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Stability of negative ionization fronts: Regularization by electric screening?

Manuel Arrays"? and Ute Ebeft®
YUniversidad Rey Juan Carlos, Departmento dsi€a, Tulipa s/n, 28933, Mstoles, Madrid, Spain
2Centrum voor Wiskunde en Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
3Department of Physics, Eindhoven University of Technology, The Netherlands
(Received 24 July 2003; published 31 March 2004

We recently have proposed that a reduced interfacial model for streamer propagation is able to explain
spontaneous branching. Such models require regularization. In the present paper we investigate how transversal
Fourier modes of a planar ionization front are regularized by the electric screening length. For a fixed value of
the electric field ahead of the front we calculate the dispersion relation numerically. These results guide the
derivation of analytical asymptotes for arbitrary fields: for small wave-vectdhe growth rates(k) grows
linearly with k, for largek, it saturates at some positive plateau value. We give a physical interpretation of these
results.
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[. INTRODUCTION a mode of front propagation where the spatially half-infinite
leading edge of a front dominates its behavior. However, for
Streamers generically appear in electric breakdown whemanishing electron diffusion and propagation into a nonion-
a sufficiently high voltage is suddenly applied to a mediumized state, the leading edge of the ionization front is com-
with low or vanishing conductivity. They consist of extend- pletely eliminated and replaced by a discontinuous jump of
ing fingers of ionized matter and are ubiquitous in nature andhe electron density to some finite value. This corresponds to
technology. Frequently they are observed to brap].  the fact that neglecting electron diffusion changes the equa-
There is a traditional qualitative concept for streamer branchtion of electron motion from parabolic to hyperbolic type.
ing based on rare photoionization evef®s-7]. However, PuttingD=0 in the present paper and considering propaga-
our recent workl8—10] has shown that even the simplest, tion into a nonionized state, we get rid of leading edge and
fully deterministic streamer model without photoionization Pulling, but in turn we have to analyze discontinuous fronts.
can exhibit branching_ In particu|ar, we have propo@@h Here we antiCipate the result of the paper: if the field far
that a streamer approaching the Lozansky-Firsov limit ofthead of a planar negative ionization frontHs, then a
ideal conductivity[11] can branch spontaneously due to atransversal Fourier perturbation with wave veckogrows
Laplacian interfacial instability[12]. This mechanism is With rate
quite different from the one proposed previously. It requires
less microscopic physical interaction mechanisms, but is s(k)=
based on internal structure of the propagating streamer head
with a thin space charge layer. Analytical branching predic-
tions from the simplest type of interfacial approximation canwhere «(E) is the effective impact ionization coefficient
be found in Ref[10]. within a local fieldE. The parametew sets the size of the
However, the simple interfacial model investigated in Ref.inverse electric screening length. The behavior for ldege
[10] requires regularization to prevent the formation ofa correction to the interfacial model treated in Rdf0]; in
cusps. The nature of this regularization has to be derivethat model we would havs(k) = |E..| k for all k. The asymp-
from the underlying gas discharge physics; it recently hagotes(1) have been quoted already in Ref8,15], however,
been a subject of debaf#3,14]. We argue that one regular- without derivation. Their derivation based on numerical re-
ization mechanism is generically inherent in any dischargesults and asymptotic analysis together with a discussion of
model, namely the thickness of the electric screening layethe underlying physical mechanisms are the content of the
This is the subject of the present paper: we study how th@resent paper.
electric screening layer present in the partial differential In detail, the paper is organized as follows. In Sec. Il we
equations of the electric discharge influences the stability ofummarize the minimal streamer model in the limit of van-
an ionization front, correcting the simple interfacial modelishing diffusion and recall multiplicity, selection, and ana-
proposed in Refd8,11,12,1%and solved in Ref.10]. To be lytical form of uniformly translating planar front solutions;
precise, we derive the dispersion relation for transversal Fouwe then derive the asymptotic behavior at the position of the
rier modes of a planar ionization front. We treat a negativeshock and far behind the shock, and we discuss two degen-
front in a model as in8,9,12,15-1F, but with vanishing eracies of the problem. In Sec. Il we set up the framework
electron diffusion and under the assumption that the statef the linear perturbation analysis for transversal Fourier
ahead of the ionization front is completely nonionized. Wemodes, first the equation of motion and then the boundary
have shown previously that the analysis of the full modelconditions and the solution strategy. In Sec. IV we present
[8,9,12,15-1Fis mathematically nonstandard and challeng-numerical results for the dispersion relation for fieid,
ing due to the “pulled” naturg¢ 18,19 of the front. Pullingis = —1, and we derive the asymptotély analytically for ar-

|E..|k for k<a(E.)/2,

|E..|a(E)/2 for k>a(E..)/2, @
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bitrary E... The smallk limit is related to one of the degen- in the nonionized region a— has to be constant in time
eracies of the unperturbed problem, for the lakgemit we ~ and as a consequence of E4) also constant in space,

also present a physical interpretation. Section V contains E.7 7zt

conclusions and outlook. E= (8)
0, Z— —®,
II. MINIMAL STREAMER MODEL AND PLANAR ~ . . . . .
FRONT SOLUTIONS wherez is the unit vector inz direction. For the boundary
condition atz— —o we assumed that the ionized region be-
A. The minimal model hind the front extends to-cc. This implies that a fixed

