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Estimating model parameters by chaos synchronization
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Using chaos synchronization and a proposed iterative method of parameter adaption, we precisely estimate
the model parameters of chaotic systems and synchronize two chaotic systems with originally mismatching
model parameters. This parameter adaption method can be applied to a spatiotemporal chaotic system with a
one-way-coupled map lattice. As a biomedical application, this method is capable of estimating the asymmetric
tension parameter of a vocal fold model.
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Chaos synchronization has recently become subject of insystem with the same model equation but different model
tensive studyf1-5| and it has been applied to speech com-parameters can be described as
munication[6,7]. Despite the sensitivity of chaotic systems
to initial conditions, two chaotic systems, when appropriately ~ y=F(p,y,s), yeR™ p={p:i.ps ....pu}". (@
coupled, can be synchronized, opening up a new area of
research. In practical applications of chaos synchronizatiori-or smalle=y—x, the difference dynamics has the Taylor
parameter mismatches inevitably exist, and these mismatchespansion:
have been found to play an important role in the degradation
of synchronizatiori1,3,8]. Thus, synchronizing two chaotic : - -
systems with originally mismatching parameters becomes e=Fy(p.y,s)e+ Zl Fo,(PiY,S)AD;
significant. On the other hand, global and local techniques o
[9,10] have been used in recent years to reconstruct model 1
parameters of chaotic systems from a time sdriés Inevi- + >
table prediction errors decrease the applicability of these ap-
proximation methods to high-dimensional systems, particu- _ _
larly spatiotemporal chaotic systems. Chaos synchronizatiowhereAp;=p;—p;. Whenp=p, we consider that, using the
has provided researchers with techniques to synchronizecalar observabls(t) constructed by the decomposition in-
high-dimensional systems, and it could be a promisingroduced by Pecora and Carrfll] or by active-passive de-
method for precisely estimating model paramefé-14. composition[2], Eg. (3) has a stable zero solutiop—0

In this paper, based on chaos synchronization, we proposeith t—o. As a result, the two systems are synchronrus
an iterative method of parameter adaption to estimate modety. However, whem\ p;# 0, the synchronization error does
parameters. Adaptive parameter control can be determinewbt converge to zero. For significantly small parameter mis-
by using a parameter difference map. The stable zero solunatche§Ap;/p;j|<1, the linearized Eq(3) is integrated as
tion of this map demonstrates that two chaotic systems with
an original parameter mismatch are finally synchronized, and t M -
their model parameters converge to the same results. We also et)= j e(t—7) > F;(piy.s)Apdr. 4

. . . 0 i=1

used this parameter adaption method to estimate the model
parameters of a spatiotemporal chaotic system with a on
way-coupled open map lattic®COML) and to synchronize

M

M 2
(9+2 N F(pi.y.s)+ A3
e— - i iy, ey
& g P Ry

®hen, we describe the relationship betwessnd Ap as

spatiotemporal chaotic systems. One application of this e=BAp (5)

method to biomedical systems is to estimate asymmetric ten- '

sion parameters in a biomechanical model of vocal folds. \yhere e={e;.e, ... en" and Ap
To study chaos synchronization and adaptive paramete_L{Apl,Apz, ... Apu}T. B={B,,B,, ... Byl is the

control, we consider unidirectionally coupled systems, let- . ~ . o
ting the drive system be function of p;, y, s. To obtainB;, the M additional sub-

systems with parameterp®={p;, ... pi+A, ....pul"
_ are constructed by slightly perturbing the model parameters
x=F(p,x,8), xeR™ p={p1,p2,....pu}" (1)  of the responsef15]. The state difference between théx
subsystem and the response systerd(ls ThenB; can be

with the driving function beings=h(x) [2]. The response approximately estimated bi;=e’/A. Thus, for a time-
evolution vectore(j 7) with the time intervalk- and lengthN,

Ap can be approximated by using the least-squares fit
*Electronic address: zhang@surgery.wisc.edu EJN:OHe(j 7) —BAp|?=minimum as
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AB _ (“B'T“B‘) -15Te (6) l Parameter Adaption

4 @
B and Ap are approximations oB and Ap underA<1 \

and |Ap;/pi|<1. Furthermore, for larger parameter mis- _ 3

matches, the high-order perturbations in Ef). would pro- % 5 p,/20

duce the differencéAB|=|B—B|~ & (when|Ap;/pi|<1, \ 210

6<1 is satisfiefl Therefore, to approach the model param- :
eterp of the drive system within a wider range of parameter ) ' ) ' ) ' ' '
mismatches, based on Ed5) and (6), we here propose an , \

iterative scheme of parameter adaption: we estimate the pa 101 \

rameter differencé\p(k) using Eq.(6), and then adjust the
response parameters usingk+1)=p(k)—Ap(k) until 10" 4

