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We investigate a family of probability distributions that shows anomalous hydrodynamic dispersion, by
solving a particular class of coupled generalized master equations. The Fourier-Laplace solution is obtained
analytically in terms of the matrix Green function method; then the Coats-Smith concentration profile is
revisited in a particular case. Two models of disorder are worked out explicitly, and the mean current is
asymptotically calculated. We present an approximation method to calculate the first passage time distribution
for this stochastic transport process, and as an example an exact Markovian result is worked out; scaling results
are also shown. We discuss the comparison with other different methods to work out complex diffusion
phenomena in the presence of disordered multiple transport paths. Extensions when the models are nondiffu-
sive can also be solved in the Fourier-Laplace representation.
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[. INTRODUCTION hereV is the macroscopic mean velocity of the flow abgd
is the longitudinal dispersion coefficient. Then the rate
Hydrodynamic dispersion—dynamic convective mixing dCs/dt is characterized by a mass transfer coeffici¢ptof
of two miscible fluids assisted by molecular diffusidi—is  the form
an important phenomenon relevant to secondary oil recovery,
chemical packed-bed reactors, pollution of soil and ground _s
water aquifers by nuclear wastes, etc. Thus, hydrodynamic dt
dispersion has become—for some years now—a subject of | ) ) _ _
great interest in many areas of science and engineering. andKC_ can be mterpreteql as the time that the fluid particles
If a porous medium is macroscopically homogeneousSPend in the stagnant regions. _
then the concentration profile of a solute mixing with a sol-  The Coats-Smith-Bake#] model is a little more sophis-
vent by dispersion should be Gaussian at long times. Howlicated; it is sometimes assumed that a fracfiof the pore
ever, many experimental data indicate significant deviation¥olume is available for the flow, while (f) is the stagnant
from a normal distribution. This is sometimes refereed to adraction; sof andK. are treated as adjustable parameters to
anomalous dispersionit is well known that most natural fit the data. Using the Coats-Smith-Baker model, and suit-
porous media, such as oil reservoirs, contain dead-end poreaPle boundary conditions, Bacet al. [5] attribute the tran-
A fluid in such pores communicates with the flowing fluids Sient anomalous dispersion in their data to the fact that the
only by molecular diffusion. Such a mechanism of masdength of their experimental setup was too short to allow for
transfer between the flowing fluids and the dead-end poreie development of Gaussian dispersion. Nevertheless, using
was invoked many years ago by Dedi2$ and Coats and the same model Gistt al. [6] attributed the anomalous ef- _
Smith[3] in order to explain the origin of anomalous disper- fect, in their experiment, to the heterogeneous nature of their
sion. These authors developed a semiempirical model to agorous medium. Thus, as was remarked by Sahiriit is
count for the anomalous hydrodynamics dispersion. important to understand why the Coats-Smith model is able
The Coats-Smith model is a one-dimensional convectivel0 provide such a good fit to the data. However, the origin of
diffusion equation(CDE) which reproduces the effects of the anoma_lous tran5|ent in the concentration profile is yet a
transient anomalous transport on the concentration profil€ontroversial question.

JICs
=Kc(Ci=Cy), (2

C, by introducing aransient loss ternin the CDE propor- In this vyork we revi_sit tr_\e Coats-Smith equation from a
tional to the rate of the concentration in the stagr@at or ~ Mesoscopic point of view in an attempt to address the last
dead-end volume, i.e., question. Particularly, starting from a master equation—to

describe the presence of multiple transport paths— and tak-
ing into account the disorder effect into the corresponding
JC JC JC 2C tr_a_nsition and exch_angematrice;, we have beep able to re-
i *ov—4p — (1)  Visitthe Coats-Smith equation in its lattice versions. Then we
ot ot 28 ax2’ can go one step further and generalize the Coats-Smith
model inn dimensions and consider generalized non-Fickian
operators for each disordered multiple transport path. This
*Email address: caceres@cab.cnea.gov.ar generalization gives the possibility of understanding the me-
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soscopic nature of the Coats-Smith model and tackling a nef11,12; then it was suggested that, in general, the starting

range of transport problems which are outside of the scope gjoint to study this type of complex transport phenomena

the Coats-Smith equation; for example, we could work out(such as transport in polycrystal, porous catalysts, coalbed

the problem of flow transport in stratified and disorderedmethane reservoirs, geological systems with fractures and

porous media with fractures. pores, etg. should be done in terms of a master equation
The outline of the paper is as follows. In Sec. Il, we with multiple families of transport path<.3]. In that refer-

present a generalized master equation with an internal stagnce the disorder was considered in both tila@sition ma-

(for a given realization of the disordethat describes the trix of the random walk and thexchangematrix which gives

system of interest, i.e., we use the theory of the multistatéhe rate of transition between different transport paths at a

continuous time random wallMCTRW) [7,8] to tackle the given site. Hughes and Sahifi3] introduced the average

problem of complex transport phenomena in random systemsver the disorder using a sort of effective medium approxi-

and in the presence of convection and multiple path optiongnation(EMA) with internal states. Many different models of

The description of the models of disorder, employed in ourdisorder were solved, but the general case in which both

studies[9,10], and the comparison with the Coats-Smith transitionandexchangelisorder are present was not tackled

equation and their generalizations are given in Secs. Il A andue to the great complexity of the algeljdat]. Here we are

[ B. The solution for the concentration profilégrobability = going to bypass this difficulty by introducing an alternative

distributiong averaged over the disorder is presented inprocedure to take the average over the disorder; this is, in

terms of the matrix Green function method in Sec. IllI; also inprinciple, a useful approximation for the calculation of the

Sec. Il A two applications are presented, in particular, wemean probability distributions. As a bonus, and for a special

show—for two different models of disorder—the asymptotic case of disorder we recover the Coats-Smith equation, so we

temporal behavior of the currerite., the response to the can immediately generalize this equation to many different

injection of an initial pulsg in Sec. IlIB we apply our interesting physical situations.

method to calculate the exact solution of the Coats-Smith Let R/(j,t) be the probability that a walker arrives at site

profile. The theory of the first passage time distribution withj on pathl just at timet. Then the function&,(j,t) obey the

internal states is presented in Sec. IV; in Sec. IV A we applyfollowing continuous-time recurrence relatiof&15]:

this approach to calculate a Markovian exact result and to

present scaling results. Finally, in Sec. V, we briefly summa-

rize the results of our work and present our future programs. . t ., .,

Appendix A is devoted to the calculation of the average over ~ RIU ’t)ZZ, Iz O\P“’(] St Ry()h 1) dr

the disorder, and in Appendix B we show an alternative study .

of the first passage time distribution for stochastic processes +3(t) Sjpoc;  with O0=c=<1, ()

with internal states.

where the element¥ (j,j’,t) of the matrix transition prob-
ability density are associated with the jump of a walker on
path| from site j’ to j after a waiting timet. The starting
point to describe a MCTRWAL16] is the characterization of

Recently it has been remarked that simple descriptions ithe waiting-timematrix ¥. Consider, for example, a system
terms of single distributions are totally inadequate to de- with two possible transport pattigsandA (its generalization
scribe the flow transport in rocks consisting of intercon-to N possible transport paths is obvigushen for a fixed
nected and intertwined networks of fractures and poresealization of the disorder we can wrif8,10,17

IIl. MODELING A MASTER EQUATION WITH
DISORDERED MULTIPLE TRANSPORT PATHS

Bj; EX[< —IE ij> ¢:3(t) dij ex;{ —tE Amj) lﬂ]BA(t)
i i ) ' @
Sij ex;{ -t ij) ¢JAB(t) Ajj exp{ —t> Amj) ¢l!3(t)

whereB;; is the transition probability rate(in the pathB)  the last stepy/*®(t) dt is theexchangeprobability (at sitej)
from sitej to i. exp(=t2,By) is the probability that no jump gt timet+dt from pathB to A.

