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Gibbs attractor: A chaotic nearly Hamiltonian system, driven by external harmonic force

P. V. Elyutin*
Department of Physics, Moscow State University, Moscow 119992, Russia
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A chaotic autonomous Hamiltonian system, perturbed by small damping and small external force, harmoni-
cally dependent on time, can acquire a strange attractor with properties similar to that of the canonical
distribution—the Gibbs attractor. The evolution of the energy in such systems can be described as the energy
diffusion. For the nonlinear Pullen-Edmonds oscillator with two degrees of freedom, the properties of the
Gibbs attractor and their dependence on parameters of the perturbation are studied both analytically and
numerically.
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I. INTRODUCTION

The Brownian motion of a particle of massm in the static
potentialU(r ) can be described by the system of Lange
equations

mr̈1g ṙ1“U~r !5f~ t !, ~1!

where g is the viscous damping parameter andf(t) is the
random force~white noise! with Gaussian distribution and
mean values

^ f i~ t !&50, ^ f i~ t !, f j~ t8!&52Dd i j d~ t2t8!; ~2!

hered i j is the Kronecker symbol andd(x) is the Dirac delta
function @1#. The damping term and the random force pr
vide a phenomenological description of the interaction of
particle~in the potential! with its environment, which is fre-
quently called a heat bath. The dynamical system determ
by Eq. ~1! with g50 andD50 will be called isolated.

The ensemble of Brownian particles eventually will com
to an equilibrium with the stationary probability distributio
in the phase space given by the equation

Q~p,r !5N expS 2
H~p,r !

Q D , ~3!

where p5mṙ is the particle momentum,H(p,r )5p2/2m
1U(r ) is the Hamiltonian function of the isolated system
Q5D/g is the temperature, andN is the normalization con-
stant. The distribution Eq.~3! is known as the canonical, o
Gibbs, distribution; it serves as a central point of equilibriu
statistical physics@2#. From Eq.~3! follows the equilibrium
energy distribution

Q~E!5NF~E!expS 2
E

Q D , ~4!

where

F~E!5E d„E2H~p,r !…dp dr ~5!
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is the energy density of the phase volume on the ene
surfaceH(p,r )5E.

The canonical distribution Eq.~3! holds for the equilib-
rium state of the system Eq.~1! irrespective of the dimen-
sionality of the configuration spaced and regardless of the
nature of the motion of the isolated system, be it regu
~periodic, quasiperiodic! or chaotic.

Let us replace the random forcef(t) by a regular one tha
depends on time harmonically; the equations of motion w
take the form

mr̈1g ṙ1“U~r !5F sinvt. ~6!

If the motion of the isolated system is strongly chaotic, th
is, nearly ergodic on the energy surfaces in a wide range
energy values, then we can expect that the motion o
weakly perturbed system~g andF are small! will be chaotic
too. In parallel with the physical picture of the Brownia
motion given above, the external forceF sinvt will slowly
change the energy of the system, whereas the dampingg will
provide a sink for the excessive energy, thus creating
possibility of equilibrium.

The dissipative nonautonomous system Eq.~6! may dem-
onstrate the chaotic motion on a strange attractor, which
much in common with the canonical distribution Eq.~3!. For
this reason it will be called the Gibbs attractor.

The main purpose of this paper is to give an example o
system with the Gibbs attractor and to describe its main f
tures. They mostly depend on the kinetics of energy
change between the perturbation and the isolated sys
which can be described as a process of energy diffusion

