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Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators
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Rotating spiral waves with a central core composed of phase-randomized oscillators can arise in reaction-
diffusion systems if some of the chemical components involved are diffusion-free. This peculiar phenomenon
is demonstrated for a paradigmatic three-component reaction-diffusion model. The origin of this anomalous
spiral dynamics is the effective nonlocality in coupling, whose effect is stronger for weaker coupling. There
exists a critical coupling strength which is estimated from a simple argument. Detailed mathematical and
numerical analyses are carried out in the extreme case of weak coupling for which the phase reduction method
is applicable. Under the assumption that the mean-field pattern keeps rotating steadily as a result of a statistical
cancellation of the incoherence, we derive a functional self-consistency equation to be satisfied by this space-
time dependent quantity. Its solution and the resulting effective frequencies of the individual oscillators are
found to agree excellently with the numerical simulation.
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I. INTRODUCTION be specified. Actually, the exact self-consistent theory devel-
oped here provides a rare example of statistical theories as-
Rotating spiral waves represent a most universal form ofociated with large systems of limit-cycle oscillators when
patterns appearing in reaction-diffusion systems and othespatial degrees of freedom are involved.
dissipative media of oscillatory and excitable nature. Most of The organization of the present paper is the following. In
the recent experimental and theoretical studies on rotatingec. Il, we start with a brief review of some general features
spiral waves in reaction-diffusion systems have focused oef the three-component reaction-diffusion model introduced
their complex behavior such as core meandering in two diearlier, and show how it is reduced to a two-component sys-
mensions(2D) [1,2], manipulation of the pattern using pho- tem of nonlocally coupled oscillators. Then, adopting a spe-
tosensitive Belousov-Zhabotinsky reacti®)4], and the to-  cific model for the local oscillators, we present some results
pology and dynamics of the singular filaments of 3D scrollof our numerical simulation revealing the fact that the spiral
waves[5-7]. A little apart from this mainstream, the possi- core can be coherent or incoherent depending on the cou-
bility of a new type of spiral dynamics caused by a universalpling parameter. We shall also see that the critical coupling
mechanism was proposed recently by the present aujiprs strength associated with the onset of incoherence can be es-
This is characterized by the appearance of a local group dfmated from a simple argument. Sections Ill and IV, each
oscillators near the center of spiral rotation where the oscildevoted to numerical and mathematical analyses, are con-
lators behave individually rather than collectively. A simple cerned with the special situation where the coupling is suffi-
class of three-component reaction-diffusion systems involveiently weak. Then the so-called phase reduction method is
ing two diffusion-free components and an extra diffusiveapplicable, by which a phase oscillator model with nonlocal
component proved to exhibit this type of anomaly. Here thecoupling is derived. What is remarkable is the fact that, as
last component plays the role of a coupling agent allowingopposed to the conventional view, description of the spiral
the otherwise independent local oscillators to communicatélynamics in terms of the phase oscillator model does not
with each other, where the communication takes place norlead to a topological contradiction but can even provide its
locally. The crucial parameter to this peculiar spiral dynam-precise description. Using this nonlocal phase model, we de-
ics is the strength of the nonlocal coupling. If it is suffi- velop a mean-field theory similar to Kuramoto’s 1975 theory
ciently large, the characteristic wavelength of the patternpn the onset of collective synchronization in globally
especially the radius of the spiral core, becomes longer thagoupled oscillators9]. The present mean-field theory is
the coupling radius. Consequently, the coupling becomes efased on the assumption of steady rotation of the mean-field
fectively local, i.e., diffusive, and there is nothing peculiar pattern. Owing to this assumption, we can derive a functional
about the resulting spiral pattern. As the coupling becomeself-consistency equation to be satisfied by the mean field.
weaker, in contrast, its nonlocal nature becomes strongeNumerical solution of this functional equation is confirmed
and finally a small group of phase-randomized oscillatordo agree exceedingly well with the simulation results.
starts to be created near the center of rotation. We find in the
present paper that under certain conditions the phase-
randomized core is stationary in a statistical sense. This al- Il. REACTION-DIFFUSION MODEL
lows us to formulate a statistical theory with which the entire AND ITS REDUCED FORM
system dynamics, collective and individual, can completely ) o . o
A. Effective nonlocality in reaction-diffusion systems
Consider a three-component reaction-diffusion system of
*Electronic address: s_shima@ton.scphys.kyoto-u.ac.jp the following form:
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IX(r,t)=f(X,Y)+K(B—X), (1)  diffusion system has now been reduced to the system of Egs.
(1), (2), and(5), which represents a two-component oscilla-
aY(r,t)=g(X,Y), (2)  tory field with nonlocal coupling.
Suppose that we change paramdtewhich measures, in
79B(r,t)=—B+DV2?B+X. (3) terms of the reduced system, the strength of the nonlocal