(along the pattB) to another site has occurred up to time  similar definitions follow for thetransition andexchange
after the last steffi.e., thesojourn probability at sitej into components along path; for example A;; is the transition
the pathB). ¢7(t) is the probability that the walker does not probability rate(in pathA) from sitej to i, etc.[19].
leave(from sitej) the pathB during the time interval since Note that the integral in time and sum over sites of any
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column of W gives 1, this indicates that theaiting-time
matrix is properly define¢the MCTRW is well normalized
for example, for column 1 we get

I= FZ Bj; exp(—tE ij>¢jB(t)dt
0 i m
+J:°Ei 5” eXF{ _t% Bm]) lﬁf\B(t) dt
=focexp< —t> ij)<2 B ¢f‘(t>+wﬁB<t>) dt.
0 m i

Defining g;=
so because

2 mBmj it is simple to prove thaf=1; this is

I—ﬁJJ e Fitgl(t) dt+ J: e AityfB(t) dt

=B L[ 4701+ Lg[47E(D],

where £,[f(t)]=f(u) indicates the Laplace transform of

any function f(t). In general, using that¢(t)=1
— JL(t") dt’, it follows that ¢(u)=(1— (u))/u, then the
proof follows immediately.

The key element in the continuous time random wal

(CTRW) theory is the calculation of the effectiwgaiting-

timefunction[20,21. As in the CTRW theory, in the context

of the MCTRW the effectivevaiting-timematrix is defined

taking the average—over the disorder—of its elements.

Therefore in the same spirit of the CTR\82] (see Appendix
A) we introduce here the followin(Hartreg approximation;
for example, to calculate the average of elemehts and

qIZl!

(¥ 1) pisorde™ | Bij ex;(—t% ij)¢§3(t)>

<BIl exp(—t% ij>><¢}3(t)>, 5

<\I'2].>Dis:orderE 5|] ex %_t% ij) ‘//]L\B(t)>

2<5ij ex;{—t% ij)><l//,AB(t)>- (6)

Similar expressions follow for the other componefis;; ).
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<Bij exp( tZ ij)> 1(i=) 1 (b),

<Aij exp( tE Amj)> 2(i=1) 3 (t).

Consequently the functionsp (t)=1— Ly (t') dt’ (so-
journ) are defined by

<6i,- exp(—tE ij)>=¢l<t>,

< 8ij exp( —t>, Amj)> = ¢a(t).

In the same way thexchangeéetween paths is character-
ized by thewaiting-timefunctions

(WPB() = yiy(D),
(WPA) = i),

and consequently the function$,E(t)El—fgz,/;,E,,(t’)dt’

Kare defined by

(67(1))=5(1),
(67(1))=p5(1).

Note that after taking the average over the disorder we as-
sume thatl/;ﬁ,(t) and ¢>|E(t) are homogeneous in space.

With all these functions, we can immediately write down
the Fourier transform of the effectivwaiting-time matrix
(W) bisorde= 77(Kt) in the form

n(k,t)E(ml 7712)
721 722
- ( N(K) Y10 @5 B3 YEAD) -
1) Y51 Aa(K) wa(t) @51

Here it is important to remark that a Markovian evolution
will appear if and only if all thewaiting-timefunctions are
exponential. A typicaivaiting-timefunction is shown in Ap-
pendix A; in particular, in that appendix we calculate a pos-
sible exchangeawvaiting time assuming a model of strong dis-

The crucial point in a CTRW theory is to assume that afterorder for theexchangeprobability (at sitej) from pathB to
taking the average, the system is homogeneous in space aad

is characterized by a translational invariant transition func- The general solution of our MCTRW process can be given
tion A(i—]) in aregular lattice; then the disorder is modeledin terms of the matrix Green functiofsee the following

by considering differenwaiting-time functions (t). The  section. But, before going ahead with this program, let us
same happens with the MCTRW theory in the presence ointroduce here the corresponding generalized master equa-
internal states. Then after taking the average over the disotion associated with the MCTRW characterized by the
der we define the following functions that characterize thewaiting-timematrix (7). Doing this we will be able to estab-
lattice transitioninto each patiB andA, respectivelyfor the lish the connection between the propagator of the MCTRW
separable cage process and the one from the Coats-Smith equation.
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A. Computing the generalized master equation

Let P,(k,t) be the Fourier transform of the probability in
path | and timet. Then the evolution equation governing
these elements is of the for(note that the Fourier transform
is taken over the lattice spgcef a generalized master equa-
tion with internal state$18]

t
&tP|(k,t): 02 A”//(k,t_T) P|//(k,’T)dT
G

_Jtp|(k,7) > Am(k=0,t—7)dr. (8

0 1
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Ay (ku)

_ uN(K) Lo (D SE(D)]
1= L IO ¢, (01— LN (k=0) g (D) SF(D)]

From Eq.(12) we may describe a great diversity of physi-
cal situations, and while in fact this has been known for
many years in the literature of statistical physics, it seems to
me that it has not yet been fully explored in the area of fluid
physics. Just in order to clarify this point let us revisit the
Coats-Smith equation from our mesoscopic point of view.

The Coats-Smith equation revisited

The interesting point is knowing the relation between the Here we would like to remark that if there is no disorder,

elements\ ;»(k,t) and the elements of theaiting-timema-
trix a»(k,t). This connection is well establish¢20,21,23,

Egs.(5) and(6) are exact results and theaiting-timefunc-
tions must be exponential functions. On the other hand, if the

in particular, the Fourier-Laplace representation is given bydisorder is weak(it means that the kinetic coefficients are

u 71:(K,u)

1= s (k=0u)

|\

Ay (ku)=

9)

Thus we can rearrange E@) to show the explicit structure
of its elements. Using Eq7), we see that only the diagonal
elements of Eq(9) are k dependent. For the componédnt

=1 we have

aP1(k,t)= J;[All(k,t— 7)—Aq11(k=0,t—=7)] Py(k,7) d7
— J;Azl(t— ) Pi(k,7)d7
+ j;AIZ(t_ ’T) Pz(k,T) d’T, (10)
and for the component=2 we have
t
aPo(k,t)= f [Aoxk,it—7)—Ay(k=0,t—7)] Py(k,7) d7
0
+ ftAZJ_(t_ 7') Pl(k,T) dT
0
- ftAlz(t— 7) Po(k,7) dT, (11
0

where

uLL e (g5, 1]
1= Ll (0§, (D]— LN (k=0) g (1) E(1)]
(12)

Ap(u)=

for 1#17,

renormalized quantities but the universal laws remain un-
changedl the waiting-timefunctions can be approximated to
be exponential, perhaps with different coefficients in order to
characterize the different time scales involved in the process
(see Appendix A Therefore let us assume that tin@nsition
waiting-timefunctions involved in Eq(12) are all exponen-
tial. In order to get an explicit result we choose the functions

Pl ()= exp(— at), (13)
then the associated sojourns are given by
ol () =exp(—art). (14

