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Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators
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Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan

~Received 16 September 2003; published 31 March 2004!

Rotating spiral waves with a central core composed of phase-randomized oscillators can arise in reaction-
diffusion systems if some of the chemical components involved are diffusion-free. This peculiar phenomenon
is demonstrated for a paradigmatic three-component reaction-diffusion model. The origin of this anomalous
spiral dynamics is the effective nonlocality in coupling, whose effect is stronger for weaker coupling. There
exists a critical coupling strength which is estimated from a simple argument. Detailed mathematical and
numerical analyses are carried out in the extreme case of weak coupling for which the phase reduction method
is applicable. Under the assumption that the mean-field pattern keeps rotating steadily as a result of a statistical
cancellation of the incoherence, we derive a functional self-consistency equation to be satisfied by this space-
time dependent quantity. Its solution and the resulting effective frequencies of the individual oscillators are
found to agree excellently with the numerical simulation.

DOI: 10.1103/PhysRevE.69.036213 PACS number~s!: 05.45.Xt, 82.40.Ck
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I. INTRODUCTION

Rotating spiral waves represent a most universal form
patterns appearing in reaction-diffusion systems and o
dissipative media of oscillatory and excitable nature. Mos
the recent experimental and theoretical studies on rota
spiral waves in reaction-diffusion systems have focused
their complex behavior such as core meandering in two
mensions~2D! @1,2#, manipulation of the pattern using pho
tosensitive Belousov-Zhabotinsky reaction@3,4#, and the to-
pology and dynamics of the singular filaments of 3D scr
waves@5–7#. A little apart from this mainstream, the poss
bility of a new type of spiral dynamics caused by a univer
mechanism was proposed recently by the present authors@8#.
This is characterized by the appearance of a local grou
oscillators near the center of spiral rotation where the os
lators behave individually rather than collectively. A simp
class of three-component reaction-diffusion systems invo
ing two diffusion-free components and an extra diffusi
component proved to exhibit this type of anomaly. Here
last component plays the role of a coupling agent allow
the otherwise independent local oscillators to communic
with each other, where the communication takes place n
locally. The crucial parameter to this peculiar spiral dyna
ics is the strength of the nonlocal coupling. If it is suf
ciently large, the characteristic wavelength of the patte
especially the radius of the spiral core, becomes longer t
the coupling radius. Consequently, the coupling becomes
fectively local, i.e., diffusive, and there is nothing peculi
about the resulting spiral pattern. As the coupling becom
weaker, in contrast, its nonlocal nature becomes stron
and finally a small group of phase-randomized oscillat
starts to be created near the center of rotation. We find in
present paper that under certain conditions the ph
randomized core is stationary in a statistical sense. This
lows us to formulate a statistical theory with which the ent
system dynamics, collective and individual, can complet
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be specified. Actually, the exact self-consistent theory de
oped here provides a rare example of statistical theories
sociated with large systems of limit-cycle oscillators wh
spatial degrees of freedom are involved.

The organization of the present paper is the following.
Sec. II, we start with a brief review of some general featu
of the three-component reaction-diffusion model introduc
earlier, and show how it is reduced to a two-component s
tem of nonlocally coupled oscillators. Then, adopting a s
cific model for the local oscillators, we present some resu
of our numerical simulation revealing the fact that the spi
core can be coherent or incoherent depending on the
pling parameter. We shall also see that the critical coupl
strength associated with the onset of incoherence can be
timated from a simple argument. Sections III and IV, ea
devoted to numerical and mathematical analyses, are
cerned with the special situation where the coupling is su
ciently weak. Then the so-called phase reduction metho
applicable, by which a phase oscillator model with nonlo
coupling is derived. What is remarkable is the fact that,
opposed to the conventional view, description of the sp
dynamics in terms of the phase oscillator model does
lead to a topological contradiction but can even provide
precise description. Using this nonlocal phase model, we
velop a mean-field theory similar to Kuramoto’s 1975 theo
on the onset of collective synchronization in globa
coupled oscillators@9#. The present mean-field theory
based on the assumption of steady rotation of the mean-
pattern. Owing to this assumption, we can derive a functio
self-consistency equation to be satisfied by the mean fi
Numerical solution of this functional equation is confirme
to agree exceedingly well with the simulation results.