coupling. If K is sufficiently large, the characteristic wave-
The system is supposed to extend sufficiently in two dimeniength of the pattern, denoted Iby, will be far longer than
sions. The above model has recently been used as a paradtge coupling radiugas is justified below Then the long-
matic model for the study of various aspects of self-wavelength approximation can be applied to Es), giving

oscillatory fields where the effective nonlocality in coupling K (B —X)=DV?2X, whereD=KD. Thus, the nonlocal cou-
plays a crucial rolg8,10,11. The first two equations with pling practically reduces to a diffusive coupling in this
K =0 represent a local limit-cycle oscillator. Our system maystrong-coupling case. One may check the consistency of the
therefore be interpreted as a continuum limit of a large asahove argument by noticing the fact that the result of this
sembly of oscillators without direct mutual coupling which diffusion-coupling approximation itself tells thi estimated

are suspended in a diffusive chemical with concentraBon f : = -
. : rom Eq. (1) scales likel ,~ D= KD. Thus, sufficientl
The last quantity plays the role of a coupling agent only bylargeK?m(plzesl larger than the coupling radiudD, so tha)t/
p 1

which the local oscillators can mutually communicate. For ur lona-wavelenath assumotion proves to be consistent. In
simplicity, a cross coupling between the local oscillators and’ g 9 P prove :
ny case, our system for strong coupling reduces to a two-

the diffusive field has been introduced in a linear form and® : e - .
only betweenX and B. The coupling termk (B— X) may component r_eactlon-dlffus_lon system, which, however, is the

. ) : : case of our little concern in the present paper.
equivalently be replaced with a more natural fokB if S . . : . .

. . . . . : The situation of our interest is the opposite case in which
f(X,Y) is suitably redefined, but we will work with the first . .
' ) ; K is so small thatl, becomes comparable with or even
form for its mathematical convenience to be seen later. ler than th P i dius dD(yD). Then th
Our system, possibly with various modifications and gen-sma er than the coupling radius dd(yD). en the

eralizations, bears some resemblance to biological populeij-'ﬁus'on'COuIDIIng approximation breaks down, and the sys-

tions of oscillatory and excitable cells such as suspensions 5?0T65?12I%St;gt ?ﬁgzvil I?’o?wneun;ts'g?\ls $2rrjnnseerll (IetsS;;ZL:‘IrC(jaebgf
yeast cells under glycolysis and slime mold amoebae in 3 volutl quatl v

certain phase of their life cycll2—14. One may also note characteristic length scale below the coupling radius. There-

some similarity of the above model to the recently developeéore' oncel, comes to fall within the coupling radius, or

version of the Belousov-Zhabotinsky reaction using Water_equwalently, once spatial variations with wavelengths

in-oil Aerosol OT microemulsiof15—17. Some of the in- smaller than the coupling radius are generated spontaneously,

teresting theoretical aspects of our reaction-diffusion mode’ihen there is no reason why spatial variations of even smaller

have already been reportég, 10,11, wavelengths should not occur. We suspect therefore that the

When the characteristic time scale Bfdenoted byr, is kind of anomaly of our concern might be characterized by a

sufficiently small, this component can be eliminated adiafragmentation of the pattern down to infinitesimal spatial
batically by soIvir,1g the equation scales. This is actually the case, which we show below by

presenting some numerical results on the nonlocally coupled

0=—-B+DV2B+X. (4  system given by Eqsl), (2), and(5) with specific forms for
f andg.
The solution of the above equation is expressed in terms of
the Green’s functiorG(r) in the form B. Case of the FitzHugh-Nagumo oscillators
As a simple model for the local oscillators, let us consider
B(r,t):J G(r—r")X(r",t)d?r". 5) the FitzHugh-Nagumo model given by

iy w3y _
If our system is infinitely extended(r) is radially symmet- f=o {(X=X) =Y}, g=aX+b. )

ric, and for spatial dimension two it is given by a modified
Bessel function of the second kind, denotedikyy with the
characteristic length scatg= D, i.e.,