The problem that we have formulated is at the crossr
of several lines of research in nonlinear dynamics and n
stationary statistical physics. First, it is linked to the theo
of chaos in nonautonomous Hamiltonian systems. In t
theory the concept of energy~or action! diffusion is used for
description of the infinite chaotic motion above the thresh
of its onset—in models like the periodically kicked rotor@3#
or a hydrogen atom in a microwave field@4,5#. Unlike our
problem, in these models the strong periodic perturbatio
the source that thrusts chaos on the system. Second,
problem is related to the theory of energy absorption by c
otic systems with parametric modulation, which is usua
developed~in both quantum and classical approaches! for
©2004 The American Physical Society07-1
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models of billiards with varying form@6,7#. As opposed to
our problem, the main concern here is the study of sl
variations, whereas we are interested in a perturbation w
frequencies that are comparable to the characteristic freq
cies of the unperturbed systems. Furthermore, in both af
mentioned theories the damping is completely neglec
Third, our problem has a relation to the actively develop
theory of Brownian motion under the influence of color
noise @8–11#, since one may consider the harmonic pert
bation as a limiting~monochromatic! case of narrowband
noise. In contrast to our problem, in this theory the unp
turbed motion is mainly one dimensional and thus regu
and damping is considered strong. Last, we note a con
tion to the issue of the effects of weak noise and damping
Hamiltonian systems that was discussed recently in the c
text of the problem of decay of metastable chaotic sta
@12,13#.

The rest of the text is organized as follows. In Sec. II t
main equation for the energy diffusion is deduced in t
ways. Section III consists of a description of the unperturb
model, the Pullen-Edmonds nonlinear oscillator, and
main features of its chaotic motion. Section IV comprise
description of the main properties of the Gibbs attractor
the model—its limits in the phase space, energy distribut
conditions of existence, and character of the energy corr
tion. Section V contains the concluding remarks.

II. ENERGY DIFFUSION

We will study the evolution of the distribution of energ
valuesQ(E,t) for a Hamiltonian chaotic system, perturbe
by small damping and small harmonic force. For the deri
tion of the equation of evolution forQ(E,t) we at first ne-
glect the damping~we shall restore it later, in Sec. II C!.

A. The quantum approach

The simplest approach is to start from the quantum mo
of the unperturbed system. Let us assume that at the in
moment the system is in a stationary stateun& with the energy
E. The external harmonic force will induce transitions wi
absorption~1! and emission~2! of the quanta\v. If the
motion of the classical system is chaotic and the power sp
trum of the active coordinatex is continuous, then for its
quantum counterpart in the quasiclassical case the densi
final states with allowed transitions is high, and the rate
these transitions can be described by the Fermi golden
With the account of dependence of matrix elements and d
sity of states on the energy within the transition range,
can obtain for the rate of transitions the expression

Ẇ6~E!5
2p

\2

F2

4 FS6
\v

2 S S81S
r8

r D G , ~7!

whereS5Sx(E,v) is the power spectrum of the coordina
x, r5r(E) is the density of states of the isolated syste
both taken at the energyE, and primes mean differentiatin
with respect to energy@18#.

The resonant absorption and emission of quanta popu
narrow bands of levels, which are located on the energy s
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around valuesE6k5E6k\v with integerk. We denote the
probability of finding the system in such a band of sta
around the energy valueE asQ(E). Taking account of one-
photon transitions we can write the balance equation

dQ~E!

dt
52Q~E!~Ẇ11Ẇ2!1Q~E1\v!Ẇ1

1Q~E2\v!Ẇ2 . ~8!

AssumingQ(E,t) to be a smooth function ofE, we can
expand the arguments in the second and third terms in
right-hand side~RHS! of Eq. ~8! to the order of\2 inclusive.
This yields the equation in partial derivatives that describ
the energy diffusion in the Hamiltonian system under t
influence of the external harmonic field:

]Q

]t
1

]

]E
~AQ!2

]

]E S D
]Q

]E D50. ~9!

Here the coefficients of driftA and of diffusionD are given
by the expressions

A~E,v!5
p

2
v2F2S

r8

r
, D~E,v!5

p

2
v2F2S. ~10!

It is essential that in the quasiclassical case, when the den
of states could be expressed by the Weyl formula

r~E!5
F~E!

~2p\!d , ~11!

the coefficientsA andD do not depend on Planck’s consta
\. The analogous derivation of the equation for the ene
diffusion in a conservative one-dimensional system under
influence of white noise was used in@19#.