II. REACTION-DIFFUSION MODEL
AND ITS REDUCED FORM

A. Effective nonlocality in reaction-diffusion systems

Consider a three-component reaction-diffusion system
the following form:
©2004 The American Physical Society13-1
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] tX~r,t !5 f ~X,Y!1K~B2X!, ~1!

] tY~r,t !5g~X,Y!, ~2!

t] tB~r,t !52B1D¹2B1X. ~3!

The system is supposed to extend sufficiently in two dim
sions. The above model has recently been used as a par
matic model for the study of various aspects of se
oscillatory fields where the effective nonlocality in couplin
plays a crucial role@8,10,11#. The first two equations with
K50 represent a local limit-cycle oscillator. Our system m
therefore be interpreted as a continuum limit of a large
sembly of oscillators without direct mutual coupling whic
are suspended in a diffusive chemical with concentrationB.
The last quantity plays the role of a coupling agent only
which the local oscillators can mutually communicate. F
simplicity, a cross coupling between the local oscillators a
the diffusive field has been introduced in a linear form a
only betweenX and B. The coupling termK(B2X) may
equivalently be replaced with a more natural formKB if
f (X,Y) is suitably redefined, but we will work with the firs
form for its mathematical convenience to be seen later.

Our system, possibly with various modifications and ge
eralizations, bears some resemblance to biological pop
tions of oscillatory and excitable cells such as suspension
yeast cells under glycolysis and slime mold amoebae i
certain phase of their life cycle@12–14#. One may also note
some similarity of the above model to the recently develop
version of the Belousov-Zhabotinsky reaction using wat
in-oil Aerosol OT microemulsion@15–17#. Some of the in-
teresting theoretical aspects of our reaction-diffusion mo
have already been reported@8,10,11#.

When the characteristic time scale ofB, denoted byt, is
sufficiently small, this component can be eliminated ad
batically by solving the equation

052B1D¹2B1X. ~4!

The solution of the above equation is expressed in term
the Green’s functionG(r) in the form

B~r,t !5E G~r2r8!X~r8,t !d2r 8. ~5!

If our system is infinitely extended,G(r) is radially symmet-
ric, and for spatial dimension two it is given by a modifie
Bessel function of the second kind, denoted byK0, with the
characteristic length scaler 05AD, i.e.,

G~r !5
1

2pr 0
2

K0S r

r 0
D , r 5uru. ~6!

Note that the aboveG(r ) satisfies the normalization cond
tion *G(r )d2r 51 and behaves asymptotically asG(r )
;exp(2r/r0)/Ar /r 0 for r @r 0. We may callB(r,t) the space-
time dependentmean fieldbecause this quantity roughly rep
resents a mean value ofX(r8,t) over a circular domain with
the radius ofO(AD) centered atr. Our original reaction-
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diffusion system has now been reduced to the system of E
~1!, ~2!, and~5!, which represents a two-component oscill
tory field with nonlocal coupling.

Suppose that we change parameterK, which measures, in
terms of the reduced system, the strength of the nonlo
coupling. If K is sufficiently large, the characteristic wave
length of the pattern, denoted byl p , will be far longer than
the coupling radius~as is justified below!. Then the long-
wavelength approximation can be applied to Eq.~5!, giving
K(B2X).D̃¹2X, whereD̃5KD. Thus, the nonlocal cou
pling practically reduces to a diffusive coupling in th
strong-coupling case. One may check the consistency of
above argument by noticing the fact that the result of t
diffusion-coupling approximation itself tells thatl p estimated

from Eq. ~1! scales likel p;AD̃5AKD. Thus, sufficiently
largeK implies l p larger than the coupling radiusAD, so that
our long-wavelength assumption proves to be consisten
any case, our system for strong coupling reduces to a t
component reaction-diffusion system, which, however, is
case of our little concern in the present paper.