We investigate the minimal streamer model, i.e., a “fluid@mount of chargef (p—o)dz=E.. is traveling within the
approximation” with local field-dependent impact ionization front according to Eqsi4) and(8), and no currents flow far

reaction in a nonattaching gas such as argon or nitrogefehind the front in the ionized and electrically screened re-

[8,9,12,15-17,2D For physical parameters and dimensional9!0"- . _
analysis, we refer to our previous discussions in Refs. For the further analysis, a coordinate systexgy(§=z

[8,9,12,15. When electron diffusion is neglected¢=0),  —vt) moving with velocityv in thez direction is used. Then
the dimensionless model has the form Egs.(2)—(4) read
do—V-(cE)=0f(E), ) do—vdio—(p—0) o+(Vo)-(V¢)—af(|[Veh|)=0,
g p=0f(E), (3) dp—vdgp—of(|Ve¢])=0,
V.-E=p—0, E=-V¢, (4) p—o+V2¢4p=0, 9

whereo is the electron density; is the ion density, an& is ~ where we expressed all quantities by electron densitypn
the electric field. Here the electron current is assumed to bdensityp, and electric potentiag.

oE and the ion current is neglected. Electron-ion pairs are A front propagating uniformly with velocity is a solu-
assumed to be generated with raté(E)=oc|E| a(|E|), tion of Egs.(8) and(9), whereo, p, and ¢ depend org only.
whereolE| is the absolute value of electron current are) ~ With V¢=d,¢2=—E Z such a front solves

the effective impact ionization cross section within a fiEld

Hencef(E) is (v+E)dzo+(p—o)o+af(|E[)=0, (10)
f(E)=|E| a(|E]). (5 vdgp+of(|E))=0, (12)

Egrr] numerical calculations, we use the Townsend approxima- p—o—dE=0. (12)
o(|E])=eUE. 6) For use in the later sections, we now briefly recall the ana-

lytical solutions[12] of these equations. Subtract E4.1)
from Eq. (10), use Eqg.(12) to get a complete differential,
integrate and use Eq(12) again to get—vd.E+oE
=const. The integration constant is fixed by the condition

For analytical calculations, an arbitrary functiaQE) can be
chosen where we only assume that

f(E)=f(|[E|)) and a(0)=0. (77 E—0 até—— from Eq.(8), and we find
The last identity entails that(0)=0=f'(0). For certain —vd:E+0oE=0. (13
results we also need tha{|E|) does not decrease whéi)|
increases, hence that=0. The front equations then reduce to two ordinary differential

Note that the electrons are the only mobile species and thequations foro andE,
source of additional ionization, while ion denspyand elec-
tric potential¢ or field E follow the dynamics of the electron d{(v+E)o]=—0of(E), f(E)=|E|a(E),
density o, and couple back onto it.
v n|E|=0, (14
B. Uniformly translating ionization fronts:

Analytical solutions and multiplicity which can be solved analytically as

We now recall essential properties of uniformly translat- v
ing planar front solutions of Eq$2)—(5) and (7). First of all, olE]=-—FrlE], (15
a constant mode of propagation requires a planar density v
distribution that we assume to vary only in thalirection: EIf £l
(o,p)=[0(z,t),p(z,1)], the particle densities for large posi- p E]:f wﬂdX:J' - a(x)dx, (16)
tive z are assumed to vanish. The field far ahead of the front g X IE|
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£ _J'E(s‘z) v+x dx an
25 ey plx] x

This gives uso and p as functions ofg, and the space de-
pendenceE=E(¢) implicitly as £é=¢(E) in the last equa-
tion. It follows immediately from Eq(17) that E(¢) is a
monotonic function, and hence that the space chgrge
—o=J;E has the same sign everywhere. According to Eq.
(16), p(¢) is a monotonic function, too.

Up to now, the front velocityy as a function of the 0
asymptotic fielde., is not yet fixed. Indeed for any nonvan-
ishing far fieldE.,, there is a continuous family of uniformly Y _q 5|
translating front solutions parametrized by{12,21], since
the front propagates into an unstable s{a@. In particular, -1t
for E..>0 there is a dynamically stable solution for any ve- _30 20 210 0 10 20
locity v=0, and forE..<O0, there is a dynamically stable £
solution for anyv =|E..|. These bounds on can be derived
directly from Egs.(15)—(17) with boundary condition(8) FIG. 1. Electron density (solid line in first plo}, ion densityp
and the condition that the densitiesandp are non-negative (dotted line in first plot, and electric fieldE (second plot for a
for all & _negative ionization shock fro_nt m_oving with=|E..| in the comov-