We fix the parameter values a=1.0, b=0.2, and o
=0.1, so that the system is well in the self-oscillatory re-

gime.
1 " We carried out a numerical analysis on a nonlocally
G(r)= 2K0<—), r=|rl. (6)  coupled field of oscillators described by Eds), (2), (5),
27 l'o and (7). The system is defined over the square domain

e[0L] where B satisfies the free boundary conditions,
Note that the abov&(r) satisfies the normalization condi- namely, the vertical component BfB to the boundaries van-
tion [G(r)d’r=1 and behaves asymptotically &(r) ishes. Thus, the Green’s functi@hdiffers in this case from
~exp(—r/ro)/\rirq for r>r,. We may callB(r,t) the space- the form given by Eq(6) especially near the boundaries. In
time dependentnean fieldoecause this quantity roughly rep- practical numerical simulation, our continuous space was re-
resents a mean value ¥{r’,t) over a circular domain with placed with a square lattice of oscillators NfX N lattice
the radius ofO(\/D) centered ar. Our original reaction- points, a typical value ol being 2048. At each time step,
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(d) space and the state space. The same property seems to hold
in the present case of lardg and this is consistent with the
fact already noted that for sufficiently strong coupling our
system reduces to a two-component reaction-diffusion sys-
tem.

Figures 1d)—1(f) correspond to the case of sm&ll The
overall spiral pattern does not seem qualitatively different
from that for largeK. As is clear from Fig. {(e), however,
closer observation of the core structure reveals a completely
i new feature of the pattern. This is the appearance of a group
-100 ,° X Moo -100 L7 X Py of oscillators near the center of rotation where the oscillators

< (b) * 14 (c) 3 seem to behave individually rather than collectively. The cor-
responding phase portrait, which is presented in Hifj), ho
longer seems to tend to a simply connected object in the
continuum limit. The hole created in the phase portrait gives
a clear indication of the breakdown of the homeomorphism
mentioned above. It may alternatively be said that a pair of
local oscillators situated infinitely close to each other are not
always so close in the state space, which says nothing but a
loss of spatial continuity of the pattern. At the same time, the
phase singularity, which is generally considered as a central
characteristic shared by spiral patterns, seems to be lost, i.e.,
the pattern no longer seems to involve a special local oscil-
lator for which the phase cannot be defined.

The origin of the spiral core anomaly of this kind may
qualitatively be understood in the following way. Our pri-
mary question is why the core region is the most fragile part
of the pattern with respect to the collapse of spatial continu-
ity. In order to see why, it is convenient to look upon E@Ss.
and(2) as describing a single oscillator driven by a forcing
field B whose spatial variation is expected to be relatively
smooth from its definition given by Ed4). Wherever the
oscillation amplitude oB is sufficiently large, the oscillators

FIG. 1. Spiral patterns exhibited by nonlocally coupled Will individually synchronize with the motion oB, so that a
FitzHugh-Nagumo oscillators for two representative cases of stronPCal group of such oscillators will mutually synchronize
coupling[(@), (b), and (c), K=10.0] and weak coupling(d), (e), also. The corresponding local pattern will then look continu-
and (f), K=5.0]. Other parameters are fixed as-1.0, b=0.2,  ous and smooth. This is considered to be the case for those
0=0.1, andD =1. (a) and(d): Overall patterns of the componext  oscillators far apart from the central core, because the oscil-
displayed in gray scaldéb) and(e): Their structures near the core. lation amplitude ofB there should be relatively large. In
(c) and (f): Corresponding phase portraits in tkeY plane, where contrast, close to the central part of the pattern, where the
the nullclinesf(X,Y)=0 andg(X,Y)=0 are also indicated. oscillation amplitude o8 should be relatively small, syn-
chronization becomes more difficult. Loss of mutual syn-

was calculated from Eq(5), or equivalently Eq.(4), by ~ chrony implies the appearance of a group of phase-
means of a spatial Fourier transform. The fourth-ordef@ndomized oscillators.