B. The classical approach

Equation~9! does not depend on Planck’s constant, b
the condition of its applicability does. The Fermi golden ru
is based on the assumption of the resonant character o
transitions, which is justified only when the transition rateẆ
is much smaller than the perturbation frequencyv. Thus the
diffusion coefficient must obey the strong inequality

D!\2v3, ~12!

which is too restrictive for small\.
However, we can rederive Eq.~9! classically. In the zeroth

approximation we neglect the influence of the external fo
on the law of motionx(t). Then the instantaneous rate
energy change isĖ5 ẋ(t)F(t). Variation of the energy~for
the time intervalT!, D(T), in this approximation vanishes o
the average for symmetry reasons,^D(T)&50, whereas its
averaged square is

^D2~T!&5E
0

TE
0

T

Bv~ t12t2!F~ t1!F~ t2!dt1dt2 , ~13!
7-2
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whereBv(t) is the correlation function of thex component
of the velocity. If the unperturbed motion is ergodic, then t
correlation function is determined by the microcanonical
erage

Bv~t!5
1

F~E!
E ẋ~0!ẋ~t!d„E2H~p,r !…dpdr , ~14!

wherex(0) andx(t) are taken on the trajectory that starts
t50 at the phase point$p, r %. For timesT much larger than
the time of decay of velocity correlationstc , we can rewrite
Eq. ~13! in the form

^D2~T!&5
F2

2 E
0

T

duE
2`

`

Bv~t!cos~vt!dt. ~15!

The internal integral is proportional to the power spectrum
velocity, Sv(E,v). SinceSv(E,v)5v2Sx(E,v), we obtain
for the coefficient of energy diffusion the expressi
D(E,v)5(p/2)v2F2Sx(E,v), which coincides with the
one given above in Eq.~10!.

Let us assume that in the initial state the system has
energy E0 and denote asQ0(E,t) the energy distribution
with this initial condition, Q0(E,0)5d(E2E0). Equation
~15! can be rewritten as

^D2~T!&52E
0

T

D~E0!du. ~16!

The distributionQ0 spreads with time, including energy su
faces with different densitiesF and different diffusion coef-
ficients D. In the first approximation we can take this in
account by averaging these functions with the evolving d
tribution Q0(E,t):

^D2~T!&52E
0

T du

F~E0!
E dE Q0~E,u!G~E!, ~17!

whereG(E)5F(E)D(E). In the time interval in which the
distributionQ0(E,t) can be considered narrow, the functio
G(E) can be expanded in a Taylor series to the first orde
D5E2E0 . Thus we come to the equation

^D2~T!&52E
0

TS D~E0!1
G8~E0!

F~E0!
^D~u!& Ddu. ~18!

If the system on the average changes its energy with a
stant ratê D(t)&5at, then^D2(t)&5a2t212Dt. Substitut-
ing this expression in Eq.~18!, we obtain

D5D~E0!, a5
G8~E0!

F~E0!
. ~19!

The average rate of the energy variation in the state w
given distributionQ(E,t) can be obtained from Eq.~9!:

^Ė&5E ~A1D8!Q~E,t !dE. ~20!
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From Eqs.~19! and ~20! for the drift coefficient, we obtain
the expressionA(E,v)5D(E,v) @F8(E)/F(E)#, which
coincides with the one given above in Eq.~10!, since the
density of states is proportional to the density of the ph
volume @see Eq.~11!#.

In the classical derivation of Eq.~20! we have assumed
that the spreading of the initially localized energy distrib
tion during the correlation timetc is such that the correction
to the diffusion coefficient are small in comparison with
zero order valueADtcD8!D. Estimating the derivative as
D8;D/E, whereE is a characteristic energy of the system
we obtain the condition of applicability of the classical equ
tion of energy diffusion,

D!
E2

tc
, ~21!

which is much more tolerant than Eq.~12!. Bridging the gap
between Eq.~12! and Eq.~21! remains a challenge for th
quantum theory.

