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Gibbs attractor: A chaotic nearly Hamiltonian system, driven by external harmonic force
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A chaotic autonomous Hamiltonian system, perturbed by small damping and small external force, harmoni-
cally dependent on time, can acquire a strange attractor with properties similar to that of the canonical
distribution—the Gibbs attractor. The evolution of the energy in such systems can be described as the energy
diffusion. For the nonlinear Pullen-Edmonds oscillator with two degrees of freedom, the properties of the
Gibbs attractor and their dependence on parameters of the perturbation are studied both analytically and

numerically.
DOI: 10.1103/PhysReVvE.69.036207 PACS nunier05.45-a, 05.40--a
I. INTRODUCTION is the energy density of the phase volume on the energy
surfaceH (p,r)=E.

The Brownian motion of a particle of massin the static The canonical distribution Eq3) holds for the equilib-
potentialU(r) can be described by the system of Langevinrium state of the system E@l) irrespective of the dimen-
equations sionality of the configuration spaakand regardless of the

o nature of the motion of the isolated system, be it regular
mi'+yf +VU(r)=f(t), (1) (periodic, quasiperiodicor chaotic.

Let us replace the random forég) by a regular one that

where y is the viscous damping parameter aift) is the  jonends on time harmonically; the equations of motion will
random force(white noise with Gaussian distribution and e the form

mean values
(fi(0)=0, (Fi(,f(1))=2D5;8(t~1); (2 i+ a7+ VU =Fsinot. ©

hereg;; is the Kronecker symbol ané(x) is the Dirac delta If the motion of the isolated system is strongly chaotic, that
function [1]. The damping term and the random force pro-is, nearly ergodic on the energy surfaces in a wide range of
vide a phenomenological description of the interaction of theenergy values, then we can expect that the motion of a
particle (in the potential with its environment, which is fre- weakly perturbed systerty andF are small will be chaotic
quently called a heat bath. The dynamical system determinei@o0. In parallel with the physical picture of the Brownian
by Eq. (1) with y=0 andD =0 will be called isolated. motion given above, the external foréesin wt will slowly
The ensemble of Brownian particles eventually will comechange the energy of the system, whereas the dampiviti
to an equilibrium with the stationary probability distribution provide a sink for the excessive energy, thus creating the
in the phase space given by the equation possibility of equilibrium.
The dissipative nonautonomous system &j.may dem-
H(p,r) onstrate the chaotic motion on a strange attractor, which has
Q(p.r=N ex;{ "o | (3 much in common with the canonical distribution E8). For
this reason it will be called the Gibbs attractor.
where p=mf is the particle momentumi(p,r)=p?/2m The main purpose of this paper is to give an example of a
+U(r) is the Hamiltonian function of the isolated system, system with the Gibbs attractor and to describe its main fea-
® =D/ is the temperature, arid is the normalization con- tures. They mostly depend on the kinetics of energy ex-
stant. The distribution Eq3) is known as the canonical, or change between the perturbation and the isolated system,
Gibbs, distribution; it serves as a central point of equilibriumwhich can be described as a process of energy diffusion.
statistical physic$2]. From Eq.(3) follows the equilibrium The problem that we have formulated is at the crossroad
energy distribution of several lines of research in nonlinear dynamics and non-
stationary statistical physics. First, it is linked to the theory
E of chaos in nonautonomous Hamiltonian systems. In this
Q(E)= NCD(E)eXF{ h ) (4) theory the concept of enerdgr action) diffusion is used for
description of the infinite chaotic motion above the threshold
where of its onset—in models like the periodically kicked rof&
or a hydrogen atom in a microwave figld,5]. Unlike our

_ problem, in these models the strong periodic perturbation is
@(E)_f S(E—H(p.r)dpdr ®) the source that thrusts chaos on the system. Second, our
problem is related to the theory of energy absorption by cha-
otic systems with parametric modulation, which is usually
*Electronic address: pve@shg.phys.msu.su developed(in both quantum and classical approaghfes
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models of billiards with varying fornj6,7]. As opposed to  around value€ .. = E=kfw with integerk. We denote the
our problem, the main concern here is the study of slows opability of finding the system in such a band of states
variations, whereas we are interested in a perturbation WitByound the energy valué as Q(E). Taking account of one-

frequencies that are comparable to the characteristic frequenoton transitions we can write the balance equation
cies of the unperturbed systems. Furthermore, in both afore-

mentioned theories the damping is completely neglected. dQ(E) ) _ )