Runge-Kutta scheme was adopted for the time integration of
Egs.(1) and(2).

Some numerical results for two representative valuds of
are illustrated in Fig. 1. Figuregd—1(c) correspond to the From the numerical data presented in Fig. 1, one may
case of largeK. They respectively show an overall spiral expect the existence of a critical value of the coupling
pattern, its blowup near the center of rotation, and the phasstrength, denoted a¥., associated with the onset of
portrait of the pattern in th&-Y plane. The last quantity is incoherence. We now try to estimat€, for our system
given by a set oN? points in theX-Y plane each represent- of nonlocally coupled FitzHugh-Nagumo oscillators given
ing the state of a local oscillator at a given time. In usualby Egs. (1), (2), (5), and (7), where the spatial extension
reaction-diffusion systems such as those modeled with twois supposed to be infinite. Consider first the situation where
component reaction-diffusion equations, the phase portrathe coupling is large enough for the system to sustain a
associated with a spiral pattern is considered to form a simrigidly rotating spiral wave with sufficient spatial smooth-
ply connected object involving a phase singularity. This is aness. The corresponding solution is represented\{y,t)
natural consequence of the homeomorphism which is sup=[X(r,t),Y4(r,t)]. Let the center of rotation be a0. By
posed to characterize the mapping between the physicalssumption, the oscillator right at the center is motionless,

100

C. Estimation of K
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i.e., A((0,t)=(X.,Y.), whereX, andY, are time indepen- (a) (b)
dent. Our question is at which value &f this fixed point
becomes unstable and the oscillator there starts to oscillate
To consider this problem, it is convenient to work with the
aforementioned mean-field picture by which we look upon
the local oscillators as being subject to a common space-tim¢ V
dependent field. The mean-field pattern should also rotate
rigidly aroundr=0, so that the central oscillator is subject to

a constant forcing(0). The system of Eqgs(l) and (2)
describing this particular oscillator form an autonomous two- o,
dimensional dynamical system, so that o&(@®) is known -100
the value of the fixed pointX;,Y.) and its stability will (©) Y -1.2 X 12
easily be found. The value &(0) can actually be estimated e |
from Eq.(5) by developingX(r,t) into a Taylor series about S
r=0, which is allowed owing to the assumed smoothness of
the pattern. It is clear that, as a result of the isotropy of the X
coupling functionG, there is no contribution t@(0) from

the first-order expansion terms. If the contribution from the
second-order terms is negligible, i.e., if the nonlinear varia-
tion of X within the coupling range about=0 is negligible, o b oS
then we may simply puB(0) = X. . With this approximation,

it is clear from Eqgs(1) and(2) that the fixed pointX.,Y.)

is identical with the intersection of the nullclinds=g=0, FIG. 2. Spiral patterns exhibited by nonlocally coupled
i.e., the unstable fixed point of the local oscillators. Its lineariZHugh-Nagumo oscillators witK =2.0, presented in a similar
stability is also easy to analyze. The result is that the critica]"aner t Fig. 1. For this value df, the amplitude degrees of
coupling strength is given b.=(1— 3X§)/a below which freedom become almost irrelevant.

the fixed point K.,Y.) becomes Hopf unstable. Applying
the values ofy, b, ando used in our numerical simulations,
we obtainK.=8.8. This value oK, is consistent with our
direct numerical simulation, although its precise numerical
determination is yet unavailable.

sideC as well as onC. Most conveniently, it is defined in

such a way that the free motion of the oscillator satisfies

|d¢/dt=w regardless of initial conditions. This requires that

¢ as a scalar fieldp(A) satisfies the identity grad - F(A)

= w. The wholeX-Y plane is then filled with equiphase lines

which are called isochrons, one of which is chosen to corre-

spond to the zero phase. Corresponding to eactalue, a

pointAq(¢) onC is determined uniquely, which says nothing
In order to look into the nature and origin of our anoma-but the fact that an isochron addntersect at a single point.

lous spiral dynamics in further detail, we now consider the When the nonlocal coupling is introduced, the equation

situation where the coupling is much weaker tian Figure  for each local oscillator is modified as

2 shows some results from our numerical simulation carried

out for K=2.0, presented in a similar manner to Fig. 1. AA(r,t)=F(A)+p(r,t), (8)

