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Effect of noise on the dynamics of a complex map at the period-tripling accumulation point
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As shown recentlyO.B. Isaeveet al, Phys. Rev. B64, 055201(2001)], the phenomena intrinsic to dynam-
ics of complex analytic maps under appropriate conditions may occur in physical systems. We study scaling
regularities associated with the effect of additive noise upon the period-tripling bifurcation cascade generaliz-
ing the renormalization group approach of Crutchfietdal. [Phys. Rev. Lett46, 933 (1981)] and Shraiman
et al.[Phys. Rev. Lett46, 935(1981)], originally developed for the period doubling transition to chaos in the
presence of noise. The universal constant determining the rescaling rule for the intensity of the noise in period

tripling is found to bey=12.206 64® . .. . Nunerical evidence of the expected scaling is demonstrated.
DOI: 10.1103/PhysReVvE.69.036216 PACS nunter05.45.Df, 05.10.Cc, 05.40.Ca
[. INTRODUCTION a subtle and complicated structure, which is a subject of

extensive research. In particular, it contains special points of
Application of the renormalization groufRG) analysis  accumulation of bifurcation cascades. Beside the period dou-
and the concepts of universality and scaling in nonlinear dybling, there are also cascades of period tripling, quadrupling,
namics started with the works of Feigenbaum concerning thetc. The period-tripling accumulation point has been studied
period-doubling transition to chag4]. The universal quan- first by Golberg, Sinai, and Khanii5] (see also Ref.16]),
titative regularities intrinsic to this type of behavior are com-and will be referred to as the GSK critical point. In the map
mon for a wide class of systems including one-dimensionall) it is located at
maps, forced dissipative nonlinear oscillators,sfler and _
Lorenz models, experimental systems in hydrodynamics, A=0.023641168537F0.783660650805i2 (2)
B e & o oA 152 S5 By analogy il Feigerbaum universaty it coud e .
the d’ynamics at the onset of chaos. It is more or less obviou%ec'[ed to occur in other nonlinear systems as well.
' However, in fact, complex analytic functions represent a

that the presence of noise _destroys subtle deta_lls of the sma{lfery special and restricted class of maps because real and
scale(or long-time@ dynamics. The RG analysis developed

by Crutchfieldet al. [3] and by Shraimaret al. [4] gives a Imaginary parts off(z) must satisfy the Cauchy-Riemann

o : equations. If this is not the case, the dynamics become dras-
quantitative measure for th!s effept. Namely, to observe On%cally different [17]. In particular, it was shown that the
nmoc;;(; [:r\r/]T)IIitc:Jf dgel;;)?hgc:‘:ggi g éslg ggded to decrease th%eriod-tripling type of behaviqr doe_s not_survive, in gen_eral,

After Feigenbaum the RG a|.opr0acr.1 was developed bunder_a_nonanalync perturbatiph8] (in spite of the claim in
many authors, e.g., for the onset of chaos via quasiperiodic}:{—he original papef15] and some other works9,20). So, a
) . N o principal question is: Do the phenomena intrinsic to complex
ity and intermittency[5,6], as well as for some situations analytic maps have any concern to dynamical behavior of
arising in the multiparameter analysis of transition to chaosphysical systems? One example of an appropriate physical
[7] or to strange nonchaotic attractd&. In particular, the ’

effects of noise on the dynamics have been studied in dissi‘iﬁyStem was suggested by Be@d]. Another approach de-

ative systems for intermittendy@], quasiperiodicity[10] veloped in Ref[22] is based on a construction of a system of
pative sy . . , quasip 2L wo coupled units, each of which can demonstrate Feigen-
bicritical behavior[11], and in Hamiltonian systems for pe-

riod doubling[12] and Kolmogorov-Arnold-Moser torus de- ba“”.‘sl Egrcliod“;ldoubllng cr?sc%de, ﬁmd tt)he COUF’!'ff‘gd'$ of some
struction[13]. special kind. Moreover, this idea has been verified in an ex-

A special kind of dynamics occurs in iterative complex periment V\."t.h coupled _elgf:tronlc cireutts..
analytic mapsz, . = f(z,) [14]. An example is a complex Recognizing a possibility of the physical occurrence of

uadratic ma the phenomena of complex analytic dynamics, we intend to
q P study in this paper the effect of noise on the period-tripling
cascade in the spirit of the earlier works of Crutchfietcl.
[3] and Shraimaret al. [4], on a basis of the appropriate

