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Ray splitting in paraxial optical cavities
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We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray-splitting
mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved
by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position
of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive
Lyapunov exponent.
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I. INTRODUCTION nontrivial question whether there will be a balance between
trapped rays and escaping rays. The trapped rays are those

A beam splitter(BS) is an ubiquitous optical device in which bounce infinitely long in the stable part of the cavity,
wave optics experiments, used e.g., for optical interferenceyhile the escaping ones are those which stay for a finite
homodyning, etc. In the context of geometrical optics, lighttime, due to the presence of the unstable subcavity. If such
rays are split into a transmitted and a reflected ray by a Balance exists it could eventually lead to transient chaos
Ray splitting provides a useful mechanism to generate chaiince it is known in literature that instabilitypositive
otic dynamics in pseudointegralflé] and soft-chaoti¢2—5] ~ Lyapunov exponenjsand mixing (confinement inside the
closed systems. In this paper we exploit the ray-splittingSyStem form the skeleton of chads]. »
properties of a BS in order to build an open paraxial cavity _The BS is modeled as a stochastic ray-splitting element
which shows irregular ray dynamics as opposed to the regle] by assuming the reflection and transmission coefficients
lar dynamics displayed by a paraxial cavity when the BS i2S random variables. Within the context of wave optics this
absent. Although there is no real need to treat a paraxidl©del corresponds to the neglect of all interference phenom-
optical cavity in the ray picturéone can always go back to €na inside the cavity; this would occur, for instance, when
the wave optics which yields rather straightforward results irPn€ injects inside the cavity a wave pact@tcw broad band
the paraxial approximationand although we find that our light) whose longitudinal coherence length is very much
system is nonchaotic, we feel that the issues that we raise apiiorter than the smallest characteristic length of the cavity.
interesting from a conceptual point of view. This is particu- e stochasticity is implemented by using a Monte Carlo
larly so as we will show in a future publication that a non- Method to determine whether the ray is transmitted or re-
paraxial version of our systenanyield chaog6]; this result ~ flected by the B2]. When a ray is incident on the ray-
can only be appreciated after a full understanding of thesplitting surface of the BS, it is either transmitted through it

paraxial systentwhich shows a surprising complexity in its with probability p or reflected with probability + p, where
own right. we will assumep=1/2, i.e., we will consider a 50-50 beam

Optical cavities can be classified atable or unstable SPlitter (Fig. 3. We then follow a ray and at each reflection
depending on the focusing properties of the elements tha¥® Use a random number generator with a uniform distribu-
compose it[7]. An optical cavity formed by two concave ftion to randomly decide whether to reflect or transmit the
mirrors of radii R separated by a distandeis stable when Incident ray. o »
L<2R and unstable otherwise. If a light ray is injected in- Our system bears a close connection with the stability of a
side the cavity through one of the mirrors it will remain
confined indefinitely inside the cavity when the configuration
is stable but it will escape after a finite number of bounces BS
when the cavity is unstablé&his number depends on the
degree of instability of the systemmBoth stable and unstable

cavities have been extensively investigated since they form M, T M,
the basis of laser physi¢3]. Our interest is in a composite / \
cavity which has both aspects of stability and instability. The R R
cavity is made by two identical concave mirrors of rallii \ }

separated by a distante whereL <2R so that the cavity is
globally stable. We then introduce a BS inside the cavity, L
1

oriented perpendicular to the optical ag#sg. 1). In this way L,

the BS defines two subcavities. The main idea is that depend-

ing on the position of the BS the leftight) subcavity be-

comes unstable for the reflected rays wher(L,) is bigger FIG. 1. Schematic diagram of the cavity model. Two subcavities
thanR, whereas the cavity as a whole remains always stablgf lengthL, andL, are coupled by a BS. The total cavity is glo-
(L;+L,<2R) (Fig. 2. bally stable forL=L,+L,<2R. A=L,;—L/2 represents the dis-