Third, our problem has a relation to the actively developing g~ QUEB)(W.+W_)+Q(E+hw)W,
theory of Brownian motion under the influence of colored

noise[8—-11], since one may consider the harmonic pertur- +Q(E—fiw)W_. (8)

bation as a limiting(monochromatit case of narrowband

noise. In contrast to our problem, in this theory the unper- AssumingQ(E,t) to be a smooth function dt, we can
turbed motion is mainly one dimensional and thus regularexpand the arguments in the second and third terms in the
and damping is considered strong. Last, we note a connegight-hand sidéRHS) of Eq. (8) to the order ofi? inclusive.

tion to the issue of the effects of weak noise and damping orThis yields the equation in partial derivatives that describes
Hamiltonian systems that was discussed recently in the corhe energy diffusion in the Hamiltonian system under the
text of the problem of decay of metastable chaotic stateghfluence of the external harmonic field:
[12,13.

The rest of the text is organized as follows. In Sec. |l the aQ 4 d aQ
main equation for the energy diffusion is deduced in two E“LE(AQ)_E(DE) =0
ways. Section Il consists of a description of the unperturbed
model, the Pullen-Edmonds nonlinear oscillator, and theyere the coefficients of drit& and of diffusionD are given
main features of its chaotic motion. Section IV comprises &y the expressions
description of the main properties of the Gibbs attractor in
the model—its limits in the phase space, energy distribution, T p' T
conditions of existence, and character of the energy correla-  A(E,0)= szFZS—. D(E,w)= EwZFZS- (10
tion. Section V contains the concluding remarks. P

(©)

It is essential that in the quasiclassical case, when the density

[l. ENERGY DIFFUSION of states could be expressed by the Weyl formula
We will study the evolution of the distribution of energy ®(E)
valuesQ(E,t) for a Hamiltonian chaotic system, perturbed p(E)= W (11
T

by small damping and small harmonic force. For the deriva-
tion of the equation of evolution foQ(E,t) we at first ne-

glect the dampingwe shall restore it later, in Sec. I)C the coefficientsA andD do not depend on Planck’s constant

f. The analogous derivation of the equation for the energy
diffusion in a conservative one-dimensional system under the

A. The quantum approach influence of white noise was used [ih9].
The simplest approach is to start from the quantum model
of the unperturbed system. Let us assume that at the initial B. The classical approach

moment the system is in a stationary stapewith the energy
E. The external harmonic force will induce transitions with
absorption(+) and emission—) of the quantafiw. If the

Equation(9) does not depend on Planck’s constant, but
the condition of its applicability does. The Fermi golden rule

motion of the classical system is chaotic and the power spe(l,§ based on the assumption of the resonant character of the

trum of the active coordinate is continuous, then for its transitions, which is justified only when the transition refe

quantum counterpart in the quasiclassical case the density & much smaller than the perturbation frequencyrhus the

final states with allowed transitions is high, and the rate odiffusion coefficient must obey the strong inequality

these transitions can be described by the Fermi golden rule. D <203 (12)

With the account of dependence of matrix elements and den- '

sity of states on the energy Wit_hin the transition_ range, W& nich is too restrictive for smalk.

can obtain for the rate of transitions the expression However, we can rederive E() classically. In the zeroth

o’ approximation we neglect the influence of the external force

S’+S—”, (7) on the law of motionx(t). Then the instantaneous rate of
P energy change i&=x(t)F(t). Variation of the energyfor

whereS=S,(E, ) is the power spectrum of the coordinate the time intervall), A(T), in this approximation vanishes on

x, p=p(E) is the density of states of the isolated systemthe average for symmetry reasod,(T))=0, whereas its

both taken at the energ§, and primes mean differentiating averaged square is

with respect to energj18].

The resonant absorption and emission of quanta populate (A%(T))= JTJTB (t,— t)F(t)F(t,)dtdt,y, (13)
narrow bands of levels, which are located on the energy scale 0oJo '

2@ F?