The situation of our interest is the opposite case in wh
K is so small thatl p becomes comparable with or eve
smaller than the coupling radius ofO(AD). Then the
diffusion-coupling approximation breaks down, and the s
tem comes to behave in an unusual manner. It should
noted here that the evolution equations themselves are fre
characteristic length scale below the coupling radius. The
fore, oncel p comes to fall within the coupling radius, o
equivalently, once spatial variations with wavelengt
smaller than the coupling radius are generated spontaneo
then there is no reason why spatial variations of even sma
wavelengths should not occur. We suspect therefore that
kind of anomaly of our concern might be characterized b
fragmentation of the pattern down to infinitesimal spat
scales. This is actually the case, which we show below
presenting some numerical results on the nonlocally coup
system given by Eqs.~1!, ~2!, and~5! with specific forms for
f andg.

B. Case of the FitzHugh-Nagumo oscillators

As a simple model for the local oscillators, let us consid
the FitzHugh-Nagumo model given by

f 5s21$~X2X3!2Y%, g5aX1b. ~7!

We fix the parameter values asa51.0, b50.2, and s
50.1, so that the system is well in the self-oscillatory r
gime.

We carried out a numerical analysis on a nonloca
coupled field of oscillators described by Eqs.~1!, ~2!, ~5!,
and ~7!. The system is defined over the square domainx,y
P@0,L# where B satisfies the free boundary condition
namely, the vertical component of“B to the boundaries van
ishes. Thus, the Green’s functionG differs in this case from
the form given by Eq.~6! especially near the boundaries.
practical numerical simulation, our continuous space was
placed with a square lattice of oscillators ofN3N lattice
points, a typical value ofN being 2048. At each time step,B
3-2
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ROTATING SPIRAL WAVES WITH PHASE-RANDOMIZED . . . PHYSICAL REVIEW E69, 036213 ~2004!
was calculated from Eq.~5!, or equivalently Eq.~4!, by
means of a spatial Fourier transform. The fourth-ord
Runge-Kutta scheme was adopted for the time integratio
Eqs.~1! and ~2!.

Some numerical results for two representative values oK
are illustrated in Fig. 1. Figures 1~a!–1~c! correspond to the
case of largeK. They respectively show an overall spir
pattern, its blowup near the center of rotation, and the ph
portrait of the pattern in theX-Y plane. The last quantity is
given by a set ofN2 points in theX-Y plane each represen
ing the state of a local oscillator at a given time. In usu
reaction-diffusion systems such as those modeled with t
component reaction-diffusion equations, the phase por
associated with a spiral pattern is considered to form a s
ply connected object involving a phase singularity. This i
natural consequence of the homeomorphism which is s
posed to characterize the mapping between the phys

FIG. 1. Spiral patterns exhibited by nonlocally coupl
FitzHugh-Nagumo oscillators for two representative cases of str
coupling @~a!, ~b!, and ~c!, K510.0] and weak coupling@~d!, ~e!,
and ~f!, K55.0]. Other parameters are fixed asa51.0, b50.2,
s50.1, andD51. ~a! and~d!: Overall patterns of the componentX
displayed in gray scale.~b! and ~e!: Their structures near the core
~c! and ~f!: Corresponding phase portraits in theX-Y plane, where
the nullclinesf (X,Y)50 andg(X,Y)50 are also indicated.
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space and the state space. The same property seems to
in the present case of largeK, and this is consistent with the
fact already noted that for sufficiently strong coupling o
system reduces to a two-component reaction-diffusion s
tem.

Figures 1~d!–1~f! correspond to the case of smallK. The
overall spiral pattern does not seem qualitatively differe
from that for largeK. As is clear from Fig. 1~e!, however,
closer observation of the core structure reveals a comple
new feature of the pattern. This is the appearance of a gr
of oscillators near the center of rotation where the oscillat
seem to behave individually rather than collectively. The c
responding phase portrait, which is presented in Fig. 1~f!, no
longer seems to tend to a simply connected object in
continuum limit. The hole created in the phase portrait giv
a clear indication of the breakdown of the homeomorphi
mentioned above. It may alternatively be said that a pair
local oscillators situated infinitely close to each other are
always so close in the state space, which says nothing b
loss of spatial continuity of the pattern. At the same time,
phase singularity, which is generally considered as a cen
characteristic shared by spiral patterns, seems to be lost,
the pattern no longer seems to involve a special local os
lator for which the phase cannot be defined.

