quantities have been used in the context of
show that the variable;—6_, and |Q.|—|Q_;| are BEC[13]as well as in the theory of one-dimensional propa-
bounded and, therefore, stable. To this end, let us considergation of quasiparticles, such as electrons and excii®#is

Z|
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FIG. 4. (a) Plot of Z({) versus distancé. (b) Plot of the largest FIG. 5. (a) Plot of the intensities; (solid line) and |5 (dashed
phase differenca 6,,(¢) versus distancé. (c) Plot of p({) versus  |ine) versus¢. (b) Plot of J5 (solid line), J,, (dashed ling J-g
distance(. (d) Plot of Ap(¢) versus distancé. Here,5;=0.4(solid  (dotted ling versus¢. (c) Plot of logoS(F) versus logy(F) for
line), §3=0.025(dashed ling and §;=1.25 (dotted ling. 15(£). (d) Plot of the ACFC(7) of K;(¢). The autocorrelation

functionsC( ) for K5, Ky, andK¢ coincide exceptionally well.
p andAp describe the level of localization of the intensity in Here §;=—0.00785.
the array, which takes place whég>0, as shown below. In
the case when there are no phase slips in the relative phases,, andI4~I1,; as shown in Fig. 3, the onset of chaos is
across the waveguideso,,,= 6,,— 6, , the order parameter manifested via a symmetry breaking of these intensity pairs.
Z~1. This is illustrated in the dashed lines of Fig&adand  The existence of at least a single positive Liapunov exponent
4(b), whereZ~1 for §3=0.025. However, as shown also in in the chaotic regime implies divergence of nearby trajecto-
Figs. 4a), 4(b), Z drops substantially below 1 since at leastries[18]. This divergence explains why two otherwise inten-
one of theA 6,,, is unlocked whery;=0.4 or 53=1.25. In  sity correlated waveguides, such ds,(s), lose their rela-
the context of the aforementioned BEC models, the phastive symmetry when chaos arises. Indeed, the onset of chaos
locking of Ad,,, is associated with the superfluid regime. in Hamiltonian systems is associated with the destruction of
However, whenA 6,,, is unbounded, the system is said to integrals of motior{ 18], which, in turn, destroy the symme-
behave as an insulatpt3]. Moreover, the center of mags tries in the system. This symmetry breaking is shown in Fig.
oscillates near the position of the central waveguide, which5(a), where each of the aforementioned intensity pairs ex-
as seen in Fig. (@), has the largest intensity. Figureeyland  ecutes initially stable small amplitude oscillations before dis-
4(d) suggest that the oscillations bf are localized within a  playing erratic behavior. This behavior is similar to that near
small neighborhood. Typically, the presence of a defgct the coupling resonance in the three-dimensional billiards
>0, even in the chaotic regime as we will see in the nextproblem, where a particle bounces back and forth between a
section, produces oscillations pfwhose mobility is highly ~ smooth and a periodically rippled wall8].
inhibited. This contrasts with the Anderson localization phe- In the chaotic regime and provided th&<0, in spite of
nomenon, where the presence of uncorrelated disorder ifie symmetry breaking of the aforementioned intensity pairs,
necessary to inhibit the quasiparticle propagafid#. a very interesting form of synchronization can take place
between certain signals emerging from different pairs of
waveguides. To this end, let us define the varialdlgs-1,
—lg, Jos=1,—1,, andJ,g=1,—1g. Our simulations show