. hiw
Wt(E):?Z

+
S+ 2
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whereB,(7) is the correlation function of the component From Eqgs.(19) and (20) for the drift coefficient, we obtain
of the velocity. If the unperturbed motion is ergodic, then thethe expressionA(E,w)=D(E,w) [P'(E)/P(E)], which
correlation function is determined by the microcanonical av-coincides with the one given above in Ed.0), since the
erage density of states is proportional to the density of the phase
volume[see Eq(1D)].
1 o In the classical derivation of E420) we have assumed
B, ()= D(E) f X(O)x(71)S(E—H(p,r)dpdr, (14 nat the spreading of the initially localized energy distribu-
tion during the correlation time, is such that the corrections
wherex(0) andx(r) are taken on the trajectory that starts atto the diffusion coefficient are small in comparison with its
t=0 at the phase poirdp, r}. For timesT much larger than zero order value/D7.D’<D. Estimating the derivative as
the time of decay of velocity correlationg, we can rewrite D’'~D/E, whereE is a characteristic energy of the system,

Eq. (13) in the form we obtain the condition of applicability of the classical equa-
) tion of energy diffusion,
Fe (T o
(A%(T))= 7f dﬁf B,(7)cofw7)dT. (15 E2
0 — D< 7__, (21)
Cc

The internal integral is proportional to the power spectrum of L

velocity, S,(E, ). SinceS,(E,»)=w?S,(E,w»), we obtain which is much more tolerant than E_@.Z). Bridging the gap
for the coefficient of energy diffusion the expressionP€tween Eq(12) and Eq.(21) remains a challenge for the
D(E, ) = (7/2)w?F2S,(E,w), which coincides with the duantum theory.

one given above in Eq10).

Let us assume that in the initial state the system has the C. The account of damping
energy Eq and denote aQ)q(E,t) the energy distribution Now we turn to the account of damping. For systems in
with this initial condition, Qo(E,0)=6(E—Eo). Equation \yhich the logarithmic rate of energy damping is constant,
(15) can be rewritten as E=— vE, the energy distribution can be written as

(AZ(T)>=2f0TD(EO)d0, (16) Q(E,t)=e"y(Ee"), (22)

wherey(z) is an arbitrary positive integrable function. This
The distributionQ, spreads with time, including energy sur- functional form can be expressed by the equation in partial
faces with different densitie® and different diffusion coef- derivatives
ficients D. In the first approximation we can take this into
account by averaging these functions with the evolving dis- 9Q d

tribution Qq(E,t): ot YE(EQ)' (23

) T déo By combining Eqs.(9) and (23) we obtain the equation of
(A (T)>=2J’O mj dE Qo(E,0)G(E), (17 energy diffusion in the perturbed chaotic system with damp-

ing:
whereG(E)=®(E)D(E). In the time interval in which the Qo 9Q
distribution Qq(E,t) can be considered narrow, the function —~_ _( YyEQ—AQ+D _) =0. (24)
G(E) can be expanded in a Taylor series to the first order in gt B JE

A=E—E,. Thus wi me to th tion . L
0 us we come fo the equatio Its stationary solution is given by the formulas

<A2(T)>:2F D(Eo)+w<A(m>>d9_ 18) Q(E)=N®(E)exd R(E,0)], (25)
0 D(Eop)

E
If the system on the average changes its energy with a con- R(E,w)=— YJO ﬁds, (26)

stant ratg{A(t)) = at, then(A?(t))=«?t?+ 2Dt. Substitut-

ing this expression in E¢18), we obtain whereN is the normalization constant. The stationary distri-

bution can be canonical, E¢6), only in the special case

= ﬂ_ (190  when the diffusion coefficient is exactly proportional to en-
®(Eo) ergy.

The average rate of the energy variation in the state with
given distributionQ(E,t) can be obtained from E¢9):

D=D(Ey), «a

Ill. THE MODEL

Equationg25) and(26) can be checked by direct numeri-
. , cal solution of the system Ed6) for any given potential
<E>_j (A+D")Q(E,dE. (20 U(r). The calculation ofQ(E) is relatively easy; however,
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the estimation of the integral in the RHS of E86) is much
more demanding, since at every integration stepe ithe 44
power spectruns,(e,w) has to be calculated with sufficient
accuracy. Instead of this computation we will proceed with , x
analytical approaches workable with a special choice of the
model. :

We take the Pullen-Edmonds oscillatidr4], which de-
scribes the two-dimensional motion of a particle in a quartic
potential, as the model for the isolated system. The Hamil-
tonian of this system is

ity S
e

Spectral dens

X2y2

2
Mw
— X2+y2+ T) (27)

1
_ 2, 2
H= 2m(px+py)+

00 05 10 15 20 25 30
In the following we use the particle mass the frequency of
small oscillationswy, and the nonlinearity length as unit
scales, and write all equations in dimensionless form.

Frequency o

FIG. 1. The dependence of the power spectrum of the coordinate

The properties of chaoti.c motion of fche Pulllen-EdmondsSX of the Pullen-Edmonds model E7) on frequencyw for the
model are thoroughly studigd5-17. With an increase of opergy valueE=16. Theoretical estimate Eq32) (line) and nu-
energy the system becomes more chaotic both in extensiVgerical calculatior(points.