Our motivation to address this system originates in theplacement of the BS with respect to the center of the cavity.
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(b) : FIG. 4. A ray bouncing inside an optical cavity can be repre-
R . R sented by a sequence of lenses of fota2/R, followed by a free
. propagation over a distantg, . Due to the presence of the BS, the
L F distancel , varies stochastically between andL,.
2
tical system; these simulations are based on standard numeri-
BS Ay L>R>L cal tools developed in nonlinear dynamics theory. Finally, in
] ? ! Sec. IV, we detail the conclusions of our work.
(0) R %% R
. II. RAY DYNAMICS AND THE PARAXIAL MAP
L, L, The time evolution of a laser beam inside a cavity can be

approximated classically by using the ray optics limit, where

FIG. 2. The different positions of the beam splitter determinethe wave nature of light is neglected. Generally, in this limit
the nature of the subcavities. (8) the BS is in the middle, so two  {he propagation of light in a uniform medium is described by
subcavities are stable; iib) the left cavity is unstable and the right rays which travel in straight lines and which are either
one is stable, andc) the unstablestablg cavity is on the right  gparhly reflected or refracted when they hit a medium with a
(lefy. different refractive index. To fully characterize the trajectory
of a ray in a strip resonator or in a resonator with rotational
symmetry around the optical axis, we choose a reference
Rlanez= const(perpendicular to the optical axd3, so that a
ray is specified by two parameters: the heighébove the
optical axis and the anglé between the trajectory and the
Lame axis. Therefore we can associate a ray of light with a
wo-dimensional vector=(q,#). This is illustrated in the
wo-mirror cavity shown in Fig. 3, where the reference plane
has been chosen to coincide with the BS. Given such a ref-
erence plang, which is also called Poincasurface of sec-
tion (SO9 [10], a round trip(evolution between two succes-
sive reference plangof the ray inside the cavity can be
. . . Iculated by the monodromy matrid,,, in other words
associated with rays that propagate very close to the aX|sa(§na+l: M7, where the index determines the number of

the cavity. In Sec. Il we present the results of the numeric . . .
simulations for the paraxial map associated with our ray op:round trips. The monodromy ma.trMn describes the linear- .
ized evolution of a ray that deviates from a reference peri-
BS odic orbit. A periodic orbit is said to be stable |ifrM,|
< 2. In this case nearby rays oscillate back and forth around
I-p p the stable periodic orbit with bounded displacements both in
/ '\/\' \ g and 6. On the other hand wheir M| =2 the orbit is said
>q } 8 to be unstable and rays that are initially near this reference
\ } 4 orbit become more and more displaced from it.
For paraxial trajectories, where the angle of propagation
relative to the axis is taken to be very sméile., sin(6)
z=const =tan(#)=4)], the reference periodic trajectory coincides with
FIG. 3. Aray on a reference plane< const) perpendicular to the optical axis and the monodromy matrix is identical to the

the optical axisZ is specified by two parameters: the heigtabove ~ABCD matrix of the system. ThABCD matrix or paraxial

the optical axis and the anglebetween the direction of propaga- Map of an optical system is the simplest model one can use
tion and the same axis. When a ray hits the surface of the BS, whickp describe the discrete time evolution of a ray in the optical
we choose to coincide with the reference plane, it can be eithesystem7]. Perhaps the most interesting and important appli-
reflected or transmitted with equal probability. For a 50-50 beamcation of ray matrices comes in the analysis of periodic fo-
splitter p=1/2. cusing(PP systems in which the same sequence of elements

periodic guide of paraxial lenses as studied by Lor{§hi
While in his case aontinuousstochastic variable repre-
sents a perturbation of the periodic sequence along whic
rays are propagated, in our case we hadéaretestochastic
parametemp,, which represents the response of the BS to a
incident ray. As will be shown in Sec. Il, this stochastic
parameter can take only two values, either 1 for transmitte
rays or—1 for reflected rays; in this sense, our systém
displayed in Fig. #4is a surprisingly simple realization of a
bimodal stochastic paraxial lens guide.

