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Effect of noise on the dynamics of a complex map at the period-tripling accumulation point
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As shown recently@O.B. Isaevaet al., Phys. Rev. E64, 055201~2001!#, the phenomena intrinsic to dynam-
ics of complex analytic maps under appropriate conditions may occur in physical systems. We study scaling
regularities associated with the effect of additive noise upon the period-tripling bifurcation cascade generaliz-
ing the renormalization group approach of Crutchfieldet al. @Phys. Rev. Lett.46, 933 ~1981!# and Shraiman
et al. @Phys. Rev. Lett.46, 935 ~1981!#, originally developed for the period doubling transition to chaos in the
presence of noise. The universal constant determining the rescaling rule for the intensity of the noise in period
tripling is found to beg512.206 6409 . . . . Numerical evidence of the expected scaling is demonstrated.

DOI: 10.1103/PhysRevE.69.036216 PACS number~s!: 05.45.Df, 05.10.Cc, 05.40.Ca
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I. INTRODUCTION

Application of the renormalization group~RG! analysis
and the concepts of universality and scaling in nonlinear
namics started with the works of Feigenbaum concerning
period-doubling transition to chaos@1#. The universal quan-
titative regularities intrinsic to this type of behavior are co
mon for a wide class of systems including one-dimensio
maps, forced dissipative nonlinear oscillators, Ro¨ssler and
Lorenz models, experimental systems in hydrodynam
electronics, laser physics, etc.@2#. In the context of real sys
tems, a question of vital importance is the effect of noise
the dynamics at the onset of chaos. It is more or less obv
that the presence of noise destroys subtle details of the sm
scale~or long-time! dynamics. The RG analysis develope
by Crutchfieldet al. @3# and by Shraimanet al. @4# gives a
quantitative measure for this effect. Namely, to observe
more level of period doubling it is needed to decrease
noise amplitude by the factorg56.619 03.

After Feigenbaum the RG approach was developed
many authors, e.g., for the onset of chaos via quasiperio
ity and intermittency@5,6#, as well as for some situation
arising in the multiparameter analysis of transition to cha
@7# or to strange nonchaotic attractors@8#. In particular, the
effects of noise on the dynamics have been studied in d
pative systems for intermittency@9#, quasiperiodicity@10#,
bicritical behavior@11#, and in Hamiltonian systems for pe
riod doubling@12# and Kolmogorov-Arnold-Moser torus de
struction@13#.

A special kind of dynamics occurs in iterative compl
analytic mapszn115 f (zn) @14#. An example is a complex
quadratic map

zn115l2zn
2 , ~1!

which gives rise to remarkable fractal formations in the co
plex plane of the variablez ~the Julia sets! and of the com-
plex parameterl ~the Mandelbrot set!. The latter is defined
by the condition that being launched from the origin, t
iterations at a givenl never diverge. The Mandelbrot set h
1063-651X/2004/69~3!/036216~6!/$22.50 69 0362
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a subtle and complicated structure, which is a subject
extensive research. In particular, it contains special point
accumulation of bifurcation cascades. Beside the period d
bling, there are also cascades of period tripling, quadrupl
etc. The period-tripling accumulation point has been stud
first by Golberg, Sinai, and Khanin@15# ~see also Ref.@16#!,
and will be referred to as the GSK critical point. In the m
~1! it is located at

lc50.023 641 168 537 710.783 660 650 805 2i . ~2!

By analogy with Feigenbaum universality, it could be e
pected to occur in other nonlinear systems as well.

However, in fact, complex analytic functions represen
very special and restricted class of maps because real
imaginary parts off (z) must satisfy the Cauchy-Rieman
equations. If this is not the case, the dynamics become d
tically different @17#. In particular, it was shown that th
period-tripling type of behavior does not survive, in gener
under a nonanalytic perturbation@18# ~in spite of the claim in
the original paper@15# and some other works@19,20#!. So, a
principal question is: Do the phenomena intrinsic to comp
analytic maps have any concern to dynamical behavior
physical systems? One example of an appropriate phys
system was suggested by Beck@21#. Another approach de
veloped in Ref.@22# is based on a construction of a system
two coupled units, each of which can demonstrate Feig
baum’s period-doubling cascade, and the coupling is of so
special kind. Moreover, this idea has been verified in an
periment with coupled electronic circuits.