Let us study the array consisting of seven waveguides ithatJ;s, J,4, andJ,g have the same sign during most of the
an interval of the defect;, where it is possible to induce time. This is clearly appreciated in Fig(. That is, in spite
Hamiltonian chaos. As shown below, a suitable defect in-of the chaotic state, whed;s>0(<0), it follows almost
duces a bifurcation which triggers the onset of chaotic besimultaneously thaf,,>0(<0) andJ;s>0(<0). This be-
havior. In other words, this defect perturbs a periodic orbithavior holds for lengths as large &s- 10°. We would like to
setting up a typical scenario for Hamiltonian chfd8]. That  know if this coherent behavior of the signals,, suggests
is, several resonance surfaces in the system overlap generatme kind of synchronization. The answer is affirmative
ing stochastic regions in phase space. Since the number ffom the point of view of synchronization of symbolic infor-
degrees of freedom of the system is larger than two, thenation(SSI) [14,15. According to this notion, two arbitrary
generated stochastic regions form an intrincate web in phasescillators are perfectly synchronized in an information sense
space known as the Arnold wét8]. As before,5;=0 for if they produce the same information, i.e., symbols generated
n# 3 and the initial conditions are those of the previous sechy one system map one-to-one to symbols emitted by the
tion. In contrast to the quasiperiodic case, whierels, |1,  other system. Strictly speaking, this form of synchronization

V. CHAOTIC SOLUTIONS
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requires that the common information be emitted at precisely 1
the same time. This concept was used to experimentally

demonstrate that synchronization of information is possible_ -
in an electronic oscillator circuit driven by a logistic map R70.5 SO
[15]. In Ref.[15], the chaotic signals of both systems are
compared using their symbolic dynamics. In our case, Fig.
5(b) suggests that the signalks, J,,, and J,¢ exhibit %
equivalent information at the same average rate. This, how:

ever, does not contradict the fact that the usual notion of

synchronization cannot be applied to Hamiltonian systems, . .
such as ours, since volume has to be preserved in phas

space. Indeed, the trajectories of coupled systems have t& i
collapse to the synchronization manifd@b], which is only 3.5
possible in dissipative systems. In our system, instead, we
compare the chaotic signalk,, using just their symbolic 15
dynamics, i.e., we only consider the signJf,. 0

The signalsl;, wherej=1,...,7, arechaotic. Indeed,
the broadband power spectrugfF) of I3, shown in Fig. FIG. 6. Same as Fig. 4 but for the following parametefis.
5(c), whereF is the normalized frequency, indicates the pres-= —0.00785 (solid ling), §3=—0.005 (dashed ling and &,
ence of chaotic behavior. In this figuré;=—0.00785. To =-1.5(dotted line.

generate a symbolic sequence out frdmg, J,,, andJe, )
we replace the value QT”- by “_1”or “1” provided that R~1. This was found f063= —0.005, 63=—0.00785, and

J;<0 or J;;>0, respectively. Let us call these new signals %= —0.01575. This locking of phase, and 6, is also
Kii . In addition, the symmetry of the system indicates that'€ferred to as phase synchronizatj@]. The latter has been
(3;;)=(Kj;)=0, where() stands for the sample average. We €xtensively studied in the context of coupled self-sustained

have calculated the autocorrelation functiée€F) C(S) for ~ chaotic oscillator$26]. However, the presence of phase syn-
these signals, where chronization does not imply the observation of SSI. An ex-

ample is the casé;=0.075>0 for which R~0.506. More-

t=M-3 over, whens3<0 and the onset of phase slips&f,, occurs,
> (Hi—(HY)(Heys—(H)) degradation of SSI takes place. The ca%eg=—1.5, for
C(9)= = — _ which R=0.417, illustrates this situation in Fig(l§. Fig-
) ures &a) and Gb) indicate that when SSIR~1) occurs, the
;1 (H—=(H)) order parameteZ~1. However, as shown in these two fig-

