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Three-dimensional chaotic flows with discrete symmetries

G. M. Chechin* and D. S. Ryabov
Department of Physics, Rostov State University, Russia

~Received 16 September 2003; published 11 March 2004!

There are a number of well-known three-dimensional flows with quadratic nonlinearities, which demonstrate
a chaotic behavior. The most popular among them are Lorenz and Ro¨ssler systems. Using an exhaustive
computer search, J. Sprott found 19 examples of chaotic flows with either five terms and two quadratic
nonlinearities or six terms and one nonlinearity@Phys. Rev. E50, R647~1994!#. In contrast to this approach,
we use symmetry-related considerations to construct types of chaotic flows with an arbitrary dimension. The
discussion is based on our previous work devoted to nonlinear dynamics of the physical systems with discrete
symmetries@see Physica D117, 43 ~1998!, etc.#. Here, we present all possible chaotic flows with quadratic
nonlinearities which are invariant under the action of 32 point groups of crystallographic symmetry. These
systems demonstrate a typical chaotic behavior as well as general dynamical properties of nonlinear systems
with discrete symmetries. In particular, we found a dynamical system with the point symmetry groupD2 which
seems to be more simple and more elegant than those by Lorenz and Ro¨ssler.

DOI: 10.1103/PhysRevE.69.036202 PACS number~s!: 05.45.Ac, 05.45.Df, 02.20.Hj
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I. INTRODUCTION

The theory of nonlinear dynamics of physical syste
with discrete symmetries was developed in a number of
previous papers@1–7#. In particular, the fundamental conce
of bushesof normal modes, which representexactnonlinear
excitations in such systems, was introduced in Ref.@1#.
Some theorems about the structure of the bushes of m
were stated and proved in Ref.@2#. Group-theoretical meth
ods, based on the theory of irreducible representations o
symmetry groups, were developed in Refs.@1,2#. Bushes of
vibrational modes of small dimensions for different class
of discrete symmetry~for all point groups of crystallographic
symmetry, for some space groups, for the fullereneC60, etc.!
were obtained in Refs.@1,3,4#. All ‘‘irreducible’’ bushes of
modes and symmetry determined similar nonlinear nor
modes, introduced by Rosenberg@8#, for all mechanical sys-
tems with any of 230 space groups, were found in Ref.@5#.
The stability of the bushes of vibrational modes for th
Fermi-Pasta-Ulam chains and for simple octahedral syst
with Lennard-Jones potential was investigated in Refs.@6,7#.

All of the above-mentioned papers treat the cases ofregu-
lar motion and, as a rule, bushes of vibrational modes o
while this paper is devoted to a discussion ofchaoticmotion
in some nonlinear systems with discrete symmetry. Here
consider the class of three-dimensional flows with quadr
nonlinearities. This is precisely the class to which the we
known Lorenz and Ro¨ssler systems belong. These two sy
tems demonstrate a complex behavior; in particular, t
possess strange~chaotic! attractors for somerange of their
pertinent parameters. The Lorenz system is characterize
seven terms and two quadratic nonlinearities on the r
hand side of the corresponding differential equations:

ẋ52sx1sy, ẏ5rx2xz2y, ż5xy2bz.
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The Rössler system possesses seven terms and only one
dratic nonlinearity:

ẋ52y2z, ẏ5x1ay, ż5b2cz1xz.

In Ref. @9#, Sprott posed the question: ‘‘Are there an
three-dimensional systems of autonomous ordinary differ
tial equations with one~as in the Ro¨ssler case! or two ~as in
the Lorenz case! quadratic nonlinearities and fewer the
seven terms whose solutions are chaotic?’’ Using a dir
computer search, Sprott found 19 chaotic flows of this ty
which appear to be distinct in the sense that there is no
vious transformation of one to another. In this search, Sp
exploited the idea of the ‘‘algebraic simplicity’’ of differen
tial equations, and his systems indeed look more simple t
those by Lorenz and Ro¨ssler. But the simplest case of th
considered systems was published later@10#. It can be writ-
ten as

ẋ5y, ẏ5z, ż52az6y22x. ~1!

Some additional information on the discussed subject can
found in a review paper@11#.

Note that many systems obtained with the aid of t
above idea seem to be rather exotic. Indeed, the chaotic
havior in such systems is often observed for quite narr
regions of their intrinsic parameters@for example, the chaos
for system ~1! occurs only for the interval 2.0168,a
,2.0577], and the basins of the appropriate strange att
tors are relatively small.

In contrast to the search based on the idea of algeb
simplicity, we implement a search based on symmet
related methods. In this paper, we discuss chaotic flows
sociated with point groups of crystallographic symmetry.
spite of the fact that these groups, as well as space gro
act in three-dimensional Euclidean space,multidimensional
dynamical systems can be associated with them, if one u
their matrix representations. Below, we present the gen
©2004 The American Physical Society02-1
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G. M. CHECHIN AND D. S. RYABOV PHYSICAL REVIEW E69, 036202 ~2004!
method for constructingN-dimensional flows associated wit
group representations, but consider its realization only
the caseN53.

II. DYNAMICAL SYSTEMS INVARIANT UNDER
REPRESENTATIONS OF SYMMETRY GROUPS

We consider dynamical systems invariant under the tra
formations induced by the representations~reducible and ir-
reducible! of the different groups of discrete symmetry. Th
approach corresponds to the well-known proposition that
given physical system is characterized by a certain symm
groupG @12#, its properties are described by variables wh
transform according to the representations of the groupG. In
the present paper, we discuss the case whereG is one of 32
point groups of crystallographic symmetry.

Let us consider anN-dimensional dynamical system de
scribed byN variablesm j (t):

ṁ j5 f j~m1 ,m2 , . . . ,mN!, j 51,2, . . . ,N. ~2!

We fix the dimensionN of system~2! and construct all dif-
ferentN-dimensional representations~in general, they are re
ducible! of the given groupG. This procedure is indeed pos
sible since every representationG of the groupG can be
written as the direct sum of a number of its irreducible re
resentations~irreps! G i

G5(
%

G i , dimG5N, ~3!

and because allG i of the point groups of crystallographi
symmetry are well known~see, for example, Ref.@13#!. Note
that one and the same irrepG i can be contained in the direc
sum~3! several times. Then we choose, by turn, each of
above representations and demand our dynamical syste
be