Recognizing a possibility of the physical occurrence
the phenomena of complex analytic dynamics, we intend
study in this paper the effect of noise on the period-tripli
cascade in the spirit of the earlier works of Crutchfieldet al.
@3# and Shraimanet al. @4#, on a basis of the appropriat
generalization of the RG approach.

II. RENORMALIZATION GROUP ANALYSIS

If we perform 3k iterations of the map~1! at the GSK
critical point l5lc , the renormalized evolution operato
©2004 The American Physical Society16-1
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will converge, as known, to a universal function

lim
k→`

f 3k@z f3k~0!#/ f 3k~0!5g~z!, ~3!

which satisfies the fixed-point RG equation

g~z!5ag~g„g~z/a!…!. ~4!

Obviously,g(z) represents an evolution operator at the cr
cal point for an asymptotically large number of iterationsk

in terms of the properly normalized dynamical variable. N
merically, the approximation for this function was found
Ref. @15# as a finite Taylor series:

g~z!>11~0.054720.7490i !z2

1~20.024420.0525i !z41••• ~5!

together with the complex scaling constant

a51/g~g„g~0!…!>22.096 919 8912.358 279 64i . ~6!

Let us introduce noise and consider a stochastic equa

zn115g~zn!1«w~zn!jn , ~7!

where« is a small parameter of the noise intensity,w(z) is a
smooth real function of complex argument, andjn is a com-
plex stationary random sequence with statistically indep
dent subsequent terms. We assume that it has zero mean
mean squarêujn

2u&51, and zero correlation of the real an
imaginary parts,̂ (Rejn)(Imjn)&50. It is expected that the
scaling properties of the response under study will be in
pendent of the concrete form of the distribution functio
although it is convenient to suppose that a distribution fu
tion for jn is of such kind that the amplitude of the noise
bounded.

Threefold application of the stochastic map yields, in t
first order in«,

zn135g~g„g~zn!…!1«$g8~g„g~zn!…!g8„g~zn!…w~zn!jn

1g8~g„g~zn!…!w„g~zn!…jn111w~g„g~zn!…!jn12%.

~8!

Now, we renormalize the variablez by substitution z
→z/a, and obtain

zn135ag~g„g~zn /a!…!

1«a$g8~g„g~zn /a!…!g8„g~zn /a!…w~zn /a!jn

1g8~g„g~zn /a!…!w„g~zn /a!…jn11

1w~g„g~zn /a!…!jn12%. ~9!

The first term in the right-hand part of the equation equ
g(z), in accordance with Eq.~4!. Concerning the remaining
terms, we make the following important remark. Let us su
pose that we start at somezn . Consider an ensemble of th
random numbers$jn ,jn11 ,jn12% and compose them with
complex coefficients given by functions ofzn . As
03621
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$jn ,jn11 ,jn12% are independent, the sum can be represen
again as a random complex number with zero mean and
mean square multiplied by a real function of complex arg
ment, namely,

a$g8~g„g~zn /a!…!g8„g~zn /a!…w~zn /a!jn

1g8~g„g~zn /a!…!w„g~zn /a!…jn11

1w~g„g~zn /a!…!jn12%5ŵ~zn!ĵn . ~10!

So, we rewrite Eq.~9! in the form analogous to Eq.~7!, with
redefined function and random variable in the stocha
term:

zn135g~zn!1«ŵ~zn!ĵn . ~11!

To obtain a closed functional equation, we multiply bo
parts of Eq.~10! by the complex conjugates, and perform
averaging over an ensemble of realizations of the noise

^u ĵn
2u&5^ujn

2u&51, and^jnjn11* &5^jnjn12* &50, we come to
the relation

F̂~zn!5uau2$ug8~g„g~zn /a!…!g8„g~zn /a!…u2F~zn /a!

1ug8~g„g~zn /a!…!u2F„g~zn /a!…

1F~g„g~zn /a!…!%, ~12!

whereF(z)5@w(z)#2. Obviously, Eq.~12! has a structure
F̂(z)5LF(z), whereL is a linear operator of the functiona
transformation given by the right-hand part of Eq.~12!. Re-
petitive application of the same procedure to Eq.~11! yields
a sequence of functions with asymptotic behaviorFk(z)
>VkF(z), determined by eigenvectorF(z), associated
with the largest eigenvalueV of the operatorL :

VF~z!5uau2$ug8~g„g~z/a!…!g8„g~z/a!…u2F~z/a!