ures, when phase slips df,,, arise, bothZ and the cross
In this equationSis the space lagyl is the number of data, correlationR drop below 1. Moreover, whed;>0 and in
and(---) stands for sample averages]. It is well known the presence of phase locking~1 andR is typically far
that a fast decay o€(S) suggests the presence of chaoticbelow 1. This means that while the phaggsare locked, the
behavio 18]. The ACFC(S) of K5, K,4, andK g coincide  Signalsy,, do not synchronize in the information sense. This
exceptionally well for all space lagdconsidered. Indeed, all is illustrated in Figs. @ and 1b) for which §;=0.075 and
of them collapse to the solid line of Fig(cdh for which 83  83=0.0575, respectively. The associated valuesRoare
=—0.00785. In contrast, the ACE(S) of J;5, J,4, andJ,g  Written above. Wherd;>0, the onset of phase slips signals
agree only at a qualitative level. As expected, the first zero othe lack of coherence and bafrandR become smaller than
these ACF occurs at the same spaceJagjnce these signals 1.
change sign almost simultaneously. Moreover, we make use Figures fc), 6(d) and Figs. 7c), 7(d) suggest that in the
of the linear cross correlation functid® for a given pair of ~ chaotic regime, the center of magdluctuates near the po-
signalsK ,, andK; in order to quantify the extent of SSI. If sition of the central waveguide provided thas> oy,
R=1, the signal pair is fully correlated and SSI is perfect.where 6%)<0 and|5{’|<1. Therefore, whens;>0, p is
For the sake of precision, we defifeas the minimum cross typically localized. This contrasts with the cagg< sy’
correlation of the signal pairsK(s,K,4), (K15,K7¢), and <0, as seen in Figs.(6), 6(d), wherep executes large am-
(K24,K76). After considering several chaotic signals whoseplitude oscillations. To gain further insight, let us consider
length is{~10° for different values ofd;, we obtained the Fig. 8. In Fig. §a), for which 8;=—0.00785, the minima
following values for R:R~0.242 for 53=0.25, R~0.506  and maxima ofl, are roughly the same. However, provided
for 63=0.075, R~0.668 for 63=0.0575,R~0.987 ford;  that§;>0, Figs. §b), 8(c), and &d) suggest that the follow-
=—0.00785, R~0.972 for §3=—0.01575, R~0.825 for ing inequalities holdl3>1,, 13>14, {I5)~(l4) and(l, 4
8;=—0.25, andR~0.417 for 53=—1.5. >(l;) for i=1,5,6,7.(--) stands for sample average. The

It is remarkable how the chaotic synchronization of sym-jatter does not depend on whether the oscillators are either

bolic information(SS) of J.,, is manifested in the dynamics chaotic or quasiperiodic, phase locked or unlocked.
of A= 60m— 0, when §3<0. Indeed, as suggested by Fig.  To further characterize the DNLSE dynamics, let us con-
6(b), all the A, are bounded when SSI occurs, i.e., whensider the spectrum of Liapunov exponents. The DNLSE
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FIG. 7. Same as Fig. 4 but for the following parametets. FIG. 9. Plot of the Liapunov exponents, versus index. (a)
=0.0575(solid line), 53=0.075(dashed ling and5;=0.25(dotted ~ §3=—0.005 (dotted ling, 5;=—0.00785(solid ling). Here SSI
line). takes place, i.e.R~1. (b) §3=—0.25 (solid line), 63=—-1.5

(dashed ling (c) 83=0.0575 (solid ling), 53=0.075 (dashed
has two constants of motion, namely, the norm and thdine), 63=0.25 (dotted ling. (d) log;d P(L)] versusL for &3
Hamiltonian. Moreover, the DNLSE is an autonomous flow. = —0.00785 for the *-1" intervals L (solid line) and 1" intervals
The above features along with the symmetry of the Liapuno\- (dashed ling
exponents of Hamiltonian systefis3], suggests that at least
four Liapunov exponents are equal to zero. In the chaoticS;= —0.00785. By symmetry arguments, the PBE) of
regime these Liapunov spectra are shown in Figa-®(c).  these intervals are the same. This is suggested by Fig. 9
When SSI takes place, there is a single positive Liapunowhich shows that the core ¢f(L) has to a good extent an

exponent whose magnitude is much larger than that of thexponential decay, where the solid and dashed lines stand for

other positive exponents. The latter is appreciated in Figthe “— 1" and “1” intervals, respectively. However, the sig-
9(a). When 63<0 and phase slips ok ,,, occur, typically, nals K;; have nonzero memory as indicated by the ACF
the nonvanishing Liapunov exponenmts, have roughly the C(S) of Fig. 5(d).