This continuous family of solutions parametrized dys N9 frameg=z—vt. The far field isE..=—1.
associated with an exponentially decaying electron density o ) ) )
profile in the leading edgfl2,18: an electron profile that vanishing elect_ror_l diffusion. We ywll restrict the ar_lalysls of
asymptotically for large: decays likeo (&) xe ¢ with A\=0, fronts and their linear perturbations to propagation into a
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will propagate with velocity completely nonionized stat@0) in the remainder of the pa-
per.
f(E.) . ] In contrast to all other uniformly translating fronts with
v="E.+ in a field E.. <O0. (18  y>—E., the selected front witn = — E.. exhibits a discon-

tinuity of the electron density at some poigitwhich corre-
It will “pull” an ionization front along with the same sponds tw+E(£)— 0. We choose the coordinates such that
speed.[For E..>0, the same equation applies for all  the discontinuity is located &@=0. The situation is shown in

=f(E.)/E., hence forn=0.] Fig. 1 for a uniformly translating front with velocity =1
within a far fieldE,.,= —1.
C. Dynamical selection of the shock front solution A discontinuity of o means thaw;o is singular at this
and its particular properties position. On the other hand, the expressitip— o+ f(E))

. . . . __in Eq. (10 is finite or vanishing, therefore the produat (

In practice, not all these' unlforr_nly propagating solutlo'ns+E)a§U in Eq. (10) may not diverge either. Hence ¢ E)

are observed as asymptotic SOIUt'On.S. of the full _dynamlcahas to vanish at the position of the discontinuity, and there-
problem Eqs(2)—(4), but only a specific one that is called fore E=E..= —v at the position of the front. Furthermore
the selected front. For a negative ionization front, it propaj,ca ¢ +E)—0 for £]0, while 3z is bounded fog<0 [as '
gates with the velocity12] we will derive explicitly below in Eq.(28)] we have

v=|E,| for E.<O. (19
lim[v+E(§)]d0=0. (21
The selection takes place through the initial conditiptf: §—=0
If the electron density strictly vanishes beyond a certain
point &y at timet=0 The fact thato(£) in Fig. 1 increases monotonically up to
the position of the shock is generic and can be seen as fol-
o=0=p for {>§, att=0, (200 lows: according to Eq(10), and since ¢+ E)=0 ando=0,

i o , the sign ofd.o is identical to the sign ofr—p— f(E). With
then this stays true for all later times the comoving frame  he help of the exact solutiond5) and (16), with the defi-
& Only initial conditions that decay exponentially lieg ¢ pition of f(E) in Eq. (5) and with identifyingv = |E..|, we
for &, approach a solution with the larger velocity8).  fing
Such an exponential decay is a very specific initial condition,

furthermore, such a leading edge will generically be cut off v a(x)— a(E)
for very small densities by the physical breakdown of the o—p—f(E)=|E| dx=0. (22
continuum approximation. Therefore the physically relevant g v—|E|

solution is the one with velocity19) and absent leading edge
as in Eg.(20. The complete absence of the leading edgeSo o(&) increases monotonically for growirggup to =0 as
(A=) is generic for the hyperbolic equatid®), i.e., for long asa(E) increases monotonically witk. This is the

036214-3



M. ARRAYAS AND U. EBERT

case for Townsend form Ed6) or more generally for any

a(E) that is monotonically increasing with.

D. Asymptotics near the shock front

We now derive explicit expressions fof¢) etc. near the

discontinuity. On approaching the position of the ionization

shock front from below70, the quantity

e=v+E=|E.|—|E| (23

is a small parameter. The ion density Efjf) at this point
can be expanded as

2

P[E]=plv—€]=a(v)e—a'(v)=+0(e3). (24

As the electron density is related to the ion density through

o[ E]=p[E]Jv/e according to Eq(15), it is

U[E]=va(v)—va’(v)§+O(62). (25)
Equation(17) evaluated folE(¢,=0)=E.. <0 reads
_[roumxdx_ ey dy
s K e ooy @

where in the last expression, the parametéR3) is intro-
duced. Insertion of Eq24) now yields an explicit relation
betweené andE,

— —L_’_O 2
g_va(v) (6)

or e=—va(v)é+0(&). (27

Insertion of this approximately linear relation betweeand
& into Egs. (24) and (25 together with the notatiori(v)
=va(v) results in

f !
o(@=00- )| to)+ 2 e o)), (29
p(O=0— O~ T()a)E+ 0], (29)
—E(§) =0+ 0—HIf)E+O()],  (30)

where we used = |E..| and the step functiod(x), defined
asf(x)=1 or 0 forx>0 or x<0, respectively.