. . . _ ) generalization of the RG approach.
which gives rise to remarkable fractal formations in the com-

plex plane of the variable (the Julia setsand of the com-
plex parametek (the Mandelbrot set The latter is defined
by the condition that being launched from the origin, the If we perform 3 iterations of the magdl) at the GSK

iterations at a given never diverge. The Mandelbrot set has critical point \=\., the renormalized evolution operator

Zn1=N—22, 1)
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will converge, as known, to a universal function

lim 34z 34(0)]/£3%(0)=g(2), )

k— o0
which satisfies the fixed-point RG equation

9(2)=ag(g(g(Z/ a))). (4)

Obviously,g(z) represents an evolution operator at the criti-
cal point for an asymptotically large number of iteratiorfs 3

in terms of the properly normalized dynamical variable. Nu-
merically, the approximation for this function was found in
Ref.[15] as a finite Taylor series: 12-12

FIG. 1. Plot of the eigenfunction responsible for the effect of
= 2
9(2)=1+(0.0547-0.7490)z noise at the period tripling accumulation point obtained numerically

+(—0.0244-0.0525) 2%+ - - - (5) (seetext

together with the complex scaling constant {én.€n+1.€n+ 2} are independent, the sum can be represented
again as a random complex number with zero mean and unit
a=1/g(g(g(0)))=—2.096 91989 2.358 279 64 (6) mean square multiplied by a real function of complex argu-

ment, namely,
Let us introduce noise and consider a stochastic equation
a{g'(9(9(z4/)))9"(9(za/ @) p(zn ] @) €,

+9'(9(9(zn/@))) e(9(zn/ @))én 1

Z0+1=0(2y) +e@(Z,)én, (7)

wheree is a small parameter of the noise intensityz) is a . R
smooth real function of complex argument, ahdis a com- +o(99(zn/ @) ént 2t = @(Zn) én - (10

plex stationary random sequence with statistically indepen-

dent subsequent terms. We assume that it has zero mean, uﬁﬂ’ we rewrite EQ(Q) in the form analqgous.to Eq7), with .
20\ . redefined function and random variable in the stochastic
mean squaré|£5|)=1, and zero correlation of the real and

imaginary parts{(Re&,)(Imé,))=0. It is expected that the ="'
scaling properties of the response under study will be inde- _ s R
pendent of the concrete form of the distribution function, Zn+3=9(20) +e@(29)&p . (12)

although it is convenient to suppose that a distribution funcg gptain a closed functional equation, we multiply both

b0l1i_rr‘]ded]; » lication of the stochasti elds. in th averaging over an ensemble of realizations of the noise. As
reefold application of the stochastic map yields, in the, z2/\ — /| z2\ _ kN (g g% \_
frst oo @ (122)=(|£2)=1, and(n&%. ) =(¢né#. o) =0, we come to

the relation
Z,,3=0(9(9(z,))) +&{9'(9(9(21))) 9" (9(zn)) ¢(21) én

+9'(9(9(20))) 9(9(z0)én+ 1+ @(9(9(20))) én - 2}

D (z)=e|*{|9"(9(0(z0/@)))9' (2, @))|?P (2, )
+19'(9(g(zn/ @))) 2D (g(z, @)

8
© +@(9(9(zn/a)))}, (12)
Now, we renormalize the variable by substitution z
—7la, and obtain where ®(z) =[ ¢(z)]2. Obviously, Eq.(12) has a structure
®(2)=L®d(2), whereL is a linear operator of the functional
Z,.3= ag(9(9(z,/ @))) transformation given by the right-hand part of Efj2). Re-
, , petitive application of the same procedure to Ed) yields
Tea{g'(9(0(z0/@)))0" @(zn/ @) ¢ (Zn/ @) &y a sequence of functions with asymptotic behawvibg(z)
+9'(9(9(z,/ @) e(9(z,/ @) énsn =0Okd(z), determined by eigenvectod(z), associated
with the largest eigenvalu@ of the operatol:
+@(9(9(za/@))) éns2}- 9
. . . . Q@ (2)=|al*{|g"(9(g(Z/a)))g" (g(Z/a))|*®(Z @)
The first term in the right-hand part of the equation equals
g(2), in accordance with Eq4). Concerning the remaining +19'(9(9(2/ a))) [*P(9(Z/ @) + P(g(9(Z/ @)))}-
terms, we make the following important remark. Let us sup- (13