The structure of the paper is as follows. In Sec. Il we
describe the ray limit, and the paraxial mapAds C D matrix
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is periodically repeated many times down in cascade. Arbasically doing an ensemble average over different geometri-

optical cavity provides a simple way of recreating a PF sys<al configurations of focusing systems. As we shall see later

tem, since we can think of a cavity as a periodic series oft is convenient, for computational reasons, to adopt the sec-

lensegsee Fig. 4. In the framework of geometric ray optics, ond method.

PF systems are classified, as are optical cavities, as either In the following section we report several dynamical

stable or unstable. guantities that we have numerically calculated for paraxial
Without essential loss of generality we restrict ourselvesays in this system, using the map described abh&ep(1)].

to the case of a symmetric cavifiye., two identical spherical The behavior of these quantities, namely, the SOSs, the exit

mirrors of radius of curvatur®). We take the SOS coinci- basins, the Lyapunov exponent, and the escape rate, is ana-

dent with the surface of the BS. After intersecting a givenlyzed as a function of the displacemeunt)( of the BS with

reference plang;, a ray is transmittedreflected, it will respect to the center of the cavitsee Fig. 1

undergo a free propagation over a distahgéL ), followed

by a reflection on the curved mirrdd, (M,), and continue Il. RESULTS

propagating over the distanés (L;) to hit the surface of

the beam splitter again at, ;. In Fig. 4 the sequence af The paraxial map of E¢{1) describes an unbounded sys-

represents the successive reference planes after a round tigm, that is, rays are allowed to go infinitely far from the
In the paraxial approximation each round tfifme evolution ~ Cavity axis. In order to describe a physical paraxial cavity we

between two successive intersections of a ray with the beaf@ve to keep the phase space bounded, i.e., it is necessary to
splitten is represented by artificially introduce boundaries for the position and the

angle of the ray[11]. The phase space boundaries that we
On+1=AndntBn6n, have adopted to decide whether a ray has escaped after a
number of bounces or not are the beam waigtand the
0h+1=Cant+Dnby, (1) diffraction half angle®, of a Gaussian beam confined in a
globally stable two-mirror cavity. Measured at the center of
where the cavity, wi= (LA igni/m)V(2R—L)/4L and the corre-
A,=1-2L,/R, B,=2L.(1—L,/R), sponding diffraction half angl® ,=arctanigy/mwo). [7]
For our cavity configuration we assuni®=0.15m, L
C=-2R, D,=1-2L,/R, =0.2 m, and\igh;=500 nm, from which it follows that
Wo=5.3x10"°m and ©®,=0.15<10 3 rad. One should
and keep in mind that this choice is somewhat arbitrary and other
choices are certainly possible. The effect of this arbitrariness
- L+ P2 on our results will be discussed in detail in Sec. Il D.
5

We have defined =L;+L, anda=L,—L,; the stochastic A. Poincare surface of section

parametem, is distributed equally among-1 and +1 for We have first calculated the SOS for different positions of
our 50-50 BS, and determines whether the ray is transmittethe BS. In order to get a qualitative idea of the type of mo-
(pn=1) or is reflected §,=—1). tion, we have chosen as transverse phase space varjables

The elements of th&BCD matrix depend om because =¢ andv,=sin(f)~6. The successive intersections of a tra-
of the stochastic response of the BS, which determines thiectory with initial transverse coordinateg=1x10"°m
propagation for the ray in subcavities of a different lengthand ;=0 are represented by the different black points in the
(eitherL, or L,). In this way a random sequence of reflec- surface of section. The different SOSs are shown in Fig. 5. In
tions (p,=1) and transmissiong(,= —1) represents a par- Fig. 5a we show the SOS foA=0, while in Fig. 8b) A
ticular geometrical realization of a focusing system. If we=1x10"2 m and in Fig. 5¢) A=2Xx10 2 m. In Fig. 5a) it
want to study the evolution of a set of rays injected in theis clear that the motion is completely regularonhyper-
cavity with different initial conditions 4y, 6y), we have two  bolic); the on-axis trajectory represents an elliptic fixed point
possibilities, either use treamerandom sequence of reflec- for the map. In Fig. &), where the BS is slightly displaced
tions and transmissions for all rays in the set or uskffar-  from the center 4 =1x 10 3 m), we can see that this same
entrandom sequence for each ray. In the latter case, we ateajectory becomes unstable because of the presence of the
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BS and spreads over a finite region of the phase space tgeases adlyexp(—n), while for soft chaotic systems, the
escape after a large number of bounces 6x 10%). In this  stickiness to Kolmogorov-Arnold-Moser islandsr islands
case we may qualify the motion as azimuthally ergodic. Thexf stability) leads to a power law decayon~? [13]. The
fact that the ray-splitting mechanism introduced by the BS yapunov exponent is the rate of exponential divergence of
produces ergodicity is a well-known res{it] for a closed nearby trajectories.