Ap(k) approaches zero when iterative numbkeis signifi- !
cantly large. This iteration procedure can be formulated, and .}

its convergence can be determined by the following param- 5 10 k 5 20 25
eter difference map:

—

®)

FIG. 1. (a) The convergence of the response model parameters
Ap(k+1)=P(k)Ap(k), k=1,2,..., (7)  (p1.p2.ps) to (10,40,8/3. (b) The time-averaged synchronization

~ error, wherer=0.01, N=10%, andA=10"%.
where Ap(k)=p(k)—p, p(1)=p, P(k)
—BT(L\R —1RT —B(lk) — ~ ~
=[B (k)B(k)]""B (k)AB(k), and AB(k)=B(k)—B(k). [1,16]. When the original values @i, andps are chosen in

For the boundedB'(k)B(k)] 'BT(k) and small perturba- the black region | of Fig. 2, the influences of high-order
tion [|[AB[~ <1, |P|<1 and||PT||'<1 are yielded, antzj thus perturbation terms in Eq3) are small, and thus, E¢7) has

Eq. (7) has a stable zero solution, that is, [im Api(k) 3 stable zero solution. The final resultsafandps converge

=0 whenk is significantly large. Therefore, this iterative to 10 and 8/3, respectively, and synchronization is achieved.
scheme of parameter adaption is effective when the origingHowever, when the original values f,fl andf)g, are out of
values of the response parameters are within a certain ranggis region(see the white region )|,| the |arge parameter and
Otherwise, significantly large parameter mismatches maytate differences lead to an unstable zero solution of Bg.
lead to an unstable zero solution of E®), and thus the Thus, in region II, the parameters of the response system
parameter adaption would not work. By using this parametegannot converge to those of the drive system and synchroni-
adaption method, the parametg(%) of the response system zation is impossible.

asymptotically converge tp of the drive system, so thattwo  Parlitz [12] proposed an autosynchronization method to
chaotic systems with an original parameter mismatch can bestimate model parameters of the Lorenz system, in which an
finally synchronized. This algorithm is applicable to both ansatz for the parameter control loop is required. When the
continuous and discrete time systems. In particular, (£g.  system is very complicated, predefining the smooth control-
also can be deduced from the feedback method of chading forces and the parameter control loop may be compli-
synchronization 3], suggesting its general applicability to
chaos synchronization.

To show the iterative process of parameter adaption, we
consider the first example using the Lorenz system:
=pi(y—X), y=p,S—y—Sz z=Sy—psz, and the driving
signals(t)=x. Whenp;=p;, synchronization occurs witk
driving [1]. The original model parameterp,p-,,p3) of the
drive and response systems &t6,40,8/3 and(16,45.92,4,
respectively. In Fig. (@), when parameter adaption is im-
posed, the response parameters converge to 10, 40, and 8/3,
indicating that this technique allows us to estimate exactly
the model parameters of the drive system. The time-averaged
synchronization erroE=(1/N7)[{7|x—y||?dt decreases to
zero, and two chaotic systems with an original parameter
mismatch are finally synchronolysee Fig. 1b), where 7
=0.01,N=10% andA=10"4]. The iterative method of pa-
rameter adaption works even for a large original parameter
mismatch, demonstrating its robustndsee Fig. 2, where FIG. 2. The dependence of the parameter estimation results on
p,=p,=40). Once the parameter estimation has beerthe original values op; andps, wherep,=p,=40. In the black
achieved, synchronization is robust to external perturbationgegion I, p,; andp; converge to 10 and 8/3, respectively.
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cated tasks. However, our adaption method does not require
any predefined control loop. By iterating the parameter dif-
ference map, the adaptive parameter control is dynamically
achieved. The robustness of this method allows us to esti-
mate model parameters of very complex systems. In the sec-
ond example, we show that this method can be applied to
estimate the model parameters of a spatiotemporal chaotic
system. Although, there are some other attempts, such as
adaptive contro[13] and random optimizatiofil4], for es-
timating model parameters using chaos synchronization. The
applicability of these methods to spatiotemporal chaotic sys-
tems has not yet been examined.