While there seems nothing unusual about the overall spiral

pattern, the corresponding phase portrait forms a ring with ahere

relatively thin periphery, which is totally unlike a simply

connected object. We may alternatively say that the oscillator p(r,t)=[px(r,t),0],

amplitude everywhere takes almost a full value. This is ex-

actly the situation where the so-called phase description is

applicable. In fact, as we see later in this section, a simple px(r,t):Kf G(r—r")[X(r",t)—X(r,t)]d?r".

phase oscillator model with nonlocal coupling can develop a

spiral pattern with phase-randomized core similar to the ) ) _ .

above. Correspondingly, the equation for the phase is modified as
We now present a brief review of the phase reduction

method[18] in the form appropriate for the present purposes. dyp=gradh ¢-[F(A)+p]=w+grad ¢-p. 9)

Each of our local oscillators without coupling is described

by a two-dimensional dynamical systemiA/dt=F(A), If the perturbationp is sufficiently weak, which we assume

whereA=(X,Y) andF=(f,g). Let its stable time-periodic now, the oscillator will keep staying ofi in good approxi-

solution with frequency w be given by Ay(wt) mation. Then gragde in Eq. (9) may safely be evaluated on

=[Xpo(wt),Yo(wt)], which is a Zr-periodic function ofwt. C, or

The corresponding limit-cycle orbit is represented By

Phaseg associated with this oscillator must be defined out- gradh ¢=[Zx(#).Zy(P)],

Ill. SPIRAL DYNAMICS IN NONLOCALLY COUPLED
PHASE OSCILLATORS
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(1) FIG. 4. Spiral patterrfleft) and its core structur&ight) exhib-

ited by nonlocally coupled phase oscillators governed by(Ed),
FIG. 3. Phase-coupling functiol(¢) vs ¢ for coupled \wherea=0.3.

FitzHugh-Nagumo oscillators. This quantity can be used for the

study of nonlocally coupled phase oscillators given by @). with the simplest in-phase-type coupling function, iB(¢)

=—sin(¢+a) (|o|<m/2). Thus, the phase equation takes the

where form

Zx(P) =[x P(A) I a-ny(4) »
dp(rt)=w-— Kf G(r—r")sin ¢(r,t)— (1’ 1)+ ald?r’

andZy(¢) is defined similarly. At the same timpy may be

approximated with (11)
. , 5, for which an in-depth mathematical analysis is possible as
szK G(r_r )[XO(QS(r ,t))—xo(¢(r,t))]d r. we see below.
Before proceeding to the analysis of Edl), we remark
Thus, the phase equation becomes that the above phase equation is also a correct reduced form

of a nonlocal version of the complex Ginzburg-Landau equa-

) tion [19], the latter itself being a reduced form of our three-
‘9t¢(r't):“’+KZX(¢(r't))j G(r=r’) component reaction-diffusion model close to the Hopf bifur-
cation and comparably close to the limit of vanishing
X[ Xo((r', 1)) = Xo((r,t))]1d?r . coupling[11]. This fact gives a further support to our view
) ) that the application of Eq11) to our problem is reasonable.
Since the small effect of the perturbation o can be We are still far from a full understanding of the solution to
time-averaged over one cycle of oscillatifit8], the phase the universal equatioill), and our concern below is its
equation finally takes the form spiral wave solution in two dimensions. Although the equa-
tion involves four parameters, K, ry, ande«, the only rel-
at¢(r,t)=w+Kf G(r—r")T((r,t)— (r',1))d?r’, evant parameter ia. The reason is the following. First,,
on whichG(r) dependgsee Eq.6)], may be chosen to be

10 the length unit, so that we may pug=1. Similarly, the
coupling strengthK may be fixed to 1 by suitably choosing
the time unit. The natural frequeneycan be eliminated by

1 (2= working with a suitable comoving frame of reference, i.e.,
[(p—¢')= _J Zy(N+ ) via the transformatiop— ¢+ wt. In the following analysis,
2mJo however, the irrelevant parameteris retained as a nonzero
constant, while we choose=0.3 andr,=K=1.
Numerical simulation of Eq(11) was carried out in a
two-dimensional system. The numerical scheme adopted is
cally if the forms off and g are given explicitly. For the the same as that explained in the preceding section. As ex-

present case of FitzHugh-Nagumo oscillators, numericaII)PeCted’ we see _from Fig. 4 the appearance of rotating spiral
obtainedI'(4) is displayed in Fig. 3. waves with a disordered group of oscillators near the core