From Egs.(13) and (14), and taking the Laplace transform
involved in Eq. (12), after using the known relation
Eu[e‘atf(t)]=f(u+a), it is simple to see that the off-
diagonal elements are the ones responsible oeituhange
between paths

~ ';}’|Ef|(u+al)
Ap()=—g———

g for [#1".
o (u+a))

(15

On the other hand, the diagonal elements give rise to the

transport operators into each corresponding path, i.e.,
NTCANEPNI(S} (16

Now we also assume that tlexchange waiting timeare

exponentialweak disorder in the Markovian approximation,
see Appendix A

(D= v exp— v t), (17)
then the associated sojourns are given by
() =exp(— vy t). (18)

Thus in the Laplace representation, from Ep) we imme-
diately arrive at the following expressions:
A|'|(U): Vi

for 1#1’. (19
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As expected, there are no memory effects neither inethe
changenor in thetransition matrices of the coupled master
equationthe inverse Laplace transform of Eq$6) and(19)

is of the form £~ *(constant}=consts(t)]; this means that
the MCTRW process is a Markovian one. So from EH3$)

and (19), after taking the inverse Laplace transform, we ar-

rive at the following coupled master equatiqitsits Fourier
representation

dtP1(k, 1) = a1[N1(K) —1]P1(K,t) — v P (K, 1)

+v1oPa(k,t), (20

3tPo(K, 1) = ap[ No(K) — 1]P,(K,t) + v, P (K, 1)
- V12P2(k,t).

Again, we immediately get back the Coats-Smith equatio

(in its lattice version if we assume the probabilitie; (k,t)
to be proportional to the concentration
Ci(k,t)/C\(k,0). Therefore from Eq(20) taking \»(k)—1

and the Fourier representation of the convection-diffusio

operator to bey;[\{(k)—1], andv,,=v,=K,., we arrive

at the Fourier version of the Coats-Smith equation. This re

sult means that the presence of disor@ierthe Markovian

rates,

PHYSICAL REVIEW E 69, 036302 (2004

Na(ke ky) = pyc e+ g e o+ p, e+ gy e T
=2p,cogkya)+(1—-2py)cogk,a)

_i(l_zpy_sz)sm(kxa)a (21)

wherea is the lattice parameter and=Ip,+ g+ p,+d,; in
the second line we have used tpat=q, ; so we can identify
a mean velocity flow/. To see this more easily, take the limit
of small lattice parametea. Then

N1(Ky vky):l_i(l_zpy_sz)(kxa)

(kya)? (k@)?
2 2

—2py (1= 2p) et -

(22

This means that ﬁyazoch (transverse dispersion coeffi-
r{:iemj, (1—- 2py)a20<DL (longitudinal dispersion coefficient

and the mean velocity flow is characterized by {+2p,
+2p,)axV. Of course, from the preselattice Coats-Smith
version(20), more general situations can also be taken into
fccount. This is a nontrivial result that is hard to get in the
context of the EMA theory; see, for example, Rg24]
where we have been able to solve an asymmetric anisotropic
disordered media in the context of EMBut without internal
stateg. In the following section we leave, for a moment, the

approximation does not change the structure of the Coats-". . . .
Smith equation, and gives the same evolution equation as i Iscussion about_the lattice structmg(kx -ky), 10 get Into.
a homogeneougrdered system. Thus we have shown that the more interesting matter concerning memory effects in a

the Coats-Smith model arises from the mesoscopic descri&enerahzed Coats-Smith equati¢due to the presence of

tion of complex transport in the presence of multiple trans-d'sorde)'
port paths in a Markovian approximation; this result is in

agreement with the idea of multiple transport paths in com-

plex media[13], or composite Markov processgig8]. In this section we explicitly use the fact that there is no
Note that, in general, in Eq20) the presence of a lattice- transport in the pati; then as before we assume in Ed)
Fickian operatof \,(k) — 1] allows for diffusion also in path {4t A, =0. This implies that\,(k)=1 and ¢£(t)= 1. So
A, this fact gives us the possibility to consider the case wheg, ., qu_ (7) the matrix (k,u) will look like
the concentration in the stagnant regions can diffuse over a ’
MOEAGE RGP0

very long time scaler, *.
b1(t) Wi(t) 0

B. The generalized Coats-Smith equation

In order to exemplify that the Fourier representation of n(k,t)= (23
Egs.(1) and(2) corresponds to our Eq20) it is still neces-

sary to give thetransition lattice structure functior\ (k).

From this program it will be trivial to see that our E@O)
may be generalized to a Coats-Smith equatiom idimen-

sions. Consider, for example, a two-dimensional lattic

where the macroscopic Darcy flow velocity points along

e

In the present section we would like to comment on some
situations which are in fact beyond the Coats-Smith model.
Consider the case when the disorder produces a memory ker-
nel in thetransition and theexchangematrices. In this case

o . L the diagonal elements of the generalized master equation are
the directionx. The lattice structure is given by

uN(K) L1 (1) pE(1)]

Aqp(ku)= ,
A= explik-r)N(r—r"). BT UE - Lyl 50
r

Ap(k,u)=0, (24)
Because the lattice vectar is translational invariant, and
considering that the one-stéplemental next-neighborhood and the off-diagonal elements are given by
transitions(in a simple square latti¢eare characterized by a
probability to jump to the rightleft), p,(q,), and a probabil- . uLly zpfz(t)]
ity to jump up(down), p,(qy), we get for the lattice structure Aqs(U) (25

the function 1- L ¢50]
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U L[ 1(0)¢5,(1)]

Aoq(u)= )
A T WO ] Ll LD FE)]

PHYSICAL REVIEW E69, 036302 (2004

“E
/A\lz(u)=u179/C, Azl(u)zl,\ﬂ(u—-i_al).
ai)

dE(u+ 30

This is the general case when no transport is allowed ifAs before, due to the shift in the Laplace argument of
pathA; many particular situations can be analyzed considerA ,,(u), there will not be a long-time anomalous effect in

ing different expressions for th&aiting-timefunctions¢,T(t)
and 1, (t).

1. Mixing strong disorder and weak disorder

this element, even in the case Whérﬁ(u) is not analytic
aroundu=0 as in Eq.(28). This model corresponds to con-
sidering strong disorder in thexchangematrix, but a Mar-
kovian approximation in thdransition matrix. Physically

Consider the case when the strong disorder is present onffis means that changing the paths, at any itare rare
in the transition waiting time. This case corresponds to the events; on the other hand, the disorder only introduces a

situation when
! (t)=arbitrary,
t//ﬁ,(t) = exponential.

Using the exponential modél7), from Eqgs.(24) and (25)
we arrive to the following elementa, (k,u):

~ l?/I(U‘FVZ]) ~
A(ku)=N(k) =, Aoxk,u)=0, 26
12(K,u) =N q( )¢I(U+V21) 22K, u) (26)
Ag(u)=v15,  Ap(U)=vy. (27)

Due to the shift in the Laplace argumentf,(k,u), there

renormalization in the kinetic coefficients of the transport
operator into the pattB. As mentioned before, assuming
z//I(t):alexp(—alt), and the expression for thexchange
waiting time (28) it is possible to see that the asymptotic
long-time expression for the elements, (k,t—7) is given

by
ahi(k) 8(t—7) Cyl(t—7)%27 "7
AE=D=| ¢ 51— 0 ’

(31)

whereC, andC, are constants. Thus the long-time evolution
equation that governs the concentration profile can be read
from Eqgs.(10) and (11) considering the memor{31). This
result predicts that there will be long tails for the long time
regime. Note that we have used that the Laplace shift in the

will not be a Iong-time anomalous effect in the evolution of argument OfAZl(u) removes the nonana|yticity Coming from

the process; even in the case whg{(u) is not analytic

aroundu=0. Note that the Laplace structure of the element

JE(u).