C. The account of damping

Now we turn to the account of damping. For systems
which the logarithmic rate of energy damping is consta
Ė52gE, the energy distribution can be written as

Q~E,t !5egtc~Eegt!, ~22!

wherec(z) is an arbitrary positive integrable function. Th
functional form can be expressed by the equation in par
derivatives

]Q

]t
5g

]

]E
~EQ!. ~23!

By combining Eqs.~9! and ~23! we obtain the equation o
energy diffusion in the perturbed chaotic system with dam
ing:

]Q

]t
2

]

]E S gEQ2AQ1D
]Q

]E D50. ~24!

Its stationary solution is given by the formulas

Q~E!5NF~E!exp@R~E,v!#, ~25!

R~E,v!52gE
0

E «

D~«,v!
d«, ~26!

whereN is the normalization constant. The stationary dist
bution can be canonical, Eq.~6!, only in the special case
when the diffusion coefficient is exactly proportional to e
ergy.

III. THE MODEL

Equations~25! and~26! can be checked by direct numer
cal solution of the system Eq.~6! for any given potential
U(r ). The calculation ofQ(E) is relatively easy; however
7-3
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the estimation of the integral in the RHS of Eq.~26! is much
more demanding, since at every integration step in« the
power spectrumSx(«,v) has to be calculated with sufficien
accuracy. Instead of this computation we will proceed w
analytical approaches workable with a special choice of
model.

We take the Pullen-Edmonds oscillator@14#, which de-
scribes the two-dimensional motion of a particle in a qua
potential, as the model for the isolated system. The Ham
tonian of this system is

H5
1

2m
~px

21py
2!1

mv0
2

2 S x21y21
x2y2

l2 D . ~27!

In the following we use the particle massm, the frequency of
small oscillationsv0 , and the nonlinearity lengthl as unit
scales, and write all equations in dimensionless form.

The properties of chaotic motion of the Pullen-Edmon
model are thoroughly studied@15–17#. With an increase of
energy the system becomes more chaotic both in exten
@that is, characterized by the measure of the chaotic com
nentms(E) on the surface of Poincare´ section# and in inten-
sive @that is, measured by the magnitude of the Lyapun
exponents(E)] aspects. For values of energyE.2.1 the
measurems.0.5, and chaos dominates in the phase spa
for E.5 the chaotic motion of the system is approximate
ergodic@15#.

For the selected model Eqs.~6! have the form

ẍ1g ẋ1x~11y2!5F sinvt,

ÿ1g ẏ1y~11x2!50; ~28!

the external force is chosen to be directed along theOX axis.
It may be noted that it is sufficient to couple the extern
force to only one dynamical variable, as opposed to
Langevin forces given by Eq.~2!: in a chaotic system the
interaction between vibrational modes will secure the red
tribution of energy.

For a particle in a two-dimensional potential the value
F(E) is proportional to the areaf(E) of the region that is
bound by the equipotential lineU(x,y)5E, namely,F(E)
52pf(E). For the Pullen-Edmonds model

f~E!54E
0

A2EA2E2x2

11x2 dx. ~29!

This integral can be calculated analytically:

f~E!54A2E11FKSA 2E

2E11D 2ESA 2E

2E11D G ,
~30!

whereK(x) and E(x) are complete elliptic integrals of th
first and second kinds, respectively. ForE@1 this function
has the asymptotic form

f~E!'A32E@ ln A32E21#. ~31!
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The approximate expression for the power spectrum
the coordinatex for the Pullen-Edmonds model was obtain
in Ref. @17# from the assumption of ergodicity of motion an
in the ‘‘frozen frequencies’’ approximation:

Sx~E,v!5
2

3f~E!
~2E112v2!3/2v22~v221!21/2

~32!

for 1,v,A2E11 andSx(E,v)50 outside this range. The
comparison of this formula with the numerically found spe
trum is shown in Fig. 1.