[that is, characterized by the measure of the chaotic compo-

nentug(E) on the surface of Poincasectior and in inten- The approximate expression for the power spectrum of
sive [that is, measured by the magnitude of the Lyapunovthe coordinate for the Pullen-Edmonds model was obtained
exponento(E)] aspects. For values of enerdg>2.1 the in Ref. [17] from the assumption of ergodicity of motion and
measureus>0.5, and chaos dominates in the phase spacd? the “frozen frequencies” approximation:

for E>5 the chaotic motion of the system is approximately 2
ergodic[15]. S(E,w)= 305 (2ET1- 0?0 2 (w?—1)"1?
For the selected model Eg®) have the form $(E) (32
X+ yX+x(1+y%) =F sinot, for 1<w<2E+1 andS,(E,»)=0 outside this range. The
comparison of this formula with the numerically found spec-

Y+ yy+y(1+x%)=0; (29 trum is shown in Fig. 1.
It can be seen that the main body of the spectrum, apart
the external force is chosen to be directed alongabeaxis. ~ from a small interval of frequencies aroune=1, is de-
It may be noted that it is sufficient to couple the externalScribed satisfactorily.
force to only one dynamical variable, as opposed to the
Langevin forces given by Eq2): in a chaotic system the
interaction between vibrational modes will secure the redis- |n this section we study different properties of the motion
tribution of energy. on the Gibbs attractor. For the numerical calculation we will
For a particle in a two-dimensional potential the value ofmainly use the following set of parametersy=2x10"3,
®(E) is proportional to the areg(E) of the region thatis F=0.3, andw=1.1, which corresponds = 103. Later it
bound by the equipotential ling(x,y) =E, namely,®(E)  will be referred to as the standard set.
=27 ¢(E). For the Pullen-Edmonds model (1) The motion of our model on the Gibbs attractor is
chaotic: numerical computation gives for its Lyapunov expo-

IV. THE GIBBS ATTRACTOR

_[E /2E—x2d 5 nento=0.652). From the Kaplan-Yorke conjectuf0,21]

P(E)=4 0 1+ %2 X (29) it follows that the fractal dimensionality of the attractog

will differ from the dimensionality of the phase spadg

This integral can be calculated analytically: =4 by a quantity of the order of/c=3x10"°. This dif-

ference is hardly noticeable: from the practical point of view
the Gibbs attractor densely fills the phase space, resembling
, the canonical distribution.
(2) The energy distribution on the Gibbs attractor can be

H(E)=4\2E+1

K

| 2E
2E+1

E 2E
2E+1

(30 determined by substitution of E(2) into Eq.(26); thus we
whereK(x) and E(x) are complete elliptic integrals of the get
first and second kinds, respectively. A1 this function N 3yJw—1 fE ed(e) g 23
has the asymptotic form (Bw)=——= (26 11— w220 (33
¢(E)~+32E[In y32E—-1]. (3D It is convenient to introduce the temperature parameter
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9= (34)
3?1 0.03-

which is similar to the temperature of the equilibrium created
by a white noise heat bath and viscous damptde; D/ y: it
scales as the square of the force amplitude and as the inverse
of the damping parameter.

For values of frequency =1, after the substitution of the
asymptotic form Eq(32) in the numerator and disregard of
the quantity >—1) in the denominator, the integration in
Eq. (33) yields the simple formula 0.00

0.02 -

0.01 4

Probability density Q

Energy E

E
RE.w)=~ 6“” E+In32-3). (35 FIG. 2. The stationary probability distributio@(E) for the

Gibbs attractor of the Pullen-Edmonds model with the standard set

N of parameters ¥=2x10"3, F=0.3, and w=1.1). Theoretical
In the derivation of Eq(24) we have assumed that the ) i )