The origin of the spiral core anomaly of this kind ma
qualitatively be understood in the following way. Our pr
mary question is why the core region is the most fragile p
of the pattern with respect to the collapse of spatial conti
ity. In order to see why, it is convenient to look upon Eqs.~1!
and ~2! as describing a single oscillator driven by a forcin
field B whose spatial variation is expected to be relative
smooth from its definition given by Eq.~4!. Wherever the
oscillation amplitude ofB is sufficiently large, the oscillators
will individually synchronize with the motion ofB, so that a
local group of such oscillators will mutually synchroniz
also. The corresponding local pattern will then look contin
ous and smooth. This is considered to be the case for th
oscillators far apart from the central core, because the os
lation amplitude ofB there should be relatively large. I
contrast, close to the central part of the pattern, where
oscillation amplitude ofB should be relatively small, syn
chronization becomes more difficult. Loss of mutual sy
chrony implies the appearance of a group of pha
randomized oscillators.

C. Estimation of Kc

From the numerical data presented in Fig. 1, one m
expect the existence of a critical value of the coupli
strength, denoted asKc , associated with the onset o
incoherence. We now try to estimateKc for our system
of nonlocally coupled FitzHugh-Nagumo oscillators give
by Eqs. ~1!, ~2!, ~5!, and ~7!, where the spatial extensio
is supposed to be infinite. Consider first the situation wh
the coupling is large enough for the system to sustai
rigidly rotating spiral wave with sufficient spatial smooth
ness. The corresponding solution is represented byAs(r,t)
5@Xs(r,t),Ys(r,t)#. Let the center of rotation be atr50. By
assumption, the oscillator right at the center is motionle

g

3-3
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i.e., As(0,t)5(Xc ,Yc), whereXc and Yc are time indepen-
dent. Our question is at which value ofK this fixed point
becomes unstable and the oscillator there starts to oscil
To consider this problem, it is convenient to work with th
aforementioned mean-field picture by which we look up
the local oscillators as being subject to a common space-
dependent fieldB. The mean-field pattern should also rota
rigidly aroundr50, so that the central oscillator is subject
a constant forcingB(0). The system of Eqs.~1! and ~2!
describing this particular oscillator form an autonomous tw
dimensional dynamical system, so that onceB(0) is known
the value of the fixed point (Xc ,Yc) and its stability will
easily be found. The value ofB(0) can actually be estimate
from Eq.~5! by developingXs(r,t) into a Taylor series abou
r50, which is allowed owing to the assumed smoothness
the pattern. It is clear that, as a result of the isotropy of
coupling functionG, there is no contribution toB(0) from
the first-order expansion terms. If the contribution from t
second-order terms is negligible, i.e., if the nonlinear va
tion of Xs within the coupling range aboutr50 is negligible,
then we may simply putB(0)5Xc . With this approximation,
it is clear from Eqs.~1! and~2! that the fixed point (Xc ,Yc)
is identical with the intersection of the nullclinesf 5g50,
i.e., the unstable fixed point of the local oscillators. Its line
stability is also easy to analyze. The result is that the crit
coupling strength is given byKc5(123Xc

2)/s below which
the fixed point (Xc ,Yc) becomes Hopf unstable. Applyin
the values ofa, b, ands used in our numerical simulations
we obtainKc58.8. This value ofKc is consistent with our
direct numerical simulation, although its precise numeri
determination is yet unavailable.

III. SPIRAL DYNAMICS IN NONLOCALLY COUPLED
PHASE OSCILLATORS

In order to look into the nature and origin of our anom
lous spiral dynamics in further detail, we now consider t
situation where the coupling is much weaker thanKc . Figure
2 shows some results from our numerical simulation carr
out for K52.0, presented in a similar manner to Fig.
While there seems nothing unusual about the overall sp
pattern, the corresponding phase portrait forms a ring wi
relatively thin periphery, which is totally unlike a simpl
connected object. We may alternatively say that the oscilla
amplitude everywhere takes almost a full value. This is
actly the situation where the so-called phase descriptio
applicable. In fact, as we see later in this section, a sim
phase oscillator model with nonlocal coupling can develo
spiral pattern with phase-randomized core similar to
above.