To end this discussion consider here the case when the

A4(k,u) will drive to a transient memory effect at short strong disorder is present in both: thensition operator,

times, of the order ob,,*, even if ] (t) were exponential.

namely, into the pattB, and in theexchangebetween paths.

Consider now the case when the strong disorder is only his case corresponds to the situation when

present in theexchangewaiting time. This case corresponds

to the situation when

¢|T(t) = exponential,
wﬁ,(t) = arbitrary.

Suppose, for example, the symmetrical caﬁéz(u)
= y5,(u)=¢F(u), and in addition tha/F(u) represents the
presence of strong disordésee Appendix A Then ¢F(u)
must be a nonanalytic function of the Laplace variablelin
=0. A possible representation for smalis

JE(u)=(1+Cu’)~! with 0<6@<1,C=const. (29

We see that for very long timesn the Laplace representa-

tion u~0): pr(u)~(1—Cu"), this fact leads to a long-tail

distribution with a divergent mean waiting time. From Eqgs.

(28) and (25) it is simple to show thaf\ ;,(u)=u'"%/C. In

general, from Eqs(24), (25), and (13) it follows that the

elementsA, . (k,u) are
Aga(k,u)=ag Ay(K),

Apgk,u)=0, (29)

Y (t)=arbitrary,
w,E, ,(t)=arbitrary.

If the disorder introduces nonanalytic expressions for the
transition and theexchange waiting timegvhich might, for
example, result from energetic or spatial disorder on the
paths[10]), then long-memory kernels will appear in all the
elementsf\” /(k,u). In this case, depending on the particular
structure of each functiord/f(t) and ¢//|E|,(t), the elements

Ayr(k,u) can be nonanalytic iu=0. We would like to

stress that if the memory function&,,,(k,u) are nonana-
Iytic, this leads to the occurrence of a long-time anomalous
behavior (long-time tails or asymptotic non-Gaussian pro-
files) in the concentration.

2. Extensions

Another interesting model is when we consider that the
structure function, which characterizes the transport in a par-
ticular pathl, has a nonseparable structure of the form
z?/,T(k,u). This is just the case that appears when we study a
dye in a steady flow through a fracture netw¢#6]. Thus
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the interesting case when multiple families of transport path#n the Fourier-Laplace representation with
include the possibility of a fracture network in a porous rock, 7k u) = £,[ F{ (¥ )pisoraed |; then
can also be analyzed by using the present approach; consig—

ering, for example, that the(k,t) matrix is given by P(k,u)=d(u)-[1— 7(k,u)]"L- Po, (35)
T T E T E
o(kt) = M(K) (1) @1(t) (1) Yralt) whered(u)=[ &, ®,(u)] is a diagonal matrix, and(k,u)
' B1(1) P5i(1) Ao(k,t) #5(1)) is the Laplace transform of the matrix characterized in

. T Eq. (7). Thus the matrix Green function is just
where, of courseg(t) =1~ Johp(k=0,7) d7. ®(u)-[1- 7(k,u)] . From this expression the determina-
It should be remarked that even when all these models ofop, of many quantities of interest is reduced to a Laplace

coupled master equations could look unwielding, we cannersion. For example, from E€35) all the moments of the
work out their solution becaus_e we can map this process WitQistripution P(j,t) can be easily calculated . One Hasone
a MCTRW one(see the following section dimension

IIl. COMPUTING THE MATRIX GREEN FUNCTION AND
THE MOMENTS OF THE MCTRW PROCESS M= "P(j,ty=(—i)mc "t

J

am .
—P,(k,u
P 1(k,u) -
In general, if we know the matrix(k,u), we can solve

tbhe Fourier-LaEIace tr:?nsform of t;le probabillﬂé(j 1) éo Note that herej"(t) means a random walk average. Setting
e at sitgj in the pathl at timet. The equation describing &_ 1= (k)12 f le. the first and d )
these probabilities is given by the relatig$10,15,20,21,28 (rzen[ts C;]I’(] Bg)avritier?ragxamp €, the 1irst and second mo

t
P(',t)=f @)(t—17) Ry(j,7) dr, (32) — Y
T (=i -0 270yl
|
where ®@,(t) is the probability that in the interval of time
[0, t] no further jump occurred, 5 ) 0 A In
t | jf(uy=—{®-| 20 W'Q'W'Q
P (0=1-2 > | mn(j" ) d7. (33
" +(Q).82_7]..P
Note that the solution oR(j,7) can be found from Eq3) k2 0 ) '
=0J,

using ¥ — 7 and taking the Fourier-Laplace transform. As
usual, we start with our walkers at origin; however, we allow It imole to show that th {in the pats
them to be situated on different paths. The normalized initial . IS how simpie 1o show that the current in the p

condition is then given, in the Laplace representatifit0], just by
P10~ 606, Ly
0= 506 () =uj(w) =(~i)u -6 77.0-Pyl, o| . (36
|

with ¢, +---+cy=1 (N is the number of different paths
Notice that Eq.(32) is a convolution in time, which simpli-
fies in the Laplace representation. Furthermore, &g(t)
one has in the Laplace representation

These results show that many important quantities can be
calculated straightforwardly from our approach; thus the
study of the time transients is indeed reduced to the analysis
of the inverse Laplace transform.

1= 2 (i)
<i>|(u)= i _ (34) A. Applications (the current)
u Here we shall use the matrix Green function method to
In the following we will use the vectorial notation calculate the current in a one-dimensional system in the pres-
ence of disordered multiple transport paths. In particular, we
Bk, u)=[P,(k,u), ... Py(k,u)] can analyze the hydrodynamics dispersion for an initial pulse

condition (Dirac-5), for two models of disorder, namely,
and denote byP,(k) the Fourier transform of the initial oc- When the strong disorder is in thensition, and when it is in
cupation probability P(j,t=0), i.e., Py(k)=P(k,t=0). the exchangematrix.
Here we are interested in a Green function, so we use the Let us start with the first case; then assuming that the
initial condition Po(k) = P, independent of the Fourier vari- ransport only occurs in the patB, and that the strong-
ablek. The solution of the MCTRW in the Fourier-Laplace disorder is only present in thieansition matrix (i.e., in the
representation is well known(8,15,23. For instance, PathB), see expressiori@6) and(27). Thus the correspond-
use Egs.(32) and (33) and the recurrence relatiofB) ing n(k,u) matrix is given by
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M (K) T (u+ V12
k)= 1(K) ¢ (u+ vy 0| @

vorbi(U+vy) 0

where the(asymptotig lattice-Fickian operator is given in terms of a Taylor expansion of the structure furjégtioone
dimension use Eq22) with p,=q,=0],