same order of magnitude as shown in Figh)9A similar We have carried out a continuation study of the stationary
picture arises whens;>0, the dynamics is chaotic and solutions for the case with seven and six waveguides. It was
phase slips occur. This is shown in FigcP To characterize found in both cases that the continued stationary solution

the statistics of the signals;; when SSI takes place, let us remains stable as the defect parameigiis changed from
consider the dependence of the probability density functions;=0 to the first bifurcation. In this bifurcation af;= 5?,
(PDP on the lengthL of the “—1" and “1” intervals for  two eigenvalues leave the unit circle at the pgino), i.e., in

a tangent bifurcation. The period of the stationary solutions

the stationary solution is plotted agairit In the neighbor-
hood of the stable stationary solution, just before the bifur-

bifurcation point, initial conditions in the vicinity of the un-
stable stationary solution trigger the onset of the SSI dynam-
ics.

VI. NONLINEAR BIREFRINGENCE EFFECTS

the two orthogonally polarized states of the electric field in

waveguides through the evanescent figl@g]. In a given

FIG. 8. Plot of the intensities; (solid line), |, (dashed ling elliptically birefringent medium. A recent experiment has re-
and 1, (dotted ling versus ¢ for (a) &3=—0.00785, (b) &5 ported the first observation of discrete vector solitons in
=0.075,(c) §;=0.25, and(d) 53=1.25. waveguide arrays of AGa _,As [10]. Using the same as-
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along the bifurcation branch remains constant. Past this bi-
furcation point, the continued stationary solution becomes
unstable. This is shown in Fig. 10, where the amplitude of

cation, the dynamics is quasiperiodic. Instead, just after the

We can generalize our model to consider the case when
each waveguide interact with those of the nearest-neighbor

waveguide, however, we assume that light propagates in an
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FIG. 10. Plot of the amplitudel§)*? of the stationary state
versusd;<0 for (&) N=7 and(b) N=6. This is a numerical con-
tinuation of the stationary solutions of Fig. 2. The lak®) stands
for the bifurcation point.
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Py ={D)—2[(PH2+B(P)2IPI-Y,, (12
whereI'3Y=2—-\*Y—§%Y. The Jacobiard of this map is
area preserving, i.eJ=1. In Eq.(12), we will consider the
case where\*=\Y=\ and §yY=0. The fixed points of
this map satisfyX,= P} andY,=P}. These are the follow-
ing: TI,=(X,,P},Y,,PY)=(0,0,0,0), IT,=(0,0,= \—\/2,
+\=\/2), II3=(x£+y—N/2,=y—\/2,0,0), I,
= (= JV=N2/{J1+B, + J=\/2/J1+B, + J—\/2/{1+B,
+J=N\/2/\J1+B), and II5=(*V—N/2/J1+B,*—\/2/
V1+B,¥VJ—\/2/{1+B,*J—\/2/{1+B). The eigenval-
ues of these fixed points are the following. For the pdlp{
the eigenvalues are-In/2+ \Z—4\/2 with multiplicity 2.
For the pointsll, ; these are ¥ A= JAZ+2\ and 1-\/2
+BN/2+ \?(B—1)?+4N(B—1)/2. Finally for the points
I, 5, the eigenvalues are+I\ = YAZ+2\ and 1+ B+ (1
—B)* \W¥(B—1)?+2\(1-B?)/(1+B).

We look for fixed points, such ad 5, whereX,==*Y,
and such that the corresponding eigenvalues are complex
conjugates. This simplifies Eq12) and a Hamiltonian map
on the plane is obtained. As in Sec. lll, we find suitable

sumptions of Sec. Il, this system can be modeled with theesonances in this map, which, in turn, will become the am-

following set of equation$27,28:
Qif' X X X X X
aC + 5nQn+ (anl+Qn+l_2Qn)

+2(|Q}I*+BIQY*)Qy=0.