billard. We find here an analog phenomenon, with the differ-  Since bothx and y are asymptotic quantities they should
ence that in our case the trajectory does not explore unibe calculated for very long times. In our system long living
formly (but only azimuthally the available phase space, be- trajectories are rare, and in order to pick them among the grid
cause the system is open. Finally, in Fi¢c)5ve see thatthe  of initial conditionsN, one has to increasi, beyond the
fixed point in the origin becomes hyperbolic, and the initial computational capability. To overcome this difficulty we

orbit escapes after relatively few bounces=165). choose a different random sequence for each initial condi-
tion. In this way we greatly increase the probability of pick-
B. Exit basin diagrams ing long living orbits given by particularly stable random

It is well known that chaotic Hamiltonian systems with Sequences. These Ionglliving orp_its in tum make possible the
alculation of asymptotic quantities such)asr v.

more than one exit channel exhibit irregular escape dynamic% Th d ined _ h

which can be displayed, e.g., by plotting the exit bd4ia. | € ?SC?pe raft_@_wats] e';ermme measurmg], aT the

For our open system we have calculated the exit basin diars_itct)wpr)r?icos?allen'etﬁre 5);; tnlj’:r?beNroo\ﬁrzsitlijslncf)lﬁ]rdviﬁbg]s)ab;%g_
rams for three different positions of the BEig. 6). These '

g P B8ig. 6 osen as 22002200,

) . : . h
diagrams can be constructed by defining a fine grid (2206 We have calculated the dependenceqofvith the dis-

X2200) of initial conditions ¢, 6,). We then follow each .
ray for a sufficient number of bounces so that it escapes froffiaceément of the BS from the center of the cavity, where

the cavity. When it escapes from above,£0) we plot a 0$A$L/2_. Since forA>R—L/2 the left subcavity beco.njes
black dot in the corresponding initial condition, whereasunStable’ it would seem natural to g}(pect that this position of
when it escapes from belowd{<0) we plot a white dot. the BS would corr(_as_pond to a critical point. However, we
In Fig. 6a) we show the exit basins fak=0.025 m, the have found by explicit calculation of both t_h_e Lyapunov ex-
uniformly black or white regions of the plot correspond ponent and the escape rate that such a critical point does not

to rays which display a regular dynamics before escaping! anifest itself in a sharp way, rather we have observed a

and the dusty region represents the portion of phase spa I%ftehtr:;]ms;tlon .regli)ré(as ogposed fto 3 smﬂle po)'.”'”
where there is sensitivity to initial conditions. In Fig(b, which the functional dependence afand y change in a

we show the same plot fak=0.05 m, and in Fig. &) for smooth way. In Fig. ® we show the typical behavior of
A=0.075 m. ' N,/Ng vs n in semilogarithmic plot for three different posi-

The exit basin plots in Fig. 6 illustrate how the scatteringtions of the BS. The displacements of the BS Are0.0875

becomes more irregular as the BS is displaced from the cen- 0.05 m, and 0'031(215. m, f_;md ]Ehi cprrespondlngbslop]?s
ter. In particular, we see how regions of regular and irregulaf€S¢aPe ratey measured in units of the inverse number o

. . _ 71
dynamics become more and more interwoven @screases. ounces_q) of the Iln_elar fit are y=0.17693 -,
Instead, for small values df as in Fig. 62), we can see that 0-09371 ", and 0.01206 -, respectively. We have found

there is a single dusty region with a uniform distribution of that the decay is exponential only up to a certain tim&0-

white and black dots in which no islands of regularity are1000 bqunces depending on the ge‘?m,e”y of th.e Cauing
present. to the discrete nature of the grid of initial conditions.