(ky@)?
2

Ni(Ky)=1—i(1-2p,)(k@a)— +---, with O=sp,=<1. (38

In order to simplify the algebra, let us assume that theThis means that asymptotically in time, the hydrodynamic
exchangerates are symmetric, them,;=v,=K,.; so the dispersion turns to be diffusive. So in this case the presence
current in pathB can easily be calculated using E&7) in of strong disorder, in th&ansition matrix, only introduces a
Eqg. (36) with I=1. In this case the currerite., a quantity transient anomalous profile. We say this because asymptoti-
proportional to the mean velocity of the propagating pulsecally the mean velocity of the packef(t— <) is just a con-

into the transport patB) is characterized by stant renormalized by the strength of the disor@es., the
parametem).
R (2py—1)(K+u)®*fa Now let us study the second case, i.e., when the strong
[1(u)= for 0<6<1, (39

disorder is present only in thexchangematrix, see expres-
sions(29) and(30). Therefore the correspondiﬁﬂk,u) ma-
where we have used the initial conditiél3=(1,0) and the trix is given by

nonanalytic transition waiting time ;(u)=(1+C u?’) 1. . c

This expression give¢in the Laplace representatipioth - agNy(K) pr(u+ag) ()

the transient and long-time behaviors of the current in the (k)= Yo (u+ay) 0 -4y
pathB. For example, using the inverse Laplace theorem it is

simple to show that for timest>KC‘l the temporal As before, we assume here that #wechangeis symmetric

Cu(2K.+u)?

asymptotic behavior is a constant, Y5 (u)=y5,(u), but a nonanalytic function around=0
2 1)KL like in Eq.(28). The current in patB can be calculated using
Wl DR Ta Eq.(41) in Eq.(36) with | =1. In this case the current will be
(D)= 4C with 0<g<1. (40 characterized by

()= Uay (2pc—1)(ay+u)??(1+Cu¥?a for 0= =1 “2
! _{alu0+u[(a1+u)0+u0(l+C(a1+U)0)]}2, ’

where we have used the initial conditidty=(1,0). This The more general case when batiinsitionandexchange
expression gives the behavior of the current into the Bath matrices have strong disorder can also be analyzed in the
For example, in this case using the Tauberian theorem we gghme way by using the correspondingk,u) matrix; work

the asymptotic long-time behavior, along this line will be presented elsewhere.

B. Application to a Markovian case: The Coats-Smith profile

for 0<O<1, (43 Here we shall use our method to calculétethe continu-
ous limit) the Green function of the Coats-Smith equations
(1) and(2). From Eq.(35) the matrix Green function of the

thus, showing an asymptotic vanishing current due to th@roblem can be found if we known the matmxk,u). As we
presence of long-time tail distributions. Physically this be-have remarked befo(esee Sec. IIA], using Ed. (23) in the
havior is due to the fact that particles that get into stagnanMarkovian case [1(t)=aiexp(-at), ¥hm(t)=vamexp
domains, or dead-end volumes, can rarely leave those vol=vnmt)], and considering the one-dimensional asymptotic
umes. These rare events are just characterized byexthe Lattice-Fickian operatof38), it is possible to see that the

changewaiting-time distributiony/5,(u) (see Appendix A matrix 7(k,u) can be written in the form

l1(t)=(2p,—1)az’ "

t2(1-0)
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1 R R 1
1-i(1-2pka- E(ka)z} V12 Ci(k=0,u)=Cy(k=0,u)~ 5.
" fu+t Ut v
= o 14 A
7k, u) ' 2 In general, the solutiorC;(k,u) can be written in the
V21 0 compact form
lel+ u+ Vo1
(49 R 1
Ci(k,u)= o (49
In fact, to solve the Coats-Smith equatiofi$ and (2) cor- UR(u) +k“D(u) —ikW(u)
responds to studying our MCTRW scheme using E) where
with v{,=v,;=K.. The more general case;,# v,; can
eventually be mapped to the Coats-Smith-Bakgrmodel (2K o+ U) D, (K¢+u)
where a fractionf < v, of the pore volume is available for R(u)= K.+ C,0)u’ (u)= K.+ C 0’
the flow, while (1-f)xv,; is the stagnant fraction. From et i ¢
now on let us analyze the Coats-Smith model. V(K +U)
The matrix Green function of the corresponding MCTRW, Vu)=—0———
in the lattice representation, is given by Ke+Cr(O)u
i a [+na_ i N Therefore the profileC(x,u)=F " Cs(k,u)] is given
6= o [ o) [1- )] ek by [26]
2w —mla
49 &xu)
In the casea<1l we can consider the continuous limit vV
G(j,u)—G(x,u) dx, therefore Eq(45) reads =1 Y o] Xl o )
L L
. dx [+ 3 | ~ 2D 4 ’
G(x,u) dx= ﬂf d(u)-[1- p(k,u)] te k*dk. (W + M )
o 2D
(46) :
(50)
Defining the quantities,
where
2
lela
= = — D(u D, (K.+u
Di=——, V=a2p1a;. D(u)= (u)  Dp(K¢+u)

R(u) 2K +u

The Coats-Smith solutioffor a delta initial conditions(x)]

can be read from Eq46) if we identify From now on we shall use that the physically interesting

initial condition is[C;(0),C4(0)]=(1,0); therefore we ar-
« A . N rive at the expected conclusion that asymptotically, at long
P(k,u)=G(k,u)-Po=(Py(k,u),Pa(k,u)) time, the Coats-Smith solution behaves likes a Gaussian pro-
- - file (i.e., solution of a CDEwith coefficientsD, /2 andV/2,
= (C1(k,u),E(k,)), ( E L

. x—V1/2)2
where Py=F,(Cs(x,0),C4(x,0))=(C;(0),Cs(0)), with Ci(x,t)~ F{ ( )
C1(0)+Cy(0)=1. f \WDL/ 41D, /2

Before taking the inverse Fourier transforrtv6)
we need to calculate the elements of the integrand, Xe (—o,+w), t>K;1.

P(k,u)=d(u)-[1— g(k,u)]"*-P,; therefore using Egs.

(34) and (44) we get the expressions The whole transient behavior can numerically be obtained by

calculating the inverse Laplace transform of EsQ).

R S(0)K o+ C(0)(K+u) Many other interesting non-Mgrkovian cases, which are in

Ci(k,u)= , (47) fact related to the problem of disorder, can also be worked
A out in a similar way from Eq(35); its analysis will be pre-

sented elsewhere.

. C:(0)K 4+ C(0)(K.+u+Dk2—ikV
Cs(k,u)z f( ) c s( )(Ac ),

(48)

IV. THE FIRST PASSAGE TIME DISTRIBUTION

The MCTRW approach enables us to estimate the first
where A=u(2K .+ u)+D k? (K.+u)—ikV (K.+u). Note passage time distribution for the present problem; this distri-
that asymptotically each compone@(x,t) and Cq(x,t) bution is a very important quantity for calculating the exit
normalizes tog; i.e., in the limitu—0 we get times of a test particle in complex media. Here it is important
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to stress that there exists a fundamental relation between ttf& from Eq.(54) ,
first passage time distributioFPTD) to a sitej and the

propagator to find the particle at this site at tirneThis Fii(j,ul0,0=Py(j=0,ul0, 0)"*
relation expresses that for a Markov process the probability . .
of occurrence of an event at staps composed of the prob- X[Py(j,ul0,0— ¢y (u) 8j0 &1,

ability of thefirst occurrence at step, and of the probability
of first occurrence at step’ <n times the probability that the
event again occurs after the remainimg n’ steps.