. . fi by Egs(25), (31), | | calcu-
energy damping in the absence of the external force is govl-Olrm given by Eqs(25), (31), and(39) (line) and numerical calcu

o ation (points.
erned by the equatiok=— yE. For the Pullen-Edmonds

model this relation must be corrfacted. The exact equation forhe maximal rate of increase of the energy due to the influ-
the energy damping has the fole+= —2yT, whereT is the  ence of the external forcdor F<1) is reached when the
kinetic energy(properly averaged but the virial ratiov (E) particle moves along th®X axis with its velocity in phase
=2T/E in general case depends on the energy. From thwith the external force, and equals

virial theorem for the homogeneous potentials of the pdwer

[22] it follows thatv (E) = const=2k/(k+2). For small ener- \F

giesE<1, the quartic term in the potentibl(x,y) is negli- P.= EF' (37)
gible, andv(E)~1, but in the domairE>1, that we are

interested in, this term becomes important. For a purely quaBalancing these quantities we find that the energy of the
tic potential we have (E)=4/3. Thus we may expect that system cannot exceed the value
for E>1 in the Pullen-Edmonds model<lv (E)<4/3; a

naive interpolation leads to the valugE)=7/6. The nu- E _F_2
merical calculation shows that the asymptotic value () 2y
for high energies is very close indeed to this value, with

accuracy not worse than 2% f&>20. Therefore for very For the standard s&, =8.3x 10°=800. The probability of
large values o) we can improve the expression flR(E, w) exceeding this value with the energy distribution given by
just by multiplying it by the factor 7/6; the corrected value of Egs.(25) and(26) is about exp{750); thus the upper limit
the damping parameter will be denotedijas is not observable.

Comparison of the theoretical form of the probability dis-  On the other hand, the attractor is not limited in the en-
tribution Q(E) (with the virial correction includedwith its  ergy from below. The basic approximation of nearly ergodic
values found numerically is shown in Fig. 2. motion is not applicable in this range. However, the system

The relaxation timer, for the diffusion process can be that at some moment is at rest, in the state \WthO, can be
estimated as the ratio of the square of the characteristic widttiriven by the external force to energies as high as
of the stationary distributioe.g., the variance of the distri-
bution Ve=(E?)—(E)?) to the average value of the diffu- E _F?(3w’+1)
sion coefficient:r, = Vg /(D). For the standard set of param- 07 2(w?—1)2
eters, a theoretical estimate based on Etf3, (31), and(32)
gives V=420, (D)=0.67, andr, =620, whereas the nu- (in the harmonic approximationFor the standard sk
merical calculation givesVg=315, (D)=0.42, and 7, =4.72. Thus in our case efficient communication between
=740. In our numerical experiments we have used time avstates with negligibly small energies and those in the nearly
eraging over the intervals about X10°~230r,, which en-  ergodic domain is possible.
sures high accuracy of the stationary distribution. (4) The motion of the system E@28) with the standard

(3) In opposition to the canonical distribution, the Gibbs set of parameters is found to be chaotic up to the maximal
attractor is limited in the phase space. From the equation foavailable times of numerical calculatiot= 1.7x 10° for ten
energy dissipation the average rate of energy loss due fgifferent initial conditiong. The time-averaged valug of

damping in the state with the energyis the energy of this motion i€~ 26. Changes in parameters
{v,F,0} that lead to diminution of the average energy of
P_=%E. (36) motion on the attractor, such as increase of damping or less-

(38

(39
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ening of the amplitude of the harmonic force, or driving this 1.0
force out of resonance with the chaotic unperturbed motion,
eventually suppress the chaotic motion. For some initial con-

ditions the system, after a more or less prolonged interval ofg 0.8
transient chaotic motion witE>1 (we note in passing that

the main results of our theory are applicable to long-living 0.6
transient chaos as well as to the perpetual) sapidly turns

to regular motion on a limit cycle or a torus with<1. This 0.4

behavior can have two explanations. ] %

(A) The Gibbs attractor turns into a semiattracting set that + %
supports a metastable chaotic motion. 0.2+ + % +

(B) The Gibbs attractor endures, but its basin of attraction . + { % E E
shrinks, thus ceding larger parts of the phase space to basir 0.0 i _ : , : , E i
of regular attractors. 0 50 100 150 200

At present we cannot choose between these alternatives

We can establish the border of the domain of the apparent
presence of the Gibbs attractor conventionally, as the surface FIG. 3. The normalized correlation function of enetmy( ) for
in the parameter space at which for 80% of randomly chosethe motion on the Gibbs attractor of the Pullen-Edmonds model
initial conditions the commencement of the regular motionwith the standard set of parameterg<(2x10 3, F=0.3, andw
takes less than:810" units of time. The detailed definition =1.1). The time shiftr is measured in periods of the harmonic
of this surface is a laborious task, so we have restricted ouffield. Theoretical approximation by first three terms of the expan-
selves by variation of each parameter in turn, with the othepion Eq.(43) (line) and numerical calculatiopoints.
two being fixed at the standard values. o . . ) )