pose that we start at sonzg. Consider an ensemble of the
random numbergé,,&n11,én12} and compose them with As mentioned above, the universal functipfz) has been
complex coefficients given by functions of,. As  approximated as a finite expansion over even powers of the
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FIG. 2. The Lyapunov charts for the model m@g) on the complex parameter plane for zero intensity of neisé (a) and in presence
of noise,e=0.001 (b). The GSK critical point is located exactly at the center of the diagrams. The tones vary from dark to light as the
Lyapunov exponent varies from large negative to zero; white corresponds to zero, and black to positive values. Divergence is shown by
uniform coloring with one special gray tone. A small box containing the critical point is magnified and rotated in accordance with
multiplication by §,~4.6002-8.9812. The interval for coded values of Lyapunov exponents is reduced with factor 1/3 for each successive

picture in the row to visualize self-similarity of the pictures in absence of noise.

2

Im(( - 1o)/5

Re((%-2.)/5,)

2)

Im(( - 1o)/5

Im((%-2.)/5)

0.0

Re(h-1) Re((- 1o)/5,)

Re((A- 1.0)/8)

FIG. 3. Lyapunov charts for the stochastic mod&¥) on the complex parameter plane in presence of noises for;=0.003, ¢
=g,/ly, ande=¢,/9? (a), and fore =¢,=0.009,e=¢,/v, ande=¢,/7? (b). The GSK critical point is located exactly at the center of
the diagrams. The coordinate rescaling rule and the gray coding are the same as in Fig. 2. The interval for coded values of Lyapunov
exponents is reduced with factor 1/3 for each successive picture in the row to visualize the similarity of the pictures.
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If we consider a small shift ok from the GSK critical
point, then an additional perturbation term appears in the
equation:

Zn+3k:g(zn)+Cléklhl(zn)+87k€0(zn)§n- (16)

Here, h,(z) represents an eigenvector of the linearized RG
equation without noise associated with the eigenvadye
=4.60022558-8.981 224 7B The coefficientC,; depends
on the parameter and vanishes at the critical point GSK. In a
close neighborhood of the critical point it is sufficient to
consider only the leading terms of the expansion and set
Clx()\_)\c)-

Now, we are ready to formulate the basic scaling property
that follows from Eq.(16).

If we triple the number of time stepge., changek to k
+1), decrease the parameter differede=\—\. by di-
vision by 6;, and decrease noise amplitudeby factor vy,

then the form of the stochastic m&p6) remains unchanged.
1 Thus, with the new parameters\X/é,,e/y) the noisy sys-
s » tem will demonstrate the same behavior as that with the old
s ones, but with a tripled time scale.

Im:z o (C) Ill. MODEL MAP AND NUMERICAL EXPERIMENTS

To verify the RG results in numerical experiments, we use
a model map with additive noise,

-05
-0.5 Rez 1

Zni1=N—Z2+sé&,. (17

FIG. 4. Similarity in structure of the noisy attractors for the
model map(17) on the plane of complex variabie The parameter Real and imaginary parts for each term of the complex ran-
N values are 0.1225611670.74486176i7 (a), 0.031552975 dom sequencé,, are obtained as sums Nf=10 zero-mean
+0.790783 176 (b), 0.023369416:0.78467967B (c), and the  computer generated pseudorandom numbers, which are prop-
noise intensities are=0.015, 0.015¢, and 0.015/%, respectively, erly normalized to havé|¢2|)=1. (In accordance with the
where y=12.2066. The right-hand pictures represent the definitecentral limit theorem¢, is very close to a Gaussian random
parts of the attractors drawn with rescaling by complex factors variable)
=—2.099...+i2.35&... (b anda® (0). Figure 2 illustrates fine structure of the Mandelbrot set

near the period-tripling accumulation point as it lodksin

argument15]. Using these data, we have numerically con-the absence antb) in the presence of noise. The pictures
structed the functional transformation of the right-hand partrepresent the Lyapunov charts for the complex parameter
of Eqg. (13). The unknown functionb(z) is represented by a (See Refs[18,23 for previous applications of this methad.
set of real values at nodes of a grid in a squérel.2 At each pixel of the two-dimensional plot we estimate the
<Rez,Imz< 1.2}, and by an interpolation scheme betweenLyapunov exponent
them. Taking random initial conditions fdr(z), we perform
the functional transformation and normalize the resulting
function as®?(z)=®(z)/®(0). This operation is repeated
many times, until the form of the function stabilizese Fig.
1). The value of®(0) (before the normalizatigrconverges from numerical computations, and mark the pixel with a gray

to the elggnvaluél=149.092 0828' . tone. The tones vary from dark to light as the Lyapunov
In the linear approximation with respect to the noise am-