Consider a uniform lattice of arbitrary dimensionality and
the continuous-time description of a Markov process. Le
F(j,t|0,0) be the probability density difst arrival at sitej at ~
timet, when the particle starts at site=0 and at=0. If the =2 DUy
start is not counted as an arrival event, thEfj=0t "
=0/0,0)=0. Thus the following relation holdsl5]:

and using thaffor example, in two dimensional we haye
—(J1.J2); k—=(ky,kp) anda—(ay,ay)]

tﬁ)||’(j ,U|0,0)

2m 2

a; a, 2mlay (2wlay R N
fo fo [1-7(ku)] ™

Xexp(—ik-j) dk;dk;

t "
P(j.1]0,00= (1) 80+ fOP(j,tlj,t’>F<j,t'|o,o>dt', "
(51) and, becausab(u) is a diagonal matrix we get the final

result
where ¢(t) is the sojourns probability. Using that the lattice . . BV
is translationally invariant and assuming that the propagator Fu:(j,ul0, 0)=0y(j=0,u) "Oy(j, u)
is homogeneous in time, we get A . 1
_®|r|r(]=0, u) 5]0’ (55)
t
P(j,t|0,00= (1) 5J'°+f P(0t—t']0,0) F(j,t’|0,0 dt’. where(in general inn dimension$
0
R a; 2mla, an 2mlay R
This equation can immediately be solved in the Laplace rep- Oy«(j,u)= 2—f e 2—f [1- 7(k,u)]t
resentation, mJo mJo
. P(j,ul0,0— ¢(u) 4, Xexp(—ik-j)dk, - - - dk
(i ulog- PLUOOZ W gy rotedia - dial

P(0,u[0,0

Equation(55) gives the desired result, i.e., the FPTID

e e o Laplace represeriatbiro e g0 wih nterna
y ’ qgtatel’ at timet=0, to sitej with internal statd at timet;

g}'sl'zeq?gf)ocvésg:gdvjﬁ:ea?gewgr:;%fn ptl;?'l(:;.lsi;zgl:gsnlr\ﬁittia herefore the problem has been reduced to the calculation of
9 99 an inverse Fourier-Laplace transform.

internal state$27] Now going back to our original problem, we have to con-
; _ . ) sider that each internal state represents a possible Ipath
Pur(5,H0.0= (950 0 Nevertheless, a new difficulty appears in our approach, and it
LA o , is due to the fact that our generalized MCTRW®/ possible
+ JO Pu(j,tlj.t") Fu(j,t']0,0 dt’. generalized Coats-Smith mogetould also be a non-
Markovian process due to the memory effects introduced by
(53 the disorder average. Then we only can use (G§) as an

. L ) ) . ._approximation. Unfortunately this, of course, is not a pertur-
This equation is based on the assumption that different inteto4iy/e approximation: but our result gives a plausible ap-

nal states w[th_the same sife visited by the walker,_ are  oroach to the problem of solving the FPTD for a non-
counted as distinct events, see our remark in Appendix B. Agyariovian process, which in fact is a nontrivial problem
before,,from this equation it is possible to geta solution for[ls]_ Indeed, in a future paper we will analyze this distribu-
Fyi/(j,1'/0,0), from the Laplace representation of E&3) {5 in the context of a characterization of the concentration
we get profile in a disordered medium with multiple transport paths
. . £ ~ [28].
P (0u[0,00F;/(j,ul0,00=Py(j,u[0,0— ¢.(u) o &
(54) A. The first passage time distribution

Now we use thaP,(j,u|0,0) can be written in terms of for the Coats-Smith model

the inverse Fourier transform of the matrix Green function. Here we shall use our approach to calculatefitst pas-

Note also that from Eq35) we have sage time distributiomssociated with the Coats-Smith equa-
A A A tions (1) and(2), i.e., a Markovian example. In this case the
P+ (k,u|0,0={d(u)-[1— n(k,u)] .. probability distribution to reach the positiorr=L>0 for the
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first time, when the particle starts its walk from positien R U(2x.+U) 1 L
=0 at timety=0, is given by the first passage time distri- FL(U)zex;{ -L W+ Z+ 3
C

bution (in its Laplace representatipn F, (u)

=F,4(L,ul0,0). Therefore from Eq55) we have where U=u V_2 o L>0 (60)
. D 7 '
n O,y(x=L, u)
FL(u)= m (56) andL is a dimensionless distance. Therefore after a transient
1 ' time of the order of
Using the results of Sec. Il Bwith the initial condition % 1=(KoDy V3L,

C;(0)=1] it is simple to see, from Eq50), that
the FPTD of the Coats-Smith process can be approximated

e éf(Ly u) by the universal function
Fo(u)= —é 0.0
o 732 L 7 L2 .
_ L u N \Y; 2+L Vv . FL(T)NFGauséT,L)Zﬁex 578 24 =00, .
where From this expression it. is simple to see that the maximum of
the FPTD,Fgaus{7,L), is located at
D (Ks+u) ,
- T =—6+29+L2.
bW 2K +u ™

. . ~ Thus, if ry>x_ 1, it means that the transient in the Coats-

Formula(57) is an exact result; from this expression it is smith profile is not important because it is very early than
simple to see that after a time of the orderkqf*, the first  the time scale where the maximum of the CDE profile is
passage time distribution can be approximated by using |ocated; then, in order to study the hydrodynamics dispersion
it is suitable to represent the wholg (7) by the Gaussian
approximation Fg,s{7,L). Nevertheless, ifry<x_* the
transient in the Coats-Smith profile is very important; this
fact can also be understood in terms of a system-size analy-

. e _l .
This expression can immediately be transformed to its timé!S: From the conditiormy =<, -, it follows that

representation; then taking the inverse Laplace transform of
Eq. (58) we get the FPTD29],

2
+L

2u

FL(u)zexr{—L D—L+

\Y,

(58)

)

2

-1
%x. +6
= —9=L,, (62)

<
L= 2

FL(t) exp{ v (L Vt” Lo exp{ _LT t>K_ 1! herel, is a critical value that characterizes the importance
= = | L—— , 13 . w i itical valu iz [

" 2D, 4/1y2mD, 2Dt ) of the éoats-Smith transient. Thus for a given vaILEJe of the
(59 (dimensionles)sparametebcc_l, the FPTD of the system will

show a finite-size transient behavior only liisL.. It is

i Ve trivial to realize that ifx.>1 there will not be anomalous

perturbative approximation to calculaf (t) for @ non-  yangjent hydrodynamics dispersion for any size sta®,

Markovian process; nevertheless, our resls) gives a g fact is in agreement with an Heuristic analysis that can

plausible method to tackle the problem of calculating thene qone by direct inspection in the Coats-Smith equation.
FPTD. Indeed, this is a possible approach to analyze second- gefore ending this section let us remark that the charac-

ary oil recovery in a disordered medium, work along this linee;ation of the critical distanck, is a result that helps to
will be reported elsewherk28]. solve the controversial question about the origin of the
anomalous transient and finite-size effects.

In Figs. Xa, b we have plotted for several values 8f
From the result(57) we realize that introducing the =(0.1,1,10) andL=(1,5), the CDE approximation6l)

Remark As we have mentioned before, there issimple

1. Scaling results

change of variables, against the exact result obtained numericd89| by calcu-
lating the inverse Laplace transform of E§0). On the other
D, D, hand, form(62) and for the mentioned values af we get

t=71 ? . X=X (V) different critical valued_;, thus, for example,

x.=0.1=1,=7.4162,
the FPDT(in its Laplace representatipian be written in a
simpledimensionless form, x.=1=L.=1.8027,
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V. DISCUSSION

Many models of disorder can be studied from our meso-
scopic point of view, and such analysis could help to under-
stand more complex systerftoncerning hydrodynamic dis-
persion in disordered medighat cannot be described by a
CDE or a Coats-Smith model. In particular, if in addition to
the heterogeneity there are multiple families of transport
paths, which could appear due to fractures in porous rocks,
this situation, in principle, can also be analyzed using the
present approach. Therefore, for example, the first passage
time distribution of the test particle can be estimated; or the
transient and the long-time response to the injection of a
pulse can be calculated, etc. In particular, we have confined
our attention to models dfansition disorderand exchange
disorder. Transition disorder corresponds to randomness in
the shapes and sizes of the microscopic elements of the trans-
port paths; and exchange disorder corresponds to an asym-
metry in the exchange between the different pdtt314.