W|th an increase Of damp|ng the domain Of presence OWhICh it becom'eS relat|Ve|y Smalll |n. C'0mpal’lson W|th the
the Gibbs attractor is limited by the valug=5x10"3, average potential force, thus maintaining the energy diffu-

where the transient chaotic motion has=11. With dimin- 5" picture adequately. .
ishing y the chaos persists: even for=0 the system dis- Finally, on the frequency scale the domain of presence of

plays chaotic motion, accompanied by unlimited spread 0¥he Gibbs attrac_tor IS "m'FEd by_the band from~0.93
the energy distribution with time. where_the transient chaotic motion h&s=7, to w~1.6
With a decrease of the amplitude of the force, the domairwhereE~11.
of presence of the Gibbs attractor is limited by the vafue (5) Since the energy of the system in our approach is the
~0.11 where the transient chaotic motion Has6. The ma_lin dynamical guantity, it is appropriate to study its corre-
increase of the forc& up to values far beyon&~1 does lation function
not bring any noticeable changes in the character of motion.
This can be explained as follows. The magnitude of the
external forcd= must be compared to the averadatisolut¢  Tne first term in the RHS of this equality can be expanded in
value of the force in the same direction, created by the statig Taylor series in the time shiftand written as
potential Fy=(| —dU/x|). On the energy surfacg it can
be calculated by integration:

Normalized correlator

Time shift ©

Be(7)=(E(0)E(n))—(E)%. (42

n

(EOE(1)= 3, Koy (43

4 2E 3+2E—-x®> [2E—x
FU_3¢(E) fo XTI x? 12 9 (40 where the coefficient&,, are equal to the products of the
initial energy and of the initial value of the energyith time
For large E this expression has the asymptoti¢s, derivative, averaged with the stationary distribution,
~E/InE. The temperature parameter can be writtenGas
= kF? with k>1, and the average energy of chaotic motion
in the domain of existence of the Gibbs attractoe-1, de-
pends on® as(E)~®/In ®. Thus for the average potential
force we have the estimat& )~ «x*F2In"2 «F, and for the ~ From Eq.(24) for the local rate of the energy change we

ratio F/(F ) we get haveE=—yE+A+D’ and

d"E
Kn=<E<0>W<0>>. (44)

F In*«kF K,=(EE)=(— yE2+AE+D'E). (45)

v The higher time derivatives & can be found by consequent
This quantity is always small and, moreover, decreases witHifferentiation of Eq.(24) in time, recurrent substitutions,
growth of F. In physical terms, the harmonic force, albeit and integrations by parts. For examn@=<EE>, where
large in comparison with the scales of the unperturbed )
model, heats the system to the level of the energy content, at E=(yE—-A-D')(y—A'-D")+(A"+D")D. (46)
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The normalized correlation function of energhe(7) power spectrum of the coordinate can be writferth m and
=Bg(7)/Bg(0), found in the numerical calculation, is com- a as unitg in the scaling form
pared to the theoretical estimate in Fig. 3.

The rate of decay of the energy correlations is determined o
by a competition of the absorption, which dominates in the JVE
lower energy range, and of the loss of energy through damp-
ing, which prevails in the upper range; they are balanced byvhereg(z) is some positive integrable function. From dis-
the stationarity equatio{‘E>=0. The dependence of this rate continuities of velocity for the law of motior(t) it follows

on the parameters of the model is rather complicated. that the high frequency asymptotics of the power spectrum
has the formS,(E,w)>w~*. Combining this formula with

Egs.(10), (26), and(47), we obtain the approximate form of
the exponent in the stationary distribution:

: (47)

1
SX(va): Eg

V. CONCLUSION

The study of the system of the type E®) may be im- JE
portant, since for many experimentally relevant Hamiltonian R(E,w)~— _E (49)
models one can indicate some mechanism of relaxation, ’ (Ol

which could be approximated by the viscous damping terms . .
at least qualitativgﬁl y ping where ®=cF?y 1w 2 andc is a numerical constant that

The obvious candidates for further studies of the Gibbsdepends on the specific form of the billiard. This estimate is

- < 2 T . - -
attractors are chaotic billiards. Our equations permit us to ge\faIId for E<w” for billiards of any dimensionality.

some simple estimates for this case. Since a billjzed se
has only two dimensional parameters, the particle nmass
and some characteristic siagthe scale of time depends on  This research was supported by the “Russian Scientific
the initial conditions and is proportional 8~ Y2 Thus the  Schools” programGrant No. NSh-1909.2003.2
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