The phase-coupling functidi(g), which is a 2r-periodic very similar to what we have seen in the preceding section.

function of ¢, generally involves various harmonics, and thisd fl_:or the afg“f'.””f;vts devr(]alopeg below, it is convenient to
is also true of the curve given in Fig. 3. We still expect that efine a mean fieltV(r,t) throug

the spiral dynamics of our concern does not depend so
heavily on the specific form df(¢). Therefore, in order for
further mathematical analysis to be practicable, we will work

where

X[Xo(N+ ") —Xo(A+ ) ]dN.

By using the above formuld;(¢) may be computed numeri-

W(r,t)=J G(r—r")exdi¢(r' t)]d?r'. (12)
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The modulusk and the phas@ of this complex quantity are (@) 1
defined by

W(r,t)=R(r,t)exdi®(r,t)].

Since the definition(12) of the mean field involves a
weighted spatial average over infinitely many local oscilla-
tors, this quantity is expected to be smooth in space even if
these oscillators are behaving incoherently. This property of
W is also clear from the differential form of E@L2), i.e.,

R(x)

0=—W+ V2W+expi o). (13
The above equation implies a strong similarity \6fto B (b)
governed by Eq4). If the mean-field pattern rotates steadily
with frequency(), thenR is time independent and the rela- -
tive mean-field phas®, defined by 8
O(r,t)=Qt+0(r,t) =
g

is also time independent.
In terms ofR(r,t) and®(r,t), Eq.(11) may be expressed
in the form of a one-oscillator dynamics

-4

. 032 -1 0 i 2
p(r)=w—R(r0si ¢(r,t) + a=0O(r,1)], © [ ' ; ' '
or if we introduce a relative phase variahlr,t) through
0.2
B(r,0)=Qt+y(r,1), = § 3
~ e
I3 e
we have o1 o 9
S(r,t) = w—Q—R(r, s $(r,t) + a— Og(r,1)]. ° °
(14) . o
The definition of the mean field given by E{.2) becomes |

-2 -1

= o

R(r,t)exdi®q(r,t =fG r—r")exdiy(r',t)]d?r".
(rOexdio(rb)] ( Jexdiy(r,u] FIG. 5. Radial profiles of various quantities corresponding to the
(15 spiral core of Fig. 4(a) Instantaneous radial profile of the mean-

. . . field modulusR. (b) Instantaneous radial profile of the phasgesf
Note that the set of Eq¢14) and(15) is still equivalent to the local oscillatorgcrosses and that of the mean-field pha&®e

the original phase equatidil). (open circles (c) Radial profile of the mean frequenay (defined
We now proceed to somenatomyof the anomalous core py 4 |ong-time average of,$) of the local oscillators.

structure taking advantage of the numerically observed fact

that the mean-field pattern has a well-defined center of rota- . ) ,
tion (chosen to be=0) at whichw=0. One may thus imag- not shown explicitly that the profiles of the mean-field phase
ine a linear cross sectiof of the pattern passing through and that of the phases of the coherent oscillators are almost

r=0and study the radial profiles of various quantities emergStationary except for a drift with constant velocit
ing alongS. Some results obtained in this way of analysis are Our interpretation of the results given by Figga)5and
summarized in Figs.(®)—-5(c). 5(b) is that the entire system now splits into two subdomains
An instantaneous radial profile of the mean-field modulussuch that the oscillators in one domain synchronize com-
Ris presented in Fig.(®). As expected, it has a vanishing pletely with the periodic mean-field forcing, while those in
value at the origin, and its temporal fluctuation is also foundthe other domain fail in synchronization. Further evidence
negligibly small. supporting this interpretation is provided in Figcbwhere
Figure b) shows an instantaneous distribution of thethe distribution of the mean frequenay(defined by a long-
phases¢ of the local oscillators lying orS (indicated by time average ob,¢) of the local oscillators lying orS is
crosses The same panel also includes the pattern of theshown. This frequency pattern is clearly composed of two
mean-field phasé& on the same cross sectidindicated parts; namely, in the outer domain the oscillators have an
by open circles It is clear that there exists a well-defined identical frequency, while in the inner domain the frequen-
critical radius separating the domains of coherent and incoeies are distributed, the latter implying phase randomization
herent oscillators from each other. We also confirnfleat  consistent with the scattered dots appearing in Fig).5
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In the following section, we develop a theory for deter- w—

mining the mean-field pattern together with its rotation fre- ¢o(f)=5in_1(w) +0¢(r) —a.