Just in order to unify the nomenclature with previous
literature—in the subject of disordered transport with mul-
tiple paths—let us now make a summary about the classifi-
cation oftransition and exchangedisorder. Consider a two-
path system, then the structure of thegpermatrix¥ is the
one that appears in E(4), so it is possible to realize that our
matrix B;; is related to the matriV;;" of Ref.[14], and so
Ajj is related to the matriWV;’. On the other hand, the
probability () dt is related to probability rat&;? at site
j, and soy/*®(t) dt is related toE;". Thus after introducing
the Hartree approximation, Eg&k) and (6), etc., it is clear
that the MCTRW approach induces not only memory, but
also additional coupling between the different paths as can
(b) T be seen from the structure of E(L2). As a matter of fact
from this structure it is simple to see that thechangdran-

FIG. 1. (& Log-log plot for the FPTD of the Coats-Smith pro- sijtions are only associatedthout changes of sitehis result
cess[obtained form Laplace inversion of E(G0)] as a function of  of course was expected from the proposed strudtire
7 (dimensionless timefor L=1 (dimensionless distangéor sev- There are also other remarks concerning our approach.
eral values ofxc(:o.l,l,_10) against_ the_FPTD associated with the (a) The present formulation allows us to work out transi-
CDE procesdthe Gaussian approximatidBl)). Log-log plot for tjon disordemith bias; as can be seen, for example, from Eq.
the FPTD of the Coats-Smith process as a functionfol L=5for (59) Thjs s something that was excluded from the approach
tsﬁé’ecrgEvalr‘éisegf(;&Ltlﬁlo) agaug_st the F'TTD asg,tocuatc_ed With o Ref.[14] (becausan, ;=W;;), although the presence of a

P ’ g the same dimensionless units @.in macroscopic flow velocity is a fundamental ingredient in the
study of hydrodynamic dispersion. In fact, to solve an EMA
%.=10=1,=0.55. with bias, without internal states, is a nontrivial problem:;
see, for example, Ref24].
From Figs. 1a, b it is simple to check our prediction that for (b) The calculation of the first passage time distribution
L=<L, the system-size analysis is very relevant. can be done, at least in some approximation, thus the finite-

Remark Note that the presence of weak disorder reducesize effects can be studied. This calculation is something that
the dispersion coefficieri.e., in an effective medium ap- appears more subtle in the context of EN&ven for the case
proximation D, =3(d/dt)[{x?)—(x)?]—De;<(1w) "1,  without internal states see, for example, Ref31].
see for example, AppendixJAthen »x.=K.D,/V? will be (c) Non-Fickiang operators can be introduced in our ap-
reduced too, and this fact will lead to an increase of theproach to characterize some special transport mechanism in
critical distancel, which ultimately will enhance the finite- one of the paths; for example, transport in the fracture net-
size effects and consequently the transient anomalous dispework of a reservoir is much faster than that in the pores.
sion in the Coats-Smith approach. Thus using that the transport in a random network of fracture

It would be very important to have similar conclusions can be described in terms of a space-time coupled function,
concerning the scaling of the FPTD in the presence of strongxr(k,u), see Ref[25], we can introduce the occurrence of
disorder; work along this line is in progress. stagnant volumes in the description by considering a second

FPTD

(a)
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alternative path like the one we have mentioned all along théhtroduced by using the waiting time functiofﬂ(u):(l
paper. o _ + 7u) P with {b=1,7>0} (this function is associated with a

(d) Another alternative is to consider the presence of rangamma distribution for the waiting times of the RW into the
dom ad'vectlon in the de§cr|ptlon of thg problem. For eX-transport channel; ib=1 there is nalisorde). Assuming, as
ample, if the mean velocity of the flow is replaced by a s ysual in the CTRW theory, that all the lattice sites are
random vector fieldV(r,t), the CTRW theory can also be topologically equivalent, we can adopt a two-dimensional
used' to tackle thls_ problefr$2;|; this situation is very impor-  hopping structure function as the one given in E29), then
tant in the geological analysis of stratified dlsordered r_nedlqt is simple to see thatd/dt)(j(1))=V/b with Vor(2p,
[33]. Then we can use the present MCTRW approximation to+2p —1)a/7 in the continuous limit
consider this type of disorder and in addition with stagnant
domains(multiple paths.

Here it is important to remark that even when the MC-
TRW approach looks very powerful, the reader should not The finite-size effects can be studied, see, for example,
forget that the CTRW theory does not give the correctEq. (62). The present approach gives us the possibility to
anomalous exponent of the frequency-dependent diffusioatudy the occurrence of different scaling regimes and
coefficient; neither can it describe a percolation binary mix-asymptotic universal forms—for the problem of finite-size
ture (see, for example, Ref34,35). Thus the present MC- anomalous hydrodynamic dispersion—as we have done in
TRW approach should be considered as a sort of parametribe Markovian approximation in Sec. IVA1; i.e., from Eq.
description for the mesoscopic problem, but with the possi{55) a formula for the FPDT generalizing E¢G7) can be
bility to obtain an analytic formula for the first passage timewritten considering disorder in the interconnected and non-
distribution. Therefore our approximation allows us to calcu-interconnected poredackbone and dead-end domains
late not only the long-time behavior but also the transient of Our approximation allows us to introduce non-Fickian op-
complex systems like the one we have reported along thisrators(with or without biag, and consider models where
paper. As a matter of fact in a future wdrk8], we are going exchangeandtransitiondisorder are present simultaneously;
to analyze secondary oil recovery, by doing nonlinear leastthis is something that in the context of the EMA with mul-
square fits from our analytic solution in the Laplace reprediple paths has not been treateid].

B. Summary of the present approach

sentation, see E@55). We would like to emphasize that an analysis with differ-
ent boundary conditions can also be worked out because we
A. Concerning the different waiting time functions know the matrix Green functiofwith multiple paths, see
Eq. (35).

Suppose that we want to study an heterogeneous syste
where the stagnation times are characterized by a typicz#]t
distribution The crudest approximation is to assume which
there is acharacteristic time given by a mean value of a

Ce”?'” rand.o.m varlanblw, which characterizes the “sym- stagnation effects in the hydrodynamic dispersion in unsat-
metric transition rate” to gein or out of the stagnaint vol- urated porous media, making a connection with the topology
umes. This approximation leads to the conclusion #fdu)  of the infinite cluster in a percolation problem. He was able
is given by an exponential waiting-time function with to predict the behavior of the dispersion coefficient as a
(1w)~'=K,, see Eq(A8). By doing this we just reobtain function of the macroscopic flow velocity, the percolation
the Coats-Smith phenomenological modBl So if we want  correlation length, and the diffusion constant in the absence
to improve this approximation we could use an expansionsf flow. Here | should tell thathe de Gennes approach, the
like Eq. (A7) to calculate each of the waiting-time functions gma with multiple paths, and the MCTRW approximation
&El(u) and fpfz(u) that characterize thexchange disorder complement each other to tackle the still fascinating subject
Now suppose that the system presents long waiting timesf anomalous hydrodynamic dispersion in heterogenous me-
that characterize the different stagnation times of the media.

dium, due, for example, to the occurrence of a broad distri-

bution in the porosity of the systertnoninterconnected ACKNOWLEDGMENTS

pores. In this casdgas was shown in Appendix)Ahe func-
tion fpﬁ,(u) is not analytic aroundi~0. Thus, for example,
YE(t) is of the form(A4), and so its Laplace transform can
be parametrized by the expressi@8).