1ug8~g„g~z/a!…!u2F„g~z/a!…1F~g„g~z/a!…!%.

~13!

As mentioned above, the universal functiong(z) has been
approximated as a finite expansion over even powers of

FIG. 1. Plot of the eigenfunction responsible for the effect
noise at the period tripling accumulation point obtained numerica
~see text!.
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FIG. 2. The Lyapunov charts for the model map~17! on the complex parameter plane for zero intensity of noise«50 ~a! and in presence
of noise,«50.001 ~b!. The GSK critical point is located exactly at the center of the diagrams. The tones vary from dark to light
Lyapunov exponent varies from large negative to zero; white corresponds to zero, and black to positive values. Divergence is s
uniform coloring with one special gray tone. A small box containing the critical point is magnified and rotated in accordanc
multiplication byd1'4.600228.9812i . The interval for coded values of Lyapunov exponents is reduced with factor 1/3 for each succ
picture in the row to visualize self-similarity of the pictures in absence of noise.

FIG. 3. Lyapunov charts for the stochastic model~17! on the complex parameter plane in presence of noise for«5«150.003, «
5«1 /g, and«5«1 /g2 ~a!, and for«5«250.009,«5«2 /g, and«5«2 /g2 ~b!. The GSK critical point is located exactly at the center
the diagrams. The coordinate rescaling rule and the gray coding are the same as in Fig. 2. The interval for coded values of
exponents is reduced with factor 1/3 for each successive picture in the row to visualize the similarity of the pictures.
036216-3
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argument@15#. Using these data, we have numerically co
structed the functional transformation of the right-hand p
of Eq. ~13!. The unknown functionF(z) is represented by a
set of real values at nodes of a grid in a square$21.2
,Rez,Imz,1.2%, and by an interpolation scheme betwe
them. Taking random initial conditions forF(z), we perform
the functional transformation and normalize the result
function asF0(z)5F(z)/F(0). This operation is repeate
many times, until the form of the function stabilizes~see Fig.
1!. The value ofF(0) ~before the normalization! converges
to the eigenvalueV5149.002 082 8.

In the linear approximation with respect to the noise a
plitude, the stochastic map for the evolution over 3k steps at
the GSK critical point asymptotically may be written as

zn13k5g~zn!1«gkw~zn!jn , ~14!

where

w~z!5AF0~z!, g5AV512.206 640 93. ~15!

FIG. 4. Similarity in structure of the noisy attractors for th
model map~17! on the plane of complex variablez. The parameter
l values are 0.122 561 16710.744 861 767i ~a!, 0.031 552 975
10.790 783 175i ~b!, 0.023 369 41610.784 679 678i ~c!, and the
noise intensities are«50.015, 0.015/g, and 0.015/g2, respectively,
where g512.2066. The right-hand pictures represent the defi
parts of the attractors drawn with rescaling by complex factorsa
522.0959 . . .1 i2.3582 . . . ~b! anda2 ~c!.
03621
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If we consider a small shift ofl from the GSK critical
point, then an additional perturbation term appears in
equation:

zn13k5g~zn!1C1d1
kh1~zn!1«gkw~zn!jn . ~16!

Here,h1(z) represents an eigenvector of the linearized R
equation without noise associated with the eigenvalued1
54.600 225 5828.981 224 73i . The coefficientC1 depends
on the parameter and vanishes at the critical point GSK.
close neighborhood of the critical point it is sufficient
consider only the leading terms of the expansion and
C1}(l2lc).

Now, we are ready to formulate the basic scaling prope
that follows from Eq.~16!.

If we triple the number of time steps~i.e., changek to k
11), decrease the parameter differenceDl5l2lc by di-
vision by d1, and decrease noise amplitude« by factor g,
then the form of the stochastic map~16! remains unchanged
Thus, with the new parameters, (Dl/d1 ,«/g) the noisy sys-
tem will demonstrate the same behavior as that with the
ones, but with a tripled time scale.

III. MODEL MAP AND NUMERICAL EXPERIMENTS

To verify the RG results in numerical experiments, we u
a model map with additive noise,

zn115l2zn
21«jn . ~17!