quency, and also the motion of the individual oscillators

driven by this mean field, in a self-consistent manner.
The actual frequencies of the oscillators in this group are
of course identical wit). We substitute the above solution

IV. THEORY for ¢(r) into Eq.(15), and restrict the integral to the domain

The basic equations to work with are E¢s4) and(15.  Where the inequalityo — Q[ <R(r) is satisfied. In this way,
Our theory starts with the assumption that the mean-fieldhe contribution to the local mean-field value coming from
pattern is steadily rotating, and therefore we drop ttie-  the coherent group of oscillators is obtained. _
pendence fronR and O, in these equations. A complete  The second case corresponds to the group of incoherent
solution to this system of equations can be obtained in th@scillators, for which Eq(14) admits a drifting solution. The
following two steps. We first solve Eq14) for eachy as a gctual frequencies(r) are now distributed and they are eas-
function of R and®,, which is easy to do. Note th& and  ily calculated as
0, are the quantities yet to be determined. Second, the entire
set of these solutions is substituted into Eth). The right-

2 -1 -1
hand side of Eq(15) thus becomes a functional of the mean- w=0+2m7 J' (i—f) dw}
field. In this way, the mean field value at each spatial point is 0
expressed in terms of a functional of the mean field itself. R
Solution of this functional self-consistency equation exists =Q+(0—0Q) /1—<—> .
only for a special value of the rotation frequen@yof the 0=

mean-field pattern. We will therefore be working with a non-

linear eigenvalue problem. The final solution of this func-The contribution to the local mean-field value from this in-
tional equation could be found only numerically. coherent group of oscillators can be found in the following
The above self-consistent way of finding a solution to away. Sincey is drifting, the factor exp¢) in the integrand in
many-oscillator problem resembles strongly Kuramoto’sgq_ (15) does not have a definite value. We are thus led to the
1975 theory of synchronization phase transition in a larggdea that this factor should rather be replaced with its statis-
population of globally coupled oscillators with distributed tica| average which can be calculated by using the invariant
natural frequenciel]. The main difference is that the oscil- measure, i.e., the probability densitfy) associated with
lators are now coupled nonlocally rather than globally, andne drift motion. Noting that the probability density for the
consequently the mean field is generally space dependegkcillator's phase to take on valyemust be inversely pro-

leading to a functional self-consistency equation rather thaportional to the drift velocity given by the right-hand side of
a simple transcendental equation. Although the natural fregq (14), we have

guencies of the oscillators are identical in the present case,

the actual frequencies can be distributed due to the existence )

of a spatial gradient of the mean field. A simpler, one- P()=Clo—Q—Rsin(y+a—0y] ", (16)
dimensional version of the present type of theory based on a

similar model of nonlocally coupled phase oscillators was,here C is the normalization constant given bg
report(_ad earlief20]. o =27 Yo—0)VI—R¥(w—0)2.
An important feature common to all such theories is that Putting together the above-stated two types of contribu-

the one-oscillator equation which involves the mean-fieldy, o'+ the mean field, we finally obtain a functional self-
amplitude as a parameter admits either a stationary solutio

or a drifting solution. Which one to hold depends on the@onsstency equation in the form
modulus of the mean field. The crucial point to the theory is
how to deal with the drifting solutions, because a simple . , , , ,
substitution of this type of soltions into the defintion of the  R(Ne?o)= f G(r—=r")h[R(r"),O0(r"), 0= Q]d?r,
mean field apparently contradicts the assumed stationarity of a7
the mean fieldin a suitable comoving frame of reference
The seeming contradiction here can be resolved by using theh
invariant measure associated with the drift motion. We willV"¢"®
now show explicitly the steps leading to an exact solution to