We now present a brief review of the phase reduct
method@18# in the form appropriate for the present purpos
Each of our local oscillators without coupling is describ
by a two-dimensional dynamical systemdA/dt5F(A),
whereA5(X,Y) andF5( f ,g). Let its stable time-periodic
solution with frequency v be given by A0(vt)
5@X0(vt),Y0(vt)#, which is a 2p-periodic function ofvt.
The corresponding limit-cycle orbit is represented byC.
Phasef associated with this oscillator must be defined o
03621
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side C as well as onC. Most conveniently, it is defined in
such a way that the free motion of the oscillator satisfi
df/dt5v regardless of initial conditions. This requires th
f as a scalar fieldf~A! satisfies the identity gradAf•F(A)
5v. The wholeX-Y plane is then filled with equiphase line
which are called isochrons, one of which is chosen to co
spond to the zero phase. Corresponding to eachf value, a
point A0(f) onC is determined uniquely, which says nothin
but the fact that an isochron andC intersect at a single point

When the nonlocal coupling is introduced, the equat
for each local oscillator is modified as

] tA~r,t !5F~A!1p~r,t !, ~8!

where

p~r,t !5@pX~r,t !,0#,

pX~r,t !5KE G~r2r8!@X~r8,t !2X~r,t !#d2r 8.

Correspondingly, the equation for the phase is modified

] tf5gradA f•@F~A!1p#5v1gradA f•p. ~9!

If the perturbationp is sufficiently weak, which we assum
now, the oscillator will keep staying onC in good approxi-
mation. Then gradA f in Eq. ~9! may safely be evaluated o
C, or

gradA f.@ZX~f!,ZY~f!#,

FIG. 2. Spiral patterns exhibited by nonlocally couple
FitzHugh-Nagumo oscillators withK52.0, presented in a simila
manner to Fig. 1. For this value ofK, the amplitude degrees o
freedom become almost irrelevant.
3-4
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where

ZX~f!5@]Xf~A!#A5A0(f) ,

andZY(f) is defined similarly. At the same time,pX may be
approximated with

pX.KE G~r2r8!@X0„f~r8,t !…2X0„f~r,t !…#d2r 8.

Thus, the phase equation becomes

] tf~r,t !5v1KZX„f~r,t !…E G~r2r8!

3@X0„f~r8,t !…2X0„f~r,t !…#d2r 8.

Since the small effect of the perturbation on] tf can be
time-averaged over one cycle of oscillation@18#, the phase
equation finally takes the form

] tf~r,t !5v1KE G~r2r8!G„f~r,t !2f~r8,t !…d2r 8,

~10!

where

G~f2f8!5
1

2pE0

2p

ZX~l1f!

3@X0~l1f8!2X0~l1f!#dl.

By using the above formula,G~f! may be computed numeri
cally if the forms of f and g are given explicitly. For the
present case of FitzHugh-Nagumo oscillators, numeric
obtainedG~f! is displayed in Fig. 3.

The phase-coupling functionG~f!, which is a 2p-periodic
function off, generally involves various harmonics, and th
is also true of the curve given in Fig. 3. We still expect th
the spiral dynamics of our concern does not depend
heavily on the specific form ofG~f!. Therefore, in order for
further mathematical analysis to be practicable, we will wo

FIG. 3. Phase-coupling functionG~f! vs f for coupled
FitzHugh-Nagumo oscillators. This quantity can be used for
study of nonlocally coupled phase oscillators given by Eq.~10!.
03621
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with the simplest in-phase-type coupling function, i.e.,G~f!
52sin~f1a! ~uau,p/2!. Thus, the phase equation takes t
form

] tf~r,t !5v2KE G~r2r8!sin@f~r,t !2f~r8,t !1a#d2r 8

~11!

for which an in-depth mathematical analysis is possible
we see below.

Before proceeding to the analysis of Eq.~11!, we remark
that the above phase equation is also a correct reduced
of a nonlocal version of the complex Ginzburg-Landau eq
tion @19#, the latter itself being a reduced form of our thre
component reaction-diffusion model close to the Hopf bifu
cation and comparably close to the limit of vanishin
coupling @11#. This fact gives a further support to our vie
that the application of Eq.~11! to our problem is reasonable

We are still far from a full understanding of the solution
the universal equation~11!, and our concern below is its
spiral wave solution in two dimensions. Although the equ
tion involves four parametersv, K, r 0, anda, the only rel-
evant parameter isa. The reason is the following. First,r 0,
on whichG(r ) depends@see Eq.~6!#, may be chosen to be
the length unit, so that we may putr 051. Similarly, the
coupling strengthK may be fixed to 1 by suitably choosin
the time unit. The natural frequencyv can be eliminated by
working with a suitable comoving frame of reference, i.
via the transformationf→f1vt. In the following analysis,
however, the irrelevant parameterv is retained as a nonzer
constant, while we choosea50.3 andr 05K51.