. X ) exponent varies from large negative to zero: white corre-
plitude, the stochastic map for the evolution ovérsBeps at n ser nd black itive L nov exnonen
the GSK critical point asymptotically may be written as sponds to zero, and black to positive Lyapunov exponent.

Divergence is shown by uniform coloring with one special
gray tone. The GSK critical point is located exactly at the
center of the diagram. A small box containing the critical
point is magnified and rotated in accordance with multipli-
cation by 6;~4.6002-8.9812. As the parameter rescaling
is associated with a tripling of characteristic time scale, we
accompany it with reducing an interval for gray coding of
Lyapunov exponents by factor 1/3 for each successive pic-

N
A=lim N1 In|2z,| (19
n=1

N

Zn+3k:g(zn)+8'yk§0(zn)§na (14

where

o(2)=JD%z), y=/0=12.20664093. (15)
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ture in the row. On the panéh) such diagrams are shown for 12.20&% ..., asfollows from the renormalization group
zero amplitude of noises=0, and on panelb) for noise of  analysis. Also we have demonstrated the scaling properties
fixed intensity,e=0.001. Observe the similarity of the leaves associated with the new constant in numerical experiments.
of the “Mandelbrot cactus” in the first case, and the progres- The undertaken analysis is essential for discussion of the
sive destruction of the structure at subsequent levels of thpossibility of observation of phenomena of complex analytic
resolution in the second. dynamics in a real physical experiment, e.g., in mechanics or
In Fig. 3 we show analogous pictures with noise, but nowelectronicd18,21,23. The presence of noise in such systems
its intensity is reduced for each subsequent picture in a rows inevitable, and our result gives a quantitative foundation
by the factory=12.206 ... found from the RG analysis. for estimates of an observable number of levels in the bifur-
Panelds(a) and(b) correspond to different initial levels of the cation cascade.
noise, respectivelyy=0.003 and 0.009. Now, the similarity Our work puts the phenomena in complex analytic map
of the pictures is restored. With noise reduction fayjust  into the same context in respect to the effect of noise, as
one more level of smaller leaves of the Mandelbrot cactusther situations of universal scaling behavior: period dou-
reveals itself near the GSK critical point. bling [3,4], intermittency[9], quasiperiodicity[10], bicriti-
Figure 4 illustrates similarity in structure of the noisy at- cality [11], scaling phenomena in Hamiltonian systems
tractors for the model mafl7) in the plane of the complex [12,13. So, this specific field is enriched with one more
variable z. Diagrams(b) and (c) relate to noise intensities nontrivial example of the scaling behavior linked with pres-
reduced by the factorg and y? in comparison with the plot ence of noise.
(a). The parametein values correspond to the superstable The approach developed in this paper may be adapted to
cycles of period 3, 9, and 27, respectively. The right-handstudy the effect of noise on other bifurcation cascades in
panels show the indicated parts of the pictures drawn witttomplex analytic maps(“ n-tupling” with n=45, ...
rescaling by complex factora [diagram(b)] and o [dia-  [13,16]). Moreover, it gives a basis from which to pose more
gram(c)]. Observe the similarity of the right-hand diagrams. general questions on the effect of noise on the Mandelbrot-
like sets in physical systems possessing such kind of objects

IV. CONCLUSION in their parameter space.

In this paper we have studied the effect of noise on a
complex analytic map at the period-tripling accumulation ACKNOWLEDGMENTS
point. It was shown that the effect of noise obeys regularities
of a similar nature to those reported for period doubling in The authors acknowledge support from UK Royal
real one-dimensional maps. Namely, to observe one mor8ociety. O.B.l. and S.P.K. thank Research Educational Cen-
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