In Fig. 7(b) we see thaty increases with\, revealing that
for more unstable configurations there is a higher escape rate,
as expected. It is also interesting to note that the exponential

The next dynamical quantities we have calculated are theecay fits better when the beam splitter is farther from the
escape ratey and the Lyapunov exponeit The escape rate center position, since this leads to smaller stability of the
is a quantity that can be used to measure the degree of opeperiodic orbits of the system. However, the dependence of
ness of a systelfil1]. For hard chaotic systenflyperbolig, the escape rate with the position of the BS is smooth and
the numberN, of orbits still contained in the phase space reveals that the only critical displacement, where the escape
after a long time(measured in number of bounce$ de- rate becomes positive, is=0.

C. Escape rate and Lyapunov exponent

@) » (b) (c)

0.0015

FIG. 6. Exit basins forla) A=0.025 m, (b)
A=0.05 m, andc) A=0.075 m.
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FIG. 7. (a) Linear fits used to calculate the escape rate for three different geometrical configurations of the cavity gived.@31 25
m, A=0.05 m, andA=0.0875 m. The time is measured in number of bounegs The slopey is in units of the inverse of timen("!). (b)
shows the escape rajgn—?) as a function ofA. (c) corresponds to different Lyapunov exponext@~1) as the BS moves from the center
A=0 to the leftmost side of the cavity=0.10 m.(d) shows the differencd—y (n~?), which is a positive bounded function.

As a next step, we have calculated the Lyapunov exponerdver the ensembl@ of all possible sequences This means
\ for the paraxial map)\ is a quantity that measures the that for PRM the Lyapunov exponent is a nonrandom posi-
degree of stability of the reference periodic orbit. For a two-tive quantity. In general, it can be said that there is a sub-
dimensional Hamiltonian map there are two Lyapunov expospace(Q)* of random sequences which has a full measure
nents 1, \») such that\;+X\,=0. In the rest of the paper (probability 1) over the whole space of sequenc@sfor
we shall indicate with\ the positive Lyapunov exponent which nearby trajectories deviate exponentially at a Kgte
which quantifies the exponential sensitivity to the initial con- Although there exist very improbable sequence$)iwhich
ditions. We have calculatexd for the periodic orbit on axis, lead to a different asymptotic limit, they do not change the
using the standard techniqugk4], and we have found that logarithmic averag¢Eq. (2)] [16]. We have verified this re-
the Lyapunov exponent grows from zero with the distance ofult, calculating the value ok for different random se-
the BS to the centdiFig. 7(c)]. Therefore, the only critical quencesw;, in the asymptotic limitn=2100000 bounces,
point revealed by the ray dynamics is again the center of thand we obtained in all cases the same Lyapunov exponent.
cavity (A=0), where the magnitudes change from zero to a
positive value. This result also shows that the presence of the
BS with its stochastic nature introduces exponential sensitiv-
ity to initial conditions in the system for every+0, even Dynamical randomness is characterized by a positive
when both subcavities are stable. This surprising fact can b&olmogorov-Sinai(KS) entropy per unit timengg [17]. In
explained by taking into account the well-known probabilis-closed systems, it is known that dynamical randomness is a
tic theorem by Furstenberg on the asymptotic limit of the ratedirect consequence of the exponential sensitivity to initial
of growth of a product of random matricé®RM) [15]. conditions given by a positive Lyapunov exponent. On the
From this theorem we expect that the asymptotic behavior opther hand, in open dynamical systems with a single
the productM, of a uniform sequence» of independent, Lyapunov exponenk, the exponential sensitivity to initial
random, unimodularD X D matrices, and for any nonzero conditions can be related t s through the escape rateby
vectory e RP, is the relation[18]