Numerical simulation of Eq.~11! was carried out in a
two-dimensional system. The numerical scheme adopte
the same as that explained in the preceding section. As
pected, we see from Fig. 4 the appearance of rotating sp
waves with a disordered group of oscillators near the c
very similar to what we have seen in the preceding secti

For the arguments developed below, it is convenient
define a mean fieldW(r,t) through

W~r,t !5E G~r2r8!exp@ if~r8,t !#d2r 8. ~12!

e

FIG. 4. Spiral pattern~left! and its core structure~right! exhib-
ited by nonlocally coupled phase oscillators governed by Eq.~11!,
wherea50.3.
3-5
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The modulusR and the phaseQ of this complex quantity are
defined by

W~r,t !5R~r,t !exp@ iQ~r,t !#.

Since the definition~12! of the mean field involves a
weighted spatial average over infinitely many local oscil
tors, this quantity is expected to be smooth in space eve
these oscillators are behaving incoherently. This property
W is also clear from the differential form of Eq.~12!, i.e.,

052W1¹2W1exp~ if!. ~13!

The above equation implies a strong similarity ofW to B
governed by Eq.~4!. If the mean-field pattern rotates stead
with frequencyV, thenR is time independent and the rela
tive mean-field phaseQ0 defined by

Q~r,t !5Vt1Q0~r,t !

is also time independent.
In terms ofR(r,t) andQ(r,t), Eq. ~11! may be expressed

in the form of a one-oscillator dynamics

] tf~r,t !5v2R~r,t !sin@f~r,t !1a2Q~r,t !#,

or if we introduce a relative phase variablec(r,t) through

f~r,t !5Vt1c~r,t !,

we have

] tc~r,t !5v2V2R~r,t !sin@c~r,t !1a2Q0~r,t !#.
~14!

The definition of the mean field given by Eq.~12! becomes

R~r,t !exp@ iQ0~r,t !#5E G~r2r8!exp@ ic~r8,t !#d2r 8.

~15!

Note that the set of Eqs.~14! and ~15! is still equivalent to
the original phase equation~11!.

We now proceed to someanatomyof the anomalous core
structure taking advantage of the numerically observed
that the mean-field pattern has a well-defined center of r
tion ~chosen to ber50! at whichW50. One may thus imag
ine a linear cross sectionS of the pattern passing throug
r50 and study the radial profiles of various quantities eme
ing alongS. Some results obtained in this way of analysis a
summarized in Figs. 5~a!–5~c!.

An instantaneous radial profile of the mean-field modu
R is presented in Fig. 5~a!. As expected, it has a vanishin
value at the origin, and its temporal fluctuation is also fou
negligibly small.

Figure 5~b! shows an instantaneous distribution of t
phasesf of the local oscillators lying onS ~indicated by
crosses!. The same panel also includes the pattern of
mean-field phaseQ on the same cross section~indicated
by open circles!. It is clear that there exists a well-define
critical radius separating the domains of coherent and in
herent oscillators from each other. We also confirmed~but
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not shown explicitly! that the profiles of the mean-field phas
and that of the phases of the coherent oscillators are alm
stationary except for a drift with constant velocityV.

Our interpretation of the results given by Figs. 5~a! and
5~b! is that the entire system now splits into two subdoma
such that the oscillators in one domain synchronize co
pletely with the periodic mean-field forcing, while those
the other domain fail in synchronization. Further eviden
supporting this interpretation is provided in Fig. 5~c! where
the distribution of the mean frequencyv̄ ~defined by a long-
time average of] tf) of the local oscillators lying onS is
shown. This frequency pattern is clearly composed of t
parts; namely, in the outer domain the oscillators have
identical frequency, while in the inner domain the freque
cies are distributed, the latter implying phase randomizat
consistent with the scattered dots appearing in Fig. 5~b!.