It can be seen that the main body of the spectrum, a
from a small interval of frequencies aroundv51, is de-
scribed satisfactorily.

IV. THE GIBBS ATTRACTOR

In this section we study different properties of the moti
on the Gibbs attractor. For the numerical calculation we w
mainly use the following set of parameters:g5231023,
F50.3, andv51.1, which corresponds toQ5103. Later it
will be referred to as the standard set.

~1! The motion of our model on the Gibbs attractor
chaotic: numerical computation gives for its Lyapunov exp
nents50.65(2). From the Kaplan-Yorke conjecture@20,21#
it follows that the fractal dimensionality of the attractorDF
will differ from the dimensionality of the phase spacedp
54 by a quantity of the order ofg/s5331023. This dif-
ference is hardly noticeable: from the practical point of vie
the Gibbs attractor densely fills the phase space, resemb
the canonical distribution.

~2! The energy distribution on the Gibbs attractor can
determined by substitution of Eq.~32! into Eq.~26!; thus we
get

R~E,v!52
3gAv221

pF2 EE «F~«!

~2«112v2!3/2d«. ~33!

It is convenient to introduce the temperature paramete

FIG. 1. The dependence of the power spectrum of the coordi
Sx of the Pullen-Edmonds model Eq.~27! on frequencyv for the
energy valueE516. Theoretical estimate Eq.~32! ~line! and nu-
merical calculation~points!.
7-4
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GIBBS ATTRACTOR: A CHAOTIC NEARLY . . . PHYSICAL REVIEW E69, 036207 ~2004!
Q5
pF2

3gAv221
, ~34!

which is similar to the temperature of the equilibrium crea
by a white noise heat bath and viscous damping,Q5D/g: it
scales as the square of the force amplitude and as the inv
of the damping parameter.

For values of frequencyv*1, after the substitution of the
asymptotic form Eq.~32! in the numerator and disregard o
the quantity (v221) in the denominator, the integration i
Eq. ~33! yields the simple formula

R~E,v!52
E

Q
~ ln E1 ln 3223!. ~35!

In the derivation of Eq.~24! we have assumed that th
energy damping in the absence of the external force is g
erned by the equationĖ52gE. For the Pullen-Edmonds
model this relation must be corrected. The exact equation
the energy damping has the formĖ522gT, whereT is the
kinetic energy~properly averaged!, but the virial ratiov(E)
52T/E in general case depends on the energy. From
virial theorem for the homogeneous potentials of the powek
@22# it follows that v(E)5const52k/(k12). For small ener-
giesE!1, the quartic term in the potentialU(x,y) is negli-
gible, andv(E)'1, but in the domainE@1, that we are
interested in, this term becomes important. For a purely q
tic potential we havev(E)54/3. Thus we may expect tha
for E@1 in the Pullen-Edmonds model 1,v(E),4/3; a
naive interpolation leads to the valuev(E)57/6. The nu-
merical calculation shows that the asymptotic value ofv(E)
for high energies is very close indeed to this value, w
accuracy not worse than 2% forE.20. Therefore for very
large values ofQ we can improve the expression forR(E,v)
just by multiplying it by the factor 7/6; the corrected value
the damping parameter will be denoted asg̃.

Comparison of the theoretical form of the probability d
tribution Q(E) ~with the virial correction included! with its
values found numerically is shown in Fig. 2.

The relaxation timet r for the diffusion process can b
estimated as the ratio of the square of the characteristic w
of the stationary distribution~e.g., the variance of the distri
bution VE5^E2&2^E&2) to the average value of the diffu
sion coefficient:t r5VE /^D&. For the standard set of param
eters, a theoretical estimate based on Eqs.~10!, ~31!, and~32!
gives VE5420, ^D&50.67, andt r5620, whereas the nu
merical calculation givesVE5315, ^D&50.42, and t r
5740. In our numerical experiments we have used time
eraging over the intervals about 1.73105'230t r , which en-
sures high accuracy of the stationary distribution.