E. Asymptotics far behind the shock front

Far behind the front in the ionized regidfh-—o, the
fields approach lim., _..(o,p,E)=(c",p ,E™) with
0'7=p7=JA a(x)dx, E~=0. (31

Expanding about this point ag(&)=0 +o4(§) etc., we
derive in linear approximation

PHYSICAL REVIEW E69, 036214 (2004

01 )\ _)\ 0 01
dgl pr |=[{0 0 O p1 |, (32
- El 1 - 1 O - El
with \ given by
o v dx
A= —=f a(X)—. (33
1% 0 v

Two eigenvalues of the matrix in E€B2) vanish. The third
eigenvalue of the matrix is the positive parametert pro-
duces the eigendirection

o o A
p (&= o |+A[ 0|er+0(e*) for é— —oo,

—-E 0 1
(34)

which describes the asymptotic solution deep in the ionized
region. The free parametér>0 accounts for translation in-
variance.

F. Two degeneracies of the shock front

We have fixed the initial conditiori20) and hence we
have selected the front speeer — E,.. Therefore the degen-
eracy of solutions related to the profile of the leading edge is
removed. Still there are two degeneracies remaining in the
problem. The first one is the well-known mode of infinitesi-
mal translation that corresponds to the arbitrary position of
the front. The second one is specific for the present problem
and will play a central role in the derivation of the analytical
asymptote for smak in Sec. IV. It is the mode of infinitesi-
mal change of far fieldE.. . It corresponds to the arbitrari-
ness of the fielcE,, in the nonionized region witlr=0=p
ahead of the front and to the corresponding arbitrariness of
the asymptotic ionization leveF= o~ =p behind the front
where the field vanishes. To set the stage for the later analy-
sis, the necessary properties of the modes are given.

An infinitesimal translation of the front in space generates
the linear mode & ,p;,E;) =(d;0,d¢p,d:E),

(v+E)dio=(20—p—F)o—op+(of’' —d,0)E;,
vdgpr=—fo+of'Ey,

’9§Et:Pt_ Ot, (35
with the definition f'=4,f(|x|), so that f(E+E)=f
—f'E+--- for E<0. With the notationy,=—E;, the
equations can be written in matrix form as

Ot Ot
dg| Pt | = No(é)-| Pt |, (36)
I I
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20—f-p -0 dio—of In general, there can be a degeneracy of the dispersion
B = v +E vV +E relations(k) for various profiles of the leading edge just as it
is found also for the uniformly translating solutions in Sec.

No(€)= —-f 0 —of’ 1. (37 1IIB. The constraint of a nonionized initial conditiof20)
v v again will remove this degeneracy and f&k). In the
1 1 0 present section, we will derive the equations and the bound-

ary conditions for the Fourier modes. In Sec. IV, we will
Note that the matrisN,y(£) reduces to the matrix in E¢32) ~ Solve them numerically and derive the analytical asymp-
for é&——o, since (Ir—f—p)/(v+E)—o Ju=\, etc. The totes(1).
limiting value of the vector ¢ ,p;, ;) for £&—0 is according

to Egs.(28)—(30), A. Equation of motion
o foa'l? The linear perturbation theory could be set up within the
&0 coordinate systemx(é=z—wot) that moves with the unper-
pr|—| —fa | (38  turbed constant velocity =|E..|. This would, of course,
i f lead to a set of equations that are linear in the perturbation.

However, when the perturbation of a planar front grows,

The second mode is generated by an infinitesimal changghe position of the actual discontinuity of the electron density
of the far field E,, and consecutively by an infinitesimal will deviate from the position of the discontinuity of the

change of the velocity. The discontinuity is taken at the unperturbed front. Within the coordinate syster§), this

position £=0. In linear order, this variation creates a mode would lead to finite deviations within infinitesimal spatial
[Eotd] [E.] intervals instead of infinitgsjmal deviations V\_/ithin finite in-

o =) — o™ (€) etc (39) tervals. This conceptual difficulty can be avoided by formu-

€ v lating the perturbation theory within the coordinate system of

the position of the perturbed shock front, {) with

oe(£)=lim

e—0

which solves the inhomogeneous equation s st
ng_Ak, §:Z_Ut, Ak:56| X S, (42)

oE oE deal(v+E) ] . . )
wherez is the rest frame¢ is the frame moving with the
del PE | =No(§)-| PE | — dgplv . (400 planar front, and’=0 marks the line of electron discontinu-
e Ve 0 ity of the actual front. Therefore we write the perturbation as
The inhomogeneity vanishes &t>—. Hence like the front a(X,{,t)=oo({) +o1(HAKX),
solution itself and like the infinitesimal translation mode,
also this mode has the eigendirectionso( 0 ,0) p(X,4,1)= po( )+ p1(OAK(X,1),
+A(N,0,1)M+ - .. asymptotically foré——o. The value
of 5o~ is given bydo~ = do/d|E..| = a(E.,) according to P(X,{i1) = do(£) + h1(HAK(X,D), (43

Eq. (31). For £10, the limiting values of the fields are whereay, po, ant g, are the electron density, ion density,

o £/ and electric potential of the planar ionization shock front
€10 from the preceding section. But these planar solutions here

pe|—| O, (41) are shifted to the position of the perturbed frgnTherefore

e 1 they do not move with their proper velocity= —d,¢, but

o o _ with a slightly different velocity— d,{=v—sAy. The price
which is the derivative of Eq928)—(30) with respect tov  to pay is that the equations of the perturbation analysis be-