Real and imaginary parts for each term of the complex r
dom sequencejn , are obtained as sums ofN510 zero-mean
computer generated pseudorandom numbers, which are p
erly normalized to havêujn

2u&51. ~In accordance with the
central limit theorem,jn is very close to a Gaussian rando
variable.!

Figure 2 illustrates fine structure of the Mandelbrot s
near the period-tripling accumulation point as it looks~a! in
the absence and~b! in the presence of noise. The picture
represent the Lyapunov charts for the complex parametel.
~See Refs.@18,23# for previous applications of this method!
At each pixel of the two-dimensional plot we estimate t
Lyapunov exponent

L5 lim
N→`

N21(
n51

N

lnu2znu ~18!

from numerical computations, and mark the pixel with a gr
tone. The tones vary from dark to light as the Lyapun
exponent varies from large negative to zero: white cor
sponds to zero, and black to positive Lyapunov expone
Divergence is shown by uniform coloring with one spec
gray tone. The GSK critical point is located exactly at t
center of the diagram. A small box containing the critic
point is magnified and rotated in accordance with multip
cation byd1'4.600228.9812i . As the parameter rescalin
is associated with a tripling of characteristic time scale,
accompany it with reducing an interval for gray coding
Lyapunov exponents by factor 1/3 for each successive

e

6-4
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EFFECT OF NOISE ON THE DYNAMICS OF A . . . PHYSICAL REVIEW E69, 036216 ~2004!
ture in the row. On the panel~a! such diagrams are shown fo
zero amplitude of noise,«50, and on panel~b! for noise of
fixed intensity,«50.001. Observe the similarity of the leave
of the ‘‘Mandelbrot cactus’’ in the first case, and the progre
sive destruction of the structure at subsequent levels of
resolution in the second.

In Fig. 3 we show analogous pictures with noise, but n
its intensity is reduced for each subsequent picture in a
by the factorg512.2066 . . . found from the RG analysis
Panels~a! and~b! correspond to different initial levels of th
noise, respectively,«50.003 and 0.009. Now, the similarit
of the pictures is restored. With noise reduction byg, just
one more level of smaller leaves of the Mandelbrot cac
reveals itself near the GSK critical point.

Figure 4 illustrates similarity in structure of the noisy a
tractors for the model map~17! in the plane of the complex
variable z. Diagrams~b! and ~c! relate to noise intensitie
reduced by the factorsg andg2 in comparison with the plot
~a!. The parameterl values correspond to the superstab
cycles of period 3, 9, and 27, respectively. The right-ha
panels show the indicated parts of the pictures drawn w
rescaling by complex factorsa @diagram~b!# and a2 @dia-
gram~c!#. Observe the similarity of the right-hand diagram

IV. CONCLUSION

In this paper we have studied the effect of noise on
complex analytic map at the period-tripling accumulati
point. It was shown that the effect of noise obeys regulari
of a similar nature to those reported for period doubling
real one-dimensional maps. Namely, to observe one m
level of the bifurcation cascade it is needed to decrease
intensity of noise by some definite scaling factor. For t
case of the period tripling this factor has been found to
e

et

.

a

y,
-

v.
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12.2066 . . . , as follows from the renormalization group
analysis. Also we have demonstrated the scaling prope
associated with the new constant in numerical experimen

The undertaken analysis is essential for discussion of
possibility of observation of phenomena of complex analy
dynamics in a real physical experiment, e.g., in mechanic
electronics@18,21,22#. The presence of noise in such system
is inevitable, and our result gives a quantitative foundat
for estimates of an observable number of levels in the bif
cation cascade.

Our work puts the phenomena in complex analytic m
into the same context in respect to the effect of noise,
other situations of universal scaling behavior: period do
bling @3,4#, intermittency@9#, quasiperiodicity@10#, bicriti-
cality @11#, scaling phenomena in Hamiltonian system
@12,13#. So, this specific field is enriched with one mo
nontrivial example of the scaling behavior linked with pre
ence of noise.

The approach developed in this paper may be adapte
study the effect of noise on other bifurcation cascades
complex analytic maps~‘‘ n-tupling’’ with n54,5, . . .
@13,16#!. Moreover, it gives a basis from which to pose mo
general questions on the effect of noise on the Mandelb
like sets in physical systems possessing such kind of obj
in their parameter space.
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