~3! In opposition to the canonical distribution, the Gib
attractor is limited in the phase space. From the equation
energy dissipation the average rate of energy loss du
damping in the state with the energyE is

P25g̃E. ~36!
03620
d

rse

v-

or

e

r-
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v-

or
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The maximal rate of increase of the energy due to the in
ence of the external force~for F!1) is reached when the
particle moves along theOX axis with its velocity in phase
with the external force, and equals

P15AE

2
F. ~37!

Balancing these quantities we find that the energy of
system cannot exceed the value

E15
F2

2g̃2 . ~38!

For the standard setE158.33103580Q. The probability of
exceeding this value with the energy distribution given
Eqs.~25! and ~26! is about exp(2750); thus the upper limit
is not observable.

On the other hand, the attractor is not limited in the e
ergy from below. The basic approximation of nearly ergod
motion is not applicable in this range. However, the syst
that at some moment is at rest, in the state withE50, can be
driven by the external force to energies as high as

E05
F2~3v211!

2~v221!2 ~39!

~in the harmonic approximation!. For the standard setE0
54.72. Thus in our case efficient communication betwe
states with negligibly small energies and those in the ne
ergodic domain is possible.

~4! The motion of the system Eq.~28! with the standard
set of parameters is found to be chaotic up to the maxi
available times of numerical calculation (t51.73105 for ten
different initial conditions!. The time-averaged valueĒ of
the energy of this motion isĒ'26. Changes in parameter
$g,F,v% that lead to diminution of the average energy
motion on the attractor, such as increase of damping or l

FIG. 2. The stationary probability distributionQ(E) for the
Gibbs attractor of the Pullen-Edmonds model with the standard
of parameters (g5231023, F50.3, and v51.1). Theoretical
form given by Eqs.~25!, ~31!, and~35! ~line! and numerical calcu-
lation ~points!.
7-5
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ening of the amplitude of the harmonic force, or driving th
force out of resonance with the chaotic unperturbed mot
eventually suppress the chaotic motion. For some initial c
ditions the system, after a more or less prolonged interva
transient chaotic motion withĒ@1 ~we note in passing tha
the main results of our theory are applicable to long-livi
transient chaos as well as to the perpetual one! rapidly turns
to regular motion on a limit cycle or a torus withĒ&1. This
behavior can have two explanations.

~A! The Gibbs attractor turns into a semiattracting set t
supports a metastable chaotic motion.

~B! The Gibbs attractor endures, but its basin of attract
shrinks, thus ceding larger parts of the phase space to ba
of regular attractors.

At present we cannot choose between these alternati
We can establish the border of the domain of the appa

presence of the Gibbs attractor conventionally, as the sur
in the parameter space at which for 80% of randomly cho
initial conditions the commencement of the regular mot
takes less than 33104 units of time. The detailed definition
of this surface is a laborious task, so we have restricted
selves by variation of each parameter in turn, with the ot
two being fixed at the standard values.

With an increase of damping the domain of presence
the Gibbs attractor is limited by the valueg5531023,
where the transient chaotic motion hasĒ'11. With dimin-
ishing g the chaos persists: even forg50 the system dis-
plays chaotic motion, accompanied by unlimited spread
the energy distribution with time.

With a decrease of the amplitude of the force, the dom
of presence of the Gibbs attractor is limited by the valueF

'0.11 where the transient chaotic motion hasĒ'6. The
increase of the forceF up to values far beyondF'1 does
not bring any noticeable changes in the character of mot

This can be explained as follows. The magnitude of
external forceF must be compared to the averaged~absolute!
value of the force in the same direction, created by the st
potentialFU5^u2]U/]xu&. On the energy surfaceE it can
be calculated by integration:

FU5
4

3f~E!
E

0

A2E
x

312E2x2

11x2 A2E2x2

11x2 dx. ~40!