The coupled map lattice model is used because of its wide
variety of novel and complex spatiotemporal behaviors, in-
cluding spatiotemporal cha$4,17]. The drive OCOML sys-
tem with lengthL is represented as

Xl(n+1):f(xl(n)uu/)1 g(n)zzef(xl(n)!ﬂ/);
Xi(n+1)=(1—e)f(x(n), )+ ef (x;_1(n), ),  (8)

and we let the response system be

Time

Time

Timy
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yi(n+1)=(1-2€")f(ys(n),u")+g(n),
yitn+1)=(1-€e")f(yi(n),u")+ e f(yi—2(n),u’), (9

where the subscripgt=1,2, . .. L denotes the lattice site in-
dex, andn is the time index.e and €’ are the coupling
constantsy andu’ are the nonlinear parameters of the non-
linear functionf(x). For u=u' ande=¢€’, the decomposi-
tion given byg(n)=2ef(x,(n),«) leads to the synchroniza-
tion condition |(1—2¢)f, [<1 and[(1—e€)f,|<1 [6]. By
letting L=100, f(x)=1—pux? wu=1.9, ande=0.4, we

show the spatiotemporal chaotic pattern of the drive

OCOML system in the top curve of Fig. 3. A different spa-
tiotemporal pattern of the response system with=1.8 and
€' =0.3 is shown in the middle curve of Fig. 3. When pa-
rameter adaption witth=10"* andN=10* is applied, the
response parameters convergeuto=1.9 ande’ =0.4. The

spatiotemporal chaotic pattern of the drive system is recon-

structed in the response system without efsee the bottom

curve of Fig. 3. Parameter estimation and spatiotemporal

FIG. 3. The spatiotemporal chaos in the drive system with
=1.9 ande=0.4 (top), the response system with the original pa-
rametersu’ = 1.8 ande’ =0.3 (middle), and the response system
with the estimated parametess = 1.9 ande’ = 0.4 (bottom). Pixels
are black wherx;(n)=0.75 and otherwise whitgt].

a genetic algorithm to extract the parameters of one-mass
vocal fold model. However, one-mass model is an oversim-
plification of the vocal fold dynamics since two or more
modes are needed to capture vocal fold vibrafidg]. In
particular, whether the method by Trevisanal. is capable

for chaotic model of vocal folds had not been determined. To
study chaotic vibrations of vocal folds, we applied a two-
mass model proposed by Steinecke and Hef26l. The
systematic diagram is illustrated in Fig. 5. This two-mass
model of vocal folds combines nonlinear biomechanical and
aerodynamic effects. Asymmetric tension paraméteepre-

chaos synchronization are achieved even when the original
values of the response parameters are chosen liberally within
a certain range. Figure 4 shows the effects of the original
values ofu’ ande’ on parameter adaption. When the origi-
nal values ofu’ and e’ are within the black region |, their
asymptotic results go tp=1.9 ande= 0.4, and synchroni-
zation is achieved. Therefore, this method of parameter adap-
tion allows us to estimate model parameters of a spatiotem-
poral chaotic system. However, within the white region I,
Eq. (7) has an unstable zero solution, and thus the response
parameters do not converge to the drive parameters and the
synchronization of spatiotemporal chaos cannot be achieved.
In the third example, we investigate a biomedical appli-

0 0.2 0.4 e 0.6 0.8

cation of this parameter adaption method to a vocal fold FIG. 4. The dependence of the parameter estimation results on
system. Vocal fold model plays an important role in studyingthe original values ofx’ ande’. In the black region I, the applied
voice physiology. Estimation of model parameters is a clini-parameter adaption leads to the convergencg’ofind €’ to 1.9

cally significant but difficult task. Trevisagt al.[18] applied

and 0.4, respectively.
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FIG. 6. (a) The chaotic attractor of the vocal fold model in the
Trachea Poincare section fax;;=0. (b) The convergence of the asymmetric
FIG. 5. The schematic diagram of the vocal fold model. :)egzgm parameteQ(k) from two original values 0.3 and 1 to

sents an important parameter for assessing voice disorders _ _
resulting from vocal fold paralyses. When the asymmetricr_l'o_oréé_krz'__r2|2_0'02’_3|l(1'_0'0_8ék k”_gk“’ Kz

tension parametd deviates from the normal value 1, chaos — 7~ k2f:Q 2l Ckl'__ i(' : ij'__ozz" Cclj’ __(8%1' » Cor

associated with disordered voice in patients with Iaryngeal:aQCZ_"0 0‘%‘722245 a;rd_PQ—C(l)’O 1é_ Abp?;/iné_thé ?ﬁe?ﬁ%) d
aralysis may occur. Although the clinical importance of the ™ €02~ ¥-¥~, 1™ =, ST T