=|E.| at ¢=0. come inhomogeneous, actually in a similar way as in Ref.
[18]. The gain is that the derivation of the boundary condi-
[ll. SETUP OF LINEAR STABILITY ANALYSIS tions at the shock front becomes more comprehensible, and

that later in Sec. V B the identification of the analytical so-

_ We now can proceed to study the stability of a planan o for smallk with the mode ¢¢ ,pe , &) from the pre-
ionization shock front. The front propagates into #hdirec- ceding section becomes quite obvious.

tion. The perturbqtions have an e.\rb.itra.ry dependence. on the Substitution of the expression43) into (9) gives to lead-
transversal coordinates and y. Within linear perturbation . ;

: X ing order in the small parametéy
theory, they can be decomposed into Fourier modes. There-

fore we need the grov_vth ragfk) of an arbitrary t_ransversal (v+EQ)d o1=(s+209—po—f)a1— 00 p1

Fourier mode to predict the evolution of an arbitrary pertur-

bation. Because of isotropy within the transversalyj +(9go0—0of")d;b1—50, 00,
plane, we can restrict the analysis to Fourier modes irxthe

direction, so we study linear perturbatiopsest" ', (The v dp1=—For+spi—oaof’ d;p1—59po,
notation anticipates the exponential temporal growth of such 2 o 5

modes) (9=k%)p1= 01— p1+k°Eq. (44)
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Heref=f(Eo), f'=d)gf(|El)|g, andEq=—d,¢o({) is the

PHYSICAL REVIEW E69, 036214 (2004

First of all, d,0 is singular at{=0, sinced;oxd 0(—{)

electric field of the uniformly translating front. As explained = — (). Therefore Eq(49) requires that the coefficient of
above, these equations are not completely linear ;o must vanish

(01,p1,¢1), but contain the inhomogeneities o, Sd.po,
andk?E,,.

To elucidate the structure of EGi4), we drop all indices
0 and introduce the matrix notation

o o sdgol(v+E)
5 Pl p1| sdzplv 45
2 oy —EK? ’
b1 b1 0
st20—f-p —o Jo—of’ 0
v+E v+E v+E
—f S —of’ 0
Ms,k(g)— v v v
1 -1 0 k?
0 0 1 0
(46)
Here we introduced the auxiliary field
Y=0dsh1, (47)

which corresponds to the perturbatiBn of the electric field,
but with reversed sign.

B. Boundary conditions at the discontinuity

#1(0)=s, (51)
which gives the first boundary condition. Second, applying
now Eq.(48) yields the second boundary condition

[s+f(v)]o1(0) = f(v)p1(0) = f(v)f'(v)¥1(0)=0.
(52)

Due to the discontinuity, actually two boundary conditions
(52) and (52) result from Eqs(48) and(49).

In a second step the continuity of the other fields across
{=0 is evaluated. The continuity gf we get from Eq.(11)
and the fact that- and |E| are bounded for alf. It immedi-
ately yields the third boundary condition

p1(0)=0,

just like for the unperturbed equation. Finally, for the bound-
ary conditions on field and potential, it is helpful that there is
an exact solution for the nonionized region &t0 for a
boundary with the harmonic forrt%2). Since ahead of the
front there are no particles=0=p, there are also no space
charges, and for the potential, one has to sal¢eé=0 with
the limit E= —V¢—E..l=—v { as {—». The general so-
lution for >0 is

(53

¢:U§+ Sc e—k§ eikx+st

=vl+8(v+ce K)e st o(s?), (54)

Having obtained the perturbation equations, we are now'ith the yet undetermined integration constantHere we
in the position to derive the boundary conditions. First weCN0se the gauge(£=0)=0 for the unperturbed electric

consider the boundary conditions &:0 where we make
explicit use of the initial conditior{20). The boundary con-

potential.
Now ¢ always is continuous, arel=—V ¢ is continuous,

ditions arise from the boundedness of the electron density tB€cause the charge densjipy-ol<x in Eq. (4) everywhere.

the left of the shock front ai10, and from the continuity of

all other fields across the positi@i+=0 of the shock front.

As discussed in Sec. II D, for the uniformly propagating

shock front, the quantityy(+ E)d.o vanishes ag10, since

(v+E) vanishes and,o is bounded. Since this should hold
both for the full solution as well as for the unperturbed so-

lution, it also holds for the perturbation

lim[v+E({)]d,0,=0. (48
{10
Furthermore
[v+E({)]d;o1=0 for {=0. (49

This identity is trivial for{>0, but nontrivial for{=0. When
the explicit expression®8)—(30) are inserted into Eq44),
we find

(v+E)do1=[s+f(v)]or—f(v)p1—f(v)f' (V)¢

+(¢1—98)d,0+0(0). (50)

The continuity of¢ at (=0 implies
$1(0)=v+c, (59

the continuity of d,¢ yields the same condition, and the
continuity of 9,¢ implies

#1(0)=—ck.