For large E this expression has the asymptoticsFU
;E/ ln E. The temperature parameter can be written asQ
5kF2 with k@1, and the average energy of chaotic moti
in the domain of existence of the Gibbs attractor,Q@1, de-
pends onQ as ^E&;Q/ ln Q. Thus for the average potentia
force we have the estimate^FU&;k2F2 ln22 kF, and for the
ratio F/^FU& we get

F

^FU&
;

ln2 kF

k2F
. ~41!

This quantity is always small and, moreover, decreases
growth of F. In physical terms, the harmonic force, albe
large in comparison with the scales of the unperturb
model, heats the system to the level of the energy conten
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which it becomes relatively small in comparison with th
average potential force, thus maintaining the energy di
sion picture adequately.

Finally, on the frequency scale the domain of presence
the Gibbs attractor is limited by the band fromv'0.93
where the transient chaotic motion hasĒ'7, to v'1.6
whereĒ'11.

~5! Since the energy of the system in our approach is
main dynamical quantity, it is appropriate to study its cor
lation function

BE~t!5^E~0!E~t!&2^E&2. ~42!

The first term in the RHS of this equality can be expanded
a Taylor series in the time shiftt and written as

^E~0!E~t!&5 (
n50

`

Kn

tn

n!
, ~43!

where the coefficientsKn are equal to the products of th
initial energy and of the initial value of the energy’snth time
derivative, averaged with the stationary distribution,

Kn5 K E~0!
dnE

dtn
~0!L . ~44!

From Eq. ~24! for the local rate of the energy change w
haveĖ52gE1A1D8 and

K15^EĖ&5^2gE21AE1D8E&. ~45!

The higher time derivatives ofE can be found by consequen
differentiation of Eq.~24! in time, recurrent substitutions
and integrations by parts. For example,K25^EË&, where

Ë5~gE2A2D8!~g2A82D9!1~A91D-!D. ~46!

FIG. 3. The normalized correlation function of energybE(t) for
the motion on the Gibbs attractor of the Pullen-Edmonds mo
with the standard set of parameters (g5231023, F50.3, andv
51.1). The time shiftt is measured in periods of the harmon
field. Theoretical approximation by first three terms of the exp
sion Eq.~43! ~line! and numerical calculation~points!.
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The normalized correlation function of energybE(t)
5BE(t)/BE(0), found in the numerical calculation, is com
pared to the theoretical estimate in Fig. 3.

The rate of decay of the energy correlations is determi
by a competition of the absorption, which dominates in
lower energy range, and of the loss of energy through da
ing, which prevails in the upper range; they are balanced
the stationarity equation̂Ė&50. The dependence of this ra
on the parameters of the model is rather complicated.

V. CONCLUSION

The study of the system of the type Eq.~8! may be im-
portant, since for many experimentally relevant Hamilton
models one can indicate some mechanism of relaxat
which could be approximated by the viscous damping te
at least qualitatively.

The obvious candidates for further studies of the Gib
attractors are chaotic billiards. Our equations permit us to
some simple estimates for this case. Since a billiardper se
has only two dimensional parameters, the particle masm
and some characteristic sizea, the scale of time depends o
the initial conditions and is proportional toE21/2. Thus the
s

v

ry

. E

03620
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s
et

power spectrum of the coordinate can be written~with m and
a as units! in the scaling form

Sx~E,v!5
1

AE
gS v

AE
D , ~47!

whereg(z) is some positive integrable function. From di
continuities of velocity for the law of motionx(t) it follows
that the high frequency asymptotics of the power spectr
has the formSx(E,v)}v24. Combining this formula with
Eqs.~10!, ~26!, and~47!, we obtain the approximate form o
the exponent in the stationary distribution:

R~E,v!'2
AE

Q
, ~48!

where Q5cF2g21v22 and c is a numerical constant tha
depends on the specific form of the billiard. This estimate
valid for E!v2 for billiards of any dimensionality.
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