paralysis may oc g : b irsuggested by Henof23] to the vocal fold mode[24], a

ear approximation cannot accurately measQrén chaotic Poincare section fox;;=0 shows a chaotic attractor in Fig..
models[21,27]. Here we apply chaos synchronization andG(a). To measurd), a feedback method of chaos synchroni-

the parameter adaption method to estimate asymmetric tef@tion[3] is applied to the response system,
sion paramete of the two-mass model whose dynamics _ a
SatISerS[ZO] mi’ayia_l— riayia+ ki’ayia_l— G)( - ai)ci,az_ll + k(,:a(yia_ yja)

. . a .
miaxia+riaxia+kiaxia+®(_ai)cia2_|l+kCu(Xia_xja) =Pildi+K(Xjo=Yia) T K(Xia=Via), (11

Plzps[l_e)(amin) O(ay),

—P,Id,, (10) whereK=5 is the feedback coefficient,=m; , ki =k; ,
a=Ker,  ci=ci, mi=m;/Q(k), ki=Q(K)ki, k¢
where the pressures are =Q(k)ke, andc{,=Q(k)c; . The iterative method of pa-
5 rameter adaption is applied to control the parame@(s),
@) m{,, ki, k., ¢, of the response system. With an increase
a; of k, Fig. 6b) shows the convergent results Q{k) of the
response system. Here, although the response sysi¥(k)s
P,=0. begins from two different original valu¢€(0)=0.3 and 1],
) the asymptotical values @ (k) converge to the true value
The function 0.529. When @) is within the region 0.2&Q(0)<3.1, the
asymmetric parameter value 0.529 of the drive vocal fold
®(X):{tanr(50x/)(0)’ x>0 model can be precisely estimated. Therefore, applying chaos
0, x=0 synchronization and this parameter adaption method makes it
practical to calculate asymmetric tension parameters in a
describes the vocal fold collision. The minimal glottal area ischaotic vocal fold model.
@min=Min(@y ,ay)+min(@y, ,ay), and a;=ag;+!(Xj+X;) In this paper, we have proposed an iterative scheme of
=a; +a;, describes the lower and upper glottal areg,is  parameter adaptions based on chaos synchronization. When
the oscillation amplitude. The indicdsj=1,2 denote the parameter adaptions are used, two chaotic systems with an
upper and lower masses=1,r denotes left and right vocal original parameter mismatch are finally synchronized and
folds. mi,, Tia» Kia» Keo» @ndc;, denote masses, damping their model parameters converge to the same results. This
ratio, stiffness, coupling stiffness, and additional stiffnessparameter adaption method has a potential application in de-
respectivelyQ describing the tension imbalance in unilateral coding chaotic secure communication. Previous works have
superior nerve paralysis satisfies, =m; /Q, k;, =Qk; , suggested that by using chaos synchronization, information
k., =Qk., andc;, =Qc; . WhenQ=0.529, a chaotic vibra- signals can be recovered in a response system that has the
tion is produced for the standard parameter configuratiosame keys or model parameters as a drive system, but cannot
[20]: my;=0.125, my,=my,/Q, my=0.025, m,,=m,, /Q, be decoded by a decoder with different kdits-6]. How-
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ever, using the parameter adaption method in chaotic contem and synchronize two spatiotemporal chaotic systems. Fi-
munication, the decoder may decode the message as well Bglly, we have presented a biomedical application example in
the keys of the encoder without exactly knowing the modelvocal folds. We are able to estimate the asymmetric tension
parameters. A spatiotemporal chaotic system may not guaRarameter associated with unilateral superior nerve paralysis.

antee that its model parameters can avoid being decoded. !N Piomedical systems, a model equation can usually be
Global and local technique®,10] have been used to re- specified, but direct measures of system parameters are dif-

construct model parameters of chaotic systéits. A local Ecult. Chaos synchronization and parameter adaptions may

method i spatial extended ystems as been use topreclatte 1S4 MEods at caf b beed Lo esmae ur
a spatiotemporal time seri¢25]. However, this method in-

volves numerous calculations, and in particular, the model This work was supported by NSF of Chiri&rant No.
parameters of spatiotemporal chaotic systems have not be@©074035 and No. 19834040and NIH Grant No.
estimated. We have applied a simple method to estimate theER01DC006019-01 from the National Institute of Deafness
model parameters of a spatiotemporal chaotic OCOML sysand Other Communication Disorders.
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