FIG. 5. Radial profiles of various quantities corresponding to
spiral core of Fig. 4.~a! Instantaneous radial profile of the mea
field modulusR. ~b! Instantaneous radial profile of the phasesf of
the local oscillators~crosses! and that of the mean-field phaseQ
~open circles!. ~c! Radial profile of the mean frequencyv̄ ~defined
by a long-time average of] tf) of the local oscillators.
3-6
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In the following section, we develop a theory for dete
mining the mean-field pattern together with its rotation f
quency, and also the motion of the individual oscillato
driven by this mean field, in a self-consistent manner.

IV. THEORY

The basic equations to work with are Eqs.~14! and ~15!.
Our theory starts with the assumption that the mean-fi
pattern is steadily rotating, and therefore we drop thet de-
pendence fromR and Q0 in these equations. A complet
solution to this system of equations can be obtained in
following two steps. We first solve Eq.~14! for eachc as a
function of R andQ0, which is easy to do. Note thatR and
Q0 are the quantities yet to be determined. Second, the e
set of these solutions is substituted into Eq.~15!. The right-
hand side of Eq.~15! thus becomes a functional of the mea
field. In this way, the mean field value at each spatial poin
expressed in terms of a functional of the mean field its
Solution of this functional self-consistency equation exi
only for a special value of the rotation frequencyV of the
mean-field pattern. We will therefore be working with a no
linear eigenvalue problem. The final solution of this fun
tional equation could be found only numerically.

The above self-consistent way of finding a solution to
many-oscillator problem resembles strongly Kuramot
1975 theory of synchronization phase transition in a la
population of globally coupled oscillators with distribute
natural frequencies@9#. The main difference is that the osci
lators are now coupled nonlocally rather than globally, a
consequently the mean field is generally space depen
leading to a functional self-consistency equation rather t
a simple transcendental equation. Although the natural
quencies of the oscillators are identical in the present c
the actual frequencies can be distributed due to the exist
of a spatial gradient of the mean field. A simpler, on
dimensional version of the present type of theory based o
similar model of nonlocally coupled phase oscillators w
reported earlier@20#.

An important feature common to all such theories is t
the one-oscillator equation which involves the mean-fi
amplitude as a parameter admits either a stationary solu
or a drifting solution. Which one to hold depends on t
modulus of the mean field. The crucial point to the theory
how to deal with the drifting solutions, because a sim
substitution of this type of solutions into the definition of th
mean field apparently contradicts the assumed stationari
the mean field~in a suitable comoving frame of reference!.
The seeming contradiction here can be resolved by using
invariant measure associated with the drift motion. We w
now show explicitly the steps leading to an exact solution
the problem.

As stated above, there are two possible cases regar
the solution of Eq.~14!. They are~case I! uv2Vu,R and
~case II! uv2Vu.R. Correspondingly, the oscillators are d
vided into two groups. In the first case, which correspond
the group of coherent oscillators, Eq.~14! admits a pair of
stable and unstable fixed points. The stable one, denote
c0(r), is given by
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c0~r!5sin21S v2V

R~r! D1Q0~r!2a.

The actual frequenciesv̄ of the oscillators in this group are
of course identical withV. We substitute the above solutio
for c(r) into Eq.~15!, and restrict the integral to the doma
where the inequalityuv2Vu,R(r) is satisfied. In this way,
the contribution to the local mean-field value coming fro
the coherent group of oscillators is obtained.

The second case corresponds to the group of incohe
oscillators, for which Eq.~14! admits a drifting solution. The
actual frequenciesv̄(r) are now distributed and they are ea
ily calculated as

v̄5V12pF E
0

2pS dc

dt D
21

dcG21

5V1~v2V!A12S R

v2V D 2

.

The contribution to the local mean-field value from this i
coherent group of oscillators can be found in the followi
way. Sincec is drifting, the factor exp(ic) in the integrand in
Eq. ~15! does not have a definite value. We are thus led to
idea that this factor should rather be replaced with its sta
tical average which can be calculated by using the invar
measure, i.e., the probability densityp(c) associated with
the drift motion. Noting that the probability density for th
oscillator’s phase to take on valuec must be inversely pro-
portional to the drift velocity given by the right-hand side
Eq. ~14!, we have

p~c!5C@v2V2R sin~c1a2Q0!#21, ~16!

where C is the normalization constant given byC
5(2p)21(v2V)A12R2/(v2V)2.