JQp

29

+ QI+ (Qh 1+ Qe y—2Q))

+2(]Q}[*+B|Qr») Q4 =0, (12)
where the superindexesandy stand for the two orthogo-
nally polarized states of light. The paramei&models the
nonlinear birefringence factor, wherg<B<2 [27]. The

plitudes of the stationary solutions of Ed1). We choose to
consider the case for whid= 2. At the fixed pointd1, and

I15 where B>1, there is no interval fom where all the
eigenvalues are complex numbers. Instead, in the Base
=2, the complex eigenvalues suggest the presence of reso-
nance islands around, 5. Indeed, forB=2, the eigenval-

ues are A+ \?+2\, 1+\/5+\?+10\/5 and there-
fore, in the interval—2<\<0, we find complex conjugate
eigenvalues.

Now we will consider the case where the stationary solu-
tions are determined by the resonance of period 7, which is
localized aroundl, 5. The case with the period 6 resonance
can be treated similarly. The dependence of the amplitudes
P, on the parametdB is shown in Fig. 1(a). As the param-
eter B increases, in general, the magnitude of these ampli-

other labels have the same meaning as those of Sec. II. THedes decrease while keeping a similar profile. The structure

defect parameters are given &Y= (8:Y—pg*Y)/C. B*Y

of the phase spacé®(,,P,, ;) for 0<B<1 is similar to that

are suitable constants. We will assume that the propagatio?®f Fig- 1(@. Our numerical simulations indicate that these

constant differenceg;— B}, is large enough. Moreoveg),

= Bn, and )= By, for all n andm with the exception of the
central waveguide for whicm=3. A large enough| 3}

— BY| is required to neglect nonlinear terms which underg
spatial modulation with the frequen¢gh— gY| [27].

The associated equations for the stationary state3;df
=P}Y exp(—igY), where |*Y=|Q*Y|2, are written below
following the lines of Sec. Ill. We setlP}Y/d{=0 and
0Y=6xY. As before, we define the parametets¥/d¢
=\"Y. Hence, from Eq(11) we obtain the following map:

Xn+1= Pﬁ,
Pri1={Th—2[(P}2+B(P})?1}Pr— X,

Yne1= Py

n?

0)

stationary solutions are stable.

Let us consider initial conditions in a small vicinity of the
stationary solutions and a small positive defeet £7<1.

In this interval, the solutions are quasiperiodic. As the posi-
tive defect 837 becomes larger, the symmetric pairs of
waveguides, such dg” 15Y, increase their intensity corre-
lations. That is precisely what we show in Fig(l)JL That is,

as in Sec. IV, the oscillation amplitudes 6f” increase,
while the intensity difference between symmetric wave-
guides remains the same on average. In particlias,|}
~|5~1{ as 55Y>0 becomes larger. These induced correla-
tions are robust with respect to small differences betwaen
and &%.

It is also possible to induce Hamiltonian chaos in this
system. For a suitabléy’ in an interval —1<6§3Y<0,
where 8§yY=0 for n#3, SSI can take place. Howevaer,
diverges from its otherwise symmetric waveguide, in particu-
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0.08 — - When the initial conditions are close to the stationary so-
'\}@\N\‘.’VM/-‘.\W lutions, a positive defectdz>0) can induce a substantial
AR .l;:;."‘l' amplification of the quasiperiodic intensity oscillations. In
R R R R addition, certain pairs of waveguides show intensity correla-
tions that become stronger as the positive defect becomes
larger. We have shown analytically, in models consisting of a
0 5 10 15 20 few waveguides, that the aforementioned intensity correla-
0 Distance ¢ tions take place. Chaos emerges via a symmetry breaking
instability of the aforementioned intensity pairs for a small
negative defectd;<<0). In this case, a very interesting form
of synchronization takes place between certain signals gen-
erated by different pairs of waveguides. These signals syn-
chronize in the information sense, since their binary sym-
_ _ bolic dynamics coincide with an excellent accuracy. Thus,
"0 50 100 150 ) 50 100 150 we provide an example where synchronization, in the infor-
Distance § Distance § mation sense, is possible in a Hamiltonian system. For arbi-