The five boundary condition®1)—(53) and(55)—(56) deter-
mine the value of the integration constant

(56)

c=—% (57)

in Eqg. (54) and the values of the four fields &t0,

o1 f'(v)sf(v)/(s+f(v))
py | 10 0

= : 58
" < (58)
b1 (vk—s)/k
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Hence the explicit solution in the nonionized region0 is
o(X,{>0,t)=0=p(x,{>0,1),

k—s ek
B(X,.L>0, ) =pi+ o

" eikX+st+O(52).

(59

C. Solution strategy and limits for {——e

We aim to calculate the dispersion relatise s(k) for
fixed k. For anys andk, the solution at>0 is given explic-
ity by Eq. (59). This solution determines the value of the
fields (58) at (=0 as a unique function of andk. The ex-
pression58) is the initial condition for the integration of Eq.
(45) towards{— —o. The requirement that the solution ap-
proaches a physical limit a@t— —o has to determins as a
function of k. According to a counting argument, this is in-
deed the case, as will be explained now.

First, the limiting values of the fields @& —« are com-
paratively easy: the total charge vanishes, hanceand p;
approach the same limiting valug — o; andp;—o; , and
the electric field vanishes, hengg—0 and ¢;—0. Here
the limiting values at{——« again were denoted by the
upper index™ as in Eq.(34).
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FIG. 2. Dispersion curve foE,=—1, hencev=1. The big
figure shows the numerical data with error bars and the two analyti-
cal asymptotes for small and large(lines). The inset shows the
same datdsquaresin double-logarithmic scale with the same two
analytical asymptotes.

IV. CALCULATION OF THE DISPERSION RELATION

Second, the eigendirections are determined by linearizing Having set the stage, the dispersion relation is now first

the equations of motiort45) about this asymptotics. In a

evaluated numerically foE,.= —1. Besides an expected re-

calculation similar to the one from Sec. Il F, one derives forsult for smallk, this investigation has delivered a previously

§_>_OO!

o1 ol N2—K? 1

p {——x O._ 1

o~ Y a el +a,et2t

21 0 A1 0

b1 0 1 0
0 0
0 0

+agek ‘ +a,e k¢ ol (60)

1 1

with the free parametersa,,a,,as,a4, ando; and the ei-
genvalues

“+s
v

o

N =

S
:)\"')\2, )\2:; (61)
and\ from Eg. (33).

For positives and k, all eigenvalues\;, \,, andk are
positive except for the fourth one k. Hence the first three

eigendirections approach the appropriate limit for —oo,

unexpected result for large Based on these numerical re-
sults for fixedE.. , we were able to derive analytical asymp-
totes for small or largé and for arbitraryE.,<0. We also
understood the physical mechanism driving this asymptotic
behavior. The section contains the derivation of our numeri-
cal results and of our analytical asymptotes and their physi-
cal interpretation.

A. Numerical results for arbitrary kand E,,=—1

The problem is to integrate the equations for the transver-
sal perturbatiorni45) for fixed k and guessedfrom the initial
condition (58) at {=0 towards decreasing In general, the
boundary conditior(60) with Eq. (62) will not be met, scs
has to be iterated unti,~0. When the condition is met, the
solution does not diverge for large negatigieotherwise it
does. When passing through the appropristes(k), the
sign of the divergence changes. This is how the data points in
Fig. 2 with their error bars were derived.

For the numerical integration, theDEPACK collection of
subroutines for solving initial value problems was u$2#|
to solve the seven ordinary differential equations for the un-
perturbed probleni10)—(12) and the perturbatiofd5)—(46)
simultaneously. The unperturbed solution has to be calcu-

while the fourth one does not. Therefore a solution can onljated since it enters the matri46).

be constructed for

a4:O. (62)
This condition determines the dispersion relati®n s(k)
when a solution of Eq945) and (58) is integrated towards

{— .

However, the numerics cannot directly be applied to the
problem in the form(45)—(46) because the matrix contains
apparently diverging terms proportional td d# E({)] for
{—0. Therefore the behavior of the solution f6+0 has to
be evaluated in a similar way as in Sec. Il E. With the ansatz

o1({)=01(07)+Cy{+0(LP),
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p1(0)=p2(07)+Co{+0(&),
$1(£)=¢(07) +C3L+0(L?),
$1(£)=$1(07)+Cyl+0(£?), (63)

whereo(07), etc. are given by Eq58), the parameter€;
become

ff’
CZZ—Sa(m+f+f ),

fl

—k+

C3:S y C4:Sa

s+f

_ Cot(atva'l2)Cats(vaf’+va’f'/2)
e 2+s/f '

(64)

In the numerical procedure, the explicit solutiai28)—(30)
and (63)—(64) are used untik=10"°, then the differential
equations are evaluated.
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o1\ o T SHl(s+1)

p1 | — 0 +0(k?) (68)
A S
and
vk—s
$1(0)=— —. (69)