Putting together the above-stated two types of contri
tions to the mean field, we finally obtain a functional se
consistency equation in the form

R~r!eiQ0(r)5E G~r2r8!h@R~r8!,Q0~r8!,v2V#d2r 8,

~17!

where

h~R,Q0 ,v2V!

5H exp@ ic0~R,Q0 ,v2V!# ~ uv2Vu,R!

E
2p

p

p~c,R,Q0 ,v2V!exp~ ic!dc ~ uv2Vu.R!,

or more explicitly
3-7
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eic05ei (Q02a)HA12S v2V

R D 2

1 i
v2V

R J ,

E
2p

p

p~c!eic dc5 iei (Q02a)S v2V

R D
3H 12A12S R

v2V D 2J .

Numerical solution of Eq.~17! can be found iteratively.
We did this in a finite domain defined byx,yP@0,40# with G
appropriate for the free boundary conditions imposed on
~13!. Since a solution of Eq.~17! would only be available for
a special value ofV2v which is still to be determined, its
trial value was adjusted in each iteration step in such a w
that a suitably defined distance between the two mean-
patterns, one produced at the current step and the other a
next step, may be minimized. In this way, by starting with
suitable initial mean-field pattern similar to the one obtain
from numerical simulations, a rapid convergence of
mean-field pattern and the value ofV was achieved.

In Fig. 6 our theoretical results obtained in this way a
compared with the data given in Fig. 5, i.e., the results fr
direct numerical simulation of Eq.~11!. The agreement is so
excellent that our theory is expected to hold exactly in
continuum limit.

V. SUMMARY AND CONCLUDING REMARKS

Spontaneous generation of a local group of pha
randomized oscillators near the center of a rotating sp
pattern was confirmed through numerical simulations
nonlocally coupled oscillators. It was argued that sma
value of the coupling strength favors the occurrence of
core anomaly. The critical coupling strengthKc associated
with the onset of this anomaly was estimated from a sim
argument. WhenK is sufficiently small, by which the oscil
lation amplitude even near the center of rotation takes alm
a full value, a group of incoherent oscillators always exis
Still the overall spiral pattern looks completely norma
Guided by this fact observed numerically, we applied
phase reduction method for the purpose of gaining a de
understanding of the phenomenon. The resulting phase o
lator model with nonlocal coupling was found to exhibit th
same type of core anomaly. Under the assumption that
pattern of a suitably defined mean field is steadily rotating
spite of the existence of incoherence, we derived a functio
self-consistency equation to be satisfied by the mean field
solution successfully reproduced various results obtai
from our direct numerical simulations carried out on th
phase model.

Finally, we remark that the present study is confined t
particular domain of parameter values where the mean-fi
dynamics is regular. Our preliminary study suggests that
der different conditions more complex collective dynam
occurs, which is characterized, e.g., by an elongation of
domain of incoherent oscillators and its irregular motion@8#.
For the case of nonlocally coupled FitzHugh-Nagumo os
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lators for smallK, this occurs for largerb, i.e., when the
symmetry of the local oscillator dynamics is lowered, a
though a perfect symmetry (b50, or the van der Pol limit! is
not necessary for the steady rotation of the mean field.
largerK ~still below Kc), in contrast, regular dynamics of th
mean field and circular shape of the domain of incoher
oscillators seem to persist against relatively strong asym
try of the oscillator dynamics. These results will be report
elsewhere.

ACKNOWLEDGMENT

The authors are grateful to H. Nakao for informative d
cussions.

FIG. 6. Comparison between the theory and numerical sim
tion. Theoretical results are indicated with solid lines in~a! and~c!,
and solid lines and scattered dots in~b!. Numerical data, which are
the same as those given in Fig. 5, are indicated with open cir
and crosses.~a! Instantaneous radial profile of the mean-field mod
lus R. ~b! Instantaneous radial profile of the mean-field phaseQ and
that of the phasesf of the local oscillators, where the theoretical
obtained scattered dots are the random numbers chosen from
probability distribution given by Eq.~16!. ~c! Radial profile of the
mean frequencyv̄ of the local oscillators.
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