Consider now théransition disorder so, for example, we
can study the characterization of the macroscopic kinetic ¢
efficientD, that appear in Eq1). On the other hand, in the
phenomenological approach the mean flow velocityVis = AppENDIX A: THE WAITING-TIME FUNCTION AND THE
then in order to calculate thaverage over disorder of MODELS OF DISORDER
(d/dt)j(t), we can use the Green function given in Sec. Ill.

For example, suppose that there is only one transport path Depending on the analyticityaround u~0) of the
(the pathB) and the presence dfansition weak disorder is  waiting-time functiongs(u) it is possible to characterize dif-

Before ending this section let me comment about a very
eresting paper concerningoninterconnected pore§o-
rosity and permeabilifywritten by de Gennel86] (a simpler
description was also given in Rdf37]). de Gennes studied

M.O.C. would like to thank Dr. E. R. Reyes for an inter-
esting discussion about the problem of oil recovery and L.
Insua for checking some of the algebras. M.O.C. thanks
Professor K. R. SreenivasdBirector of the ICTP for the
kind hospitality during his stay in Trieste and also thanks

Oprofessor V. Grafeld for the English revision.
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ferent types of disorder. In the context of the CTRW there ;ﬂE (U)~1-Cu’, u—0,0e(0,1),C=const. (A6)
exists a clear relation between a model of disorder and the 2t ’ ’ T
waiting-time function, which is given bf22]
From this expression we see that e (0,1), the function
z/x(s—s’,t)=<Ws sreXF< —t>, W s)> . (A1) #5,(u) is not analytic aroundi=0.
' s ' If instead of Eq.(B3) we use a probability distribution
such that IimAHOP(w)—>O (weak disorde);, the averagéB2)

Disorder

In the present paper we are dealing with a family of mm_ma lead to a waiting time which can be an analytic function
tiple paths, so we have introduced internal states in the de- Y g y

scription of the process, that is why here we are interested iﬁround u=0. Thus, for example, the quantity

a MCTRW; thus we have to calculate an average as in Eq. 992(U)/dulu—o=J5745,(7) dv=(t) is well defined, and
(5) or Eq.(6). It is in fact the mean waiting time. This result shows that

Let us consider thexchangeprobabilities, i.e., for ex- Weak disorder can lead to memory functidngien the wait-

ample, assume that there are only two possible paths, thdRd time is not exponentialbut with a well-defined mean
for a given realization of the disorder the waiting time for the Waiting time [20—22. Alternatively, this effective waiting-

exchangdrom pathB to A is time function can be calculated using the fact tifét) =1
Brir  \AiAB AB, - —u¢(u), whereg(u)=(1/(u+w)). Then, if the quantities
Y120 =WAB()exd - WAR(j) t], ((1M)™, Ym=1,2, ... arewell defined, we can write the

where, in principle)V8(j) is an arbitrary probability rate “c' > eXPansion

that indeed depends on the §itéfhe fundamentahnsatzin
order to be able to calculate the average over the disorder is u * 1\m
(a2 o)

that W*B(j) is a random variable equally distributed over #(u)=1—ugp(u)=1—
the sites of the lattice. Then it follows that

<WAB(j )exp[ - WAB(j ) t:|>Dis,order

u+w m=0

(AT)

Thus, in the presence of weak disorder we can write asymp-

= j w exp(—w t) P(w) dw totically
=(wexp—wt)). (A2) 1 1
It is now clear that depending on the nature of the prob- l@olﬂ(u):l_u <W> :( 1+<W> u) ’
ability density P(w), different waiting-time functions will
arise. Consider, for example, a model of strong disofder,
there is a chance to get=0 with a finite probability, which means that at long time and if the disorder is weak, we
can approximate the waiting time by an effective exponential

0 -
W—(W/WO)(’*l, o=w=w,, 6<(0,1) function
0

0, W>WwWg. 1\ -1 1\ -1
(A3) w(t)~<w> exr:(—<w> t). (A8)

Then from Eq.(2) we get

P(w)=

This result, in the context of the CTRW, corresponds to the

ow ~ ~ - - i ineti 2
'7051(0279;1 ¥(6+17), 6e(0,) with T=wot. conclusion that weak disorder renormalizes the kinetic coef

ficients.
(Ad)
Here y(6+11) is the gamma incomplete function, thus for APPENDIX B: THE FIRST PASSAGE TIME
t—o we can usey(6+11t)—I'(6+1), and from this we DISTRIBUTION
get an asymptotic expressidior long time for the waiting- Depending on the meaning of the internal stdtes al-
time function ternative definition for the FPTD can be introduced. Thus,
here we are going to present a different point of view to
or(6+1) define the FPTD in the presence of internal states. If the
E ~— —
(1) wlte+? , 0(0,]),t—ee. (AS) lattice itself is homogeneoy7] but the walker can be in

-1
. . : i -
It is simple to see that the Laplace transform of thisd'fferent internal stateat a given sitdi.e., spin; or 2 ), so

asymptotic expression igusing the Tauberian theorem (j,I”) and (j,l) represent different states at the same site,
aroundu~0) then Eqg.(53) should be replaced by
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Pi(j,t|0,00= /(1) 606y S B,.(0u[0,0E (j.ul0,0)

t IH
+ | 2 Pua(jtlj ) (j,1'10,0dt". . .
0 G :P”/(J,U|0,0)_¢|/(u) 510 (S”/. (BZ)

(B1)

As before, from this equation it is possible to get a solution Now we can use tha®,»(j,u|0,0) can be written in terms
for Fy»/(j,t']|0,0). From the Laplace representation of Eq.of the inverse Fourier transform of the matrix Green func-
(1) we get tion. Therefore from Eq(35) we have inn dimensions,

a 2mlay a, 27/

27)o 2mlo

Pyn(j,u|0,00= an[(i)(u)-@(k,u)]”,,exp(—ik-j) dk; . .. dk,. (B3)

From the definition®(k,u)=[1— 5(k,u)]~*, and using the Equation(B4) gives the desired resuiin its Laplace rep-
inverse matrix of Eq(3) in Eq. (2) we get the final result ~ resentatiop i.e., the FPTD from the origif=0 with inter-
R A . . nal state’ at timet=0, to sitej with internal statd at time
F(j,u[0,0=0(j=0u)"*O(j,u)—O(j=0u) 50 & . t: counting the different eventsnutually exclusive to give
(B4)  the possibilities to reach the statgl) passing through all
. o . . the statesj(1”). Compare the subtle difference with the re-
Here F(j,u[0,0) indicates a matrix with the elements gt given in Eq.(55). For example, here the return to the
Fii+(j,ul0,0), and origin is expressed by the formula
~ a; (27l a, (27a,

O(j,u)==— e 1- p(k,u)] !
=5 am] Tk
xexp(—ik-j) dk, ... dk,. Fu(j=0ul0,0=1-[0O(j=0,u)""];.
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