Now compare the modeot,pg,¢g) of infinitesimal
change of far fieldE,, from Egs.(39)—(41) to the present
perturbation mode in the limit of small After identifying

(01,p1,¢1)=(SOE,Spe,SPE), (70)
the equations and boundary conditions for the modes are
identical in leading order of the small paramegefherefore
the two modes have to become identical in the limit
<f(v)<v. Integration over/g yields for the electric poten-
tial ¢e(0)— ¢pe(—x)=/° dxye(x). This expression has
to be of order unity since all other quantities are of order
unity. But this implies that,(0) due to Eq(70) has to be of

The numerical results for the dispersion relation in a fieldthe order ofs. Now compare the result fap,(0) in Eq.(69)

E.=—1, i.e., for a shock front with velocity=1 are

which appears to depend in a singular way likk dh the

shown in Fig. 2. It can be seen that the dispersion curve fosmall parametek. But for smallk ands the expressionyk
small k grows linearly, but then turns over and finally for —s)/k indeed can be of the order sf namely if

largek saturates at a constant value.

B. Asymptotics for small k and arbitrary E <0

We first derive the asymptotic behavior for smiafior an
arbitrary far fieldg,.<0.

When the equations of motigqd5) and(46) are evaluated
up to first order ink, ¢, decouples, and we get

o, o sdgol(v+E)
gl P1|=Ng| pr|—| Sdeplv +0(k?),
20 1 0
(65
where
st20—f-p -0 Jo—of’
v+E v+E v+E
Ns(0)= —f s Zof 1 iowm
v v v
1 -1 0
(66)

is the truncated matriMg ({) (46). The matrixNg for s
=0 reduces to the matriX, from Eq.(37); this fact will be

instrumental below. The fourth decoupled equation reads

drpr1=11. (67)

The boundary conditio58) reduces to

s=vk+0O(k®) for k<a(v). (72
This fixes the dispersion relatios=s(k) in the limit of
small k. The asymptotg71) is included as a solid line in

Fig. 2.

C. Physical interpretation of the small k asymptote

This result has an immediate physical interpretation: for
smallk, the wavelength of the transversal perturbatiar 2
is the largest length scale of the problem. It is much larger
than the thickness of the screening charge layer that is shown
in Fig. 1. Therefore on the scalekl/the charged front layer
is very thin and has the character of a surface charge rather
than of a volume charge. This surface is equipotential ac-
cording to Eq.(59) in linear approximation in the perturba-
tion &, since

d(x,{=01)= 5U—kse”<x+st+ O(8%)=0(8k)+0(8?),
(72)

if we insert the dispersion relatis= vk from Eq.(71). The
corresponding electric field ahead of the interface is

E(x,{=0",t)=—(v+ vk €"sH7+0(8%) (73

in the same approximation. The smkllimit of the ioniza-
tion front therefore is equivalent to an equipotential interface
at position{=0, i.e., at a position

z(x,t)=vt+ se/xrst (74)

036214-8



STABILITY OF NEGATIVE IONIZATION FRONTS: . .. PHYSICAL REVIEW E 69, 036214 (2004

in the rest framez (42). Its velocity in thez direction is E. Physical interpretation of the large k asymptote

therefore Also for this result a physical interpretation can be given.

First note that thez component of the electric field on the

U(X,t):atZ(X,t):U+5Uk eikX+St, (75) discontinuity iS
wheres=vk was inserted. Comparison of Eq33) and(75) E,(x,{=0t)=—[v+5s dx sty 0(6%)] (81)
shows that the interface moves precisely with the electron
drift velocity v = —E within the local fieldE. with s=f(v)/2. This is easily determined from either Eq.

We conclude that a linear perturbation of the ionization(59) or Eq. (43). Reasoning as in Eq$73)—(75), we again
front whose wavelength is much larger than all other lengthsging that the shock line of the electron density moves with
has the same evolution as an equipotential interfége the |ocal electron drift velocity—as it should.
=const) whose velocity is the local electron drift velocity Second, one needs to understand why the electric field on
v=V¢. It exhibits the familiar Laplacian interfacial instabil- the shock line takes the particular for@®1). In the frameé
ity seck. =z—vt of the unperturbed fron42), the electric field at the

discontinuity is
D. Asymptotics for large k and arbitrary E <O

For large wave vectdk, the numerical results for the dis- _ _ f(_v) 2
persion relatiors(k) in a field E,,= —1 approach a positive Elxe=A0=—v+ 2 A+OAY ), ®2
saturation value. We will now argue that the saturation value
is given bys(k) = f(E.)/2. This asymptotic value, which for where its position deviates with(x,t)=&e'***st from the
|[E.|=1 equals e 1/2=0.184, is included as a solid planar front.
asymptotic line in Fig. 2. In linear perturbation theory, the amplitudeof the per-
When the electron and ion densities remain bounded, thgirbation has to be much smaller than its wave lengtik2
equations with the most rapid variation in Eg$5)—(46) for  Since this wave length 2 k now is much smaller than the
k>1 are given by width of the front, the linear perturbatiah explores only a
2 5 0 small region around the position of the shock front. In this
I =k 1+ k" E(L) +O(k"), region, the electric field of the unperturbed front is according
to Eq. (30) approximated by