FIG. 11. Case with seven waveguides ahe2.5. (a) Plot of the trar_y initial condit_ior}s and d_EfECtgeﬂ typically, synchroni-
stationary fieldsP,, versus waveguide index f@=0 (solid ling, ~ Zation of symbolic Inforr_naﬂor(SSI) do_es not take place.
B=2 (dotted ling, andB=1 (dashed ling (b) Plot of 1*({) when ~ Moreover, we have carried out a continuation study of the

B=2. 5%Y=0.005(solid line), 55Y=0.025(dashed ling (c) Plotof ~ Stationary solutions. We found that along the stationary solu-
J%s (solid ling), J%, (dashed ling J% (dotted ling versus¢ for tion branch there is a bifurcation which triggers the onset of
55Y=—0.00785.(d) Plot of I—1¥, 13—1¥, andl3—1% versus{  the SSI dynamics.
for 85Y=—0.00785. We have used the linear cross correlation functioto
quantify the extent of SSI. In the presence of phase synchro-
lar, I} diverges froml 5. The picture is similar to that of Sec. nization of the waveguides, the coherence funcépwhich
V. When the initial conditions are in the neighborhood of thewas introduced by Kuramotf22], is typically close to its
stationary solution of Fig. X&) and when the defects are maximum, i.e.Z~ 1. In contrast, the presence of phase slips
83=63=—0.00785, the set of signalyy=17"—15Y, 35/  across the oscillators destroys the aforementioned coherence.
=13Y=137Y, andJ7gd=17Y—1g” synchronize in the informa- Typically, the nonvanishing Liapunov exponents have the
tion sense. This is what we observe in Fig(dlfor the  same order of magnitude. However, when SSI takes place,
variablesJis, J5,, and J7s. Moreover, the differences;,  phase synchronization of all oscillators follows wifh~1

—1¥ remain bounded for ath as shown in Fig. 1H). and roughly a single positive Liapunov exponent is present.
When §5>0, the center of mass, i.e., the average position of
VII. CONCLUSIONS AND DISCUSSION the intensities, executes small amplitude oscillations in both

the chaotic or nonchaotic regimes. That is, the waveguide

We have studied the intensity correlations of electromagintensities have relatively small fluctuations and, on average,
netic fields that arise in certain pairs of coupled Kerry persistent localized pattern of intensities is observed. In
waveguides, i.e., oscillators, when the system dynamics igontrast, whens;<0, this center of mass typically executes
quasiperiodic or chaotic. These correlations are generated Byrge amplitude oscillations in the chaotic regime. We have
a new family of solutions of the DNLSE, which has as initial 5|sg calculated the probability density functitPDP) of the
conditions the neighborhood of a set of stationary solution:fength of an interval with a given binary symbol. The core of
Qn(£) =Py exp(=ing with real-valued time-independent these PDF has an exponential form when SSI takes place. We
amplitudesP, and an oscillation frequency. The P, in  have also studied a generalization of the DNLSE to consider
turn, are given by the resonances of a suitable Hamiltoniagrrays of elliptically birefringent waveguides. In this system,
map. Our solutions differ from the breather solutionsthe quasiperiodic and chaotic dynamics is qualitatively simi-
[6,16,17, which are obtained from the same area-preservingar to that of the DNLSE.
map, in some important features. First, the homoclihiet- The present study can be extended to consider other types
eroclinic) orbits of the Hamiltonian map give rise to the of coupled nonlinear waveguides, such as quadratic
breathers, known also as brigfttark DSS, while the map waveguides. Finally, we point out that our solutions may
resonances determine our stationary solutions. Second, thscribe interesting effects in quasi-1D Bose-Einstein con-
breathers require, at least formally, an infinite number ofgensate<BEC's) confined in periodic potentialgl3], since

waveguides, while our stationary solutions need only a finitehe |atter has been modeled, in the tight binding approxima-
number of waveguided/, whereM is determined by the tjon, with the DNLSE[13].

periodicity of the resonance under consideration. Our sta-
tionary solutions satisfy periodic boundary conditions and

have thel same phase. The second and third properties make ACKNOWLEDGMENTS
our solutions different from those studied by Johanstoal. )
[20]. This work was also supported by CONACYT-keo.
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