D. Mixing properties

1
imﬁ<ln|Mn37|)=)\1>0, (2)

I
n—
This formula reveals the fact that in an open dynamical sys-

where) ; is the maximum Lyapunov characteristic exponenttem the exponential sensitivity to initial conditions induces
of the system, and the angular brackets indicate the averageo effects: one is the escape of trajectories out of the neigh-

036209-5



PUENTES, AIELLO, AND WOERDMAN PHYSICAL REVIEW E69, 036209 (2004

TABLE I. Escape rate for different phase space boundaries. Agenter of the cavity it is evident for geometrical reasons that
the boundary shrinks{A) tends to the corresponding value of the ray-splitting mechanism becomes ineffectixe:0=y.
A(A4)=0.2917&". In these calculations the displacement of the These results confirm what we have already shown in the

BS wasA=0.0875 m. SOS(Fig. 4).
(Wo, 60) x 10P X107 X102 X103 IV. CONCLUSIONS
v 0.17639 0.17596 0.19559 0.25259

We have been able to characterize the ray dynamics of our
optical cavity with ray splitting by using standard techniques
. . in nonlinear dynamics. In particular we have found, both
borhpod of the unstable referenpe per|od|c_orb|t atan expothrough the SOS and the exit basin diagrams, that the sto-
nential ratey and the other one is a dynamical randomnes hastic ray-splitting mechanism destroys the regular motion

because of transient chaotic motion near this unstable orb f rays in the globally stable cavity. The irregular dynamics

[18]._T_h|s dynamical randomness is a measure of _th_e degrqﬁtroduced by the beam splitter was quantified by calculating
qf_mlxmg of the system and as mentioned before it is quang, Lyapunov exponent; it grows from zero as the beam

.t'f'et(:] by hKSI'I Tf}(re]refore, for a %'Vem'otlhe. larger the Ir:nlxmgF splitter is displaced from the center of the cavity. Therefore,
IS, the smalfler the escape raté, and viceé versa. Ffom Figg,q canter of the cavity constitutes the only point where the

ngb) and 4c) i: ish evidfhnt that the LyatlﬁL:jnov e;(ponent atr;d %/ amics of the rays is not affected by the stochasticity of
€ escape rate have the same smooth dependence on the BS. The escape ratg has been calculated and it has

displacement\ and thaty<\. We have calculated the differ- revealed a similar dependence with the position of the beam

sndce)\—y>0 for our system and the result is shown in Fig. splitter to that ofA. Furthermore, we have verified that the
. i absolute value of the escape rate tends to that of the
The a_ctual value of(A) depends, for_a fixed value df, Lyapunov exponent as the size of the available phase space
on the size of the phase space acce_sglble t_o the S)[.g‘@m goes to zero. This result confirms the fact that the escape rate
that is, |t_ depends owo_and 0. We verified this behavior by and therefore the mixing properties of a map depend sensi-
successively decreasing, and o by factors of 10(s€e ey on the choice of the boundafill]. Because of this
Table D'. and calculatmgy for each of these phase space dependence we cannot claim that our system is chaotic, de-
boundarles._ Itis clear from these results t_haincreases spite the positiveness of. However, in a future publication
when the size of phase space decreases; in faoloby \ye shall demonstrate that ray chamsn be achieved for the

~0, one should geh~y and the cavity mixing property game class of optical cavities wheorparaxial ray dynam-
should disappear. It is important to note that the increment of ¢ ;5 allowed[6].

ywith the inverse of the size of the accessible phase space is
a general tendency, independent of the arbitrarily chosen
boundaries.

It is important to stress that, although the randomness This project was part of the program of FOM and was
introduced by the stochastic BS is obviously independenalso supported by the EU under Contract No. IST-ATESIT.
of the cavity characteristicsy and y show a clear depen- We thank S. Oemrawsingh for useful contributions to soft-
dence on the BS position. When the BS is located at thevare development.
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