the problem. h(R,05,0—Q)
As stated above, there are two possible cases regarding _
the solution of Eq(14). They are(case ) |o—Q|<R and exdigo(R,0p,0—Q)] (lo—Q|<R)
(case l) |w—Q|>R. Correspondingly, the oscillators are di- = w )
vided into two groups. In the first case, which corresponds to f_wp(lﬂ’R'@o’w_Q)eXp(' pdy (Jo—Q>R),

the group of coherent oscillators, EG.4) admits a pair of
stable and unstable fixed points. The stable one, denoted by
Wo(r), is given by or more explicitly
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Numerical solution of Eq(17) can be found iteratively.
We did this in a finite domain defined byy €[ 0,40] with G ( 4
appropriate for the free boundary conditions imposed on Eq.
(13). Since a solution of Eq17) would only be available for
a special value of)—w which is still to be determined, its
trial value was adjusted in each iteration step in such a way
that a suitably defined distance between the two mean-field
patterns, one produced at the current step and the other at the
next step, may be minimized. In this way, by starting with a
suitable initial mean-field pattern similar to the one obtained
from numerical simulations, a rapid convergence of the
mean-field pattern and the value Qfwas achieved. 4

In Fig. 6 our theoretical results obtained in this way are 0.3
compared with the data given in Fig. 5, i.e., the results from (©)
direct numerical simulation of Eq11). The agreement is so
excellent that our theory is expected to hold exactly in the 0.2
continuum limit.

) ] i )

o
~

$(x), O(x)

-2 -1 0 1 2

theory —
numerical O

V. SUMMARY AND CONCLUDING REMARKS 0.1

Spontaneous generation of a local group of phase-
randomized oscillators near the center of a rotating spiral 0 Lemmmmm—m—
pattern was confirmed through numerical simulations on “"
nonlocally coupled oscillators. It was argued that smaller ) =] i + 3
value of the coupling strength favors the occurrence of the x
core anomaly. The critical coupling strengih) associated
with the onset of this anomaly was estimated from a simplqiO
arg”me”t- WherK is sufficiently small, by Wh,'Ch the oscil- and solid lines and scattered dots(ip. Numerical data, which are
lation amplitude even near the center O_f rotation takes al_mo%e same as those given in Fig. 5, are indicated with open circles
a full value, a group of incoherent oscillators always exists 4nq crossega) Instantaneous radial profile of the mean-field modu-
Still the overall spiral pattern looks completely normal. s (b) Instantaneous radial profile of the mean-field ph@isand
Guided by this fact observed numerically, we applied theat of the phases of the local oscillators, where the theoretically
phase reduction method for the purpose of gaining a deep@btained scattered dots are the random numbers chosen from the
understanding of the phenomenon. The resulting phase oscirobability distribution given by Eq(16). (c) Radial profile of the
lator model with nonlocal coupling was found to exhibit the mean frequency of the local oscillators.
same type of core anomaly. Under the assumption that the ) )
pattern of a suitably defined mean field is steadily rotating inatrs for smallK, this occurs for largeb, i.e., when the
spite of the existence of incoherence, we derived a functionglyMmetry of the local oscillator dynamics is lowered, al-

self-consistency equation to be satisfied by the mean field. It (?[ugh a perfecft sytrr?mettrjoso, (t)rche v?r:hder Pol Iirp)t:z F
solution successfully reproduced various results obtaine ot necessary for tne steady rotation ot the mean field. or

from our direct numerical simulations carried out on this argerK_(stiII beIovyKC), in contrast, regular dynami.cs of the
phase model mean field and circular shape of the domain of incoherent
Finally, we remark that the present study is confined to aoscnlators seem to persist against relatively strong asymme-

particular domain of parameter values where the mean-fielfy ©f the oscillator dynamics. These results will be reported

dynamics is regular. Our preliminary study suggests that un(_alsewhere.

der different conditions more complex collective dynamics
occurs, which is characterized, e.g., by an elongation of the
domain of incoherent oscillators and its irregular motigh The authors are grateful to H. Nakao for informative dis-
For the case of nonlocally coupled FitzHugh-Nagumo oscil-cussions.

FIG. 6. Comparison between the theory and numerical simula-
n. Theoretical results are indicated with solid linegahand(c),
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