dep1= 1. (76)
—[v+f(v)é+0O(£2)] for ¢<0.
On the short length scaleriZk, the unperturbed electric field E,o(é)= Lo+ )+ 0(e7)] ¢ (83
for <0 can be approximated as in E§O) by -v for £>0
E(0)=—v—f(v){+0(L?), (77 Therefore the electric fieldB2) is just the average over the
behavior Eq(83) for £>0 and£<0. This spatial averaging is
so the equation fotp, becomes enforced by the harmonic analysis of linear perturbation
theory that will suppress different growth rates of positive or
(9§¢>1= K[ p1—v—F(v){]. (78  negative half-waves of the perturbation.
The boundary conditior58) fixes ¢,(0)=(vk—s)/k and F. A conjecture for the large k asymptote

#1(0)=d,¢1=s. The unique solution of Eq78) with these

initial conditions is We therefore conjecture: if the electric field of an unper-

turbed front is

d(O)=v+f(v){— f;}() eki 4 f(vgzse—kf (79 —(v+ag+0(&?) for ¢€<0,

BolO=) _(ybe+0(e2) for £50

(84

for <0. Now the modee~*¢ would increase rapidly towards . ) o .
decreasing, create diverging electric fields in the ionized N€ar the position of the discontinuity=0, then a linear per-
region and could not be balanced by any other terms in thirbation of this discontinuity with largé& will grow with
equations. Therefore it has to be absent. The demand that fate

coefficient] f (v) — 2s]/2k vanishes, fixes the dispersion rela-

i atb
tion S= —. (85)
2
k —f(v)+o(l for ks 80
stk)= 2 k or a(v), (80) If true, this behavior would have a stabilizing effect on large

k perturbations with growing curvature of the fronts, since
which convincingly fits the numerical results for larggn  the electric field decays in the nonionized region ahead of a
Fig. 2. curved front, thereford<0.
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V. CONCLUSIONS AND OUTLOOK

We have studied thén)stability of planar negative ion-

ization fronts against linear perturbations. Such perturbation
can be decomposed into transversal Fourier modes. We have

determined the dispersion relaties=s(k) shown in Fig. 2
numerically for a fixed fielde.,,= — 1 far ahead of the front,
and we have derived the analytical asymptotes

|E..|k for k<a(|E.|)/2,

ST IEL|a(E))2 for k= a(|E.|)2

(86)

for arbitrary E,,<0. Since we have studied the minimal

model, there is only one inherent length scale, namely thg
thickness of the charged layer as shown in Fig. 1. This thick

ness is approximated byd(E..). The wavelength ¥/ of the

Fourier perturbation therefore has to be compared with thi

single intrinsic length scale &(E..) of the problem.

A specific property of our calculation is the expansion

about a discontinuity of the electron density. Therefore w:
work in a coordinate systeni=z—uvt— 5e'**"St (42) that
precisely follows the position of the discontinuity, and we
explicitly distinguish in all calculations the nonionized re-
gion ¢>0 from the ionized regiod<<0. For the nonionized
region{>0, there is an exact analytical soluti@0) for any

s andk which determines the values of the fields{at0 as
given in Eq.(58). Equation(58) serves as an initial condition
for the integration toward<{<0. The approach towards
{—— according to Eqgs.60) and (62) determines the
growth rates as a function ok. In general, this calculation
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growth rate corresponds to the evolution of the discontinuity
in the unperturbed electric field averaged across the discon-
tinuity. Both limits therefore have a simple physical interpre-
Bation.

The aim of the work was to identify a regularization for
the interfacial model as suggested in R¢&11] and treated

in Ref.[10]. Indeed, we have found that a Fourier mode for
largek in a far fieldE..,= —v does not continue to increase
with rates=uvk, but saturates at a valise=f(v)/2. Still this

is a positive value, and whether this suffices to regularize the
moving boundary problem, remains an open question.
Besides this one, future work will have to investigate two
ore questions. First of all, there is the “simple” possibility
extend the model by diffusion. Diffusion is certainly going
to suppress the growth rate of Fourier modes with l&gs

our preliminary numerical work indicates. But there is also a

second more subtle and interesting possibility: the growth
rate of Fourier perturbations with lardecould change for a
curved front, as we have conjectured in Sec. IVF. There we

Shave argued that the saturating growth stef (v)/2 results

from the average over the slopef(v) of the field in the
ionized region and the slope 0 of the field in the nonionized
region. For a curved front, the electric field in the nonionized
region will have a slope of opposite sign that is proportional
to the local curvature. We therefore expect the growth rate of
a perturbation to decrease with growing curvature. These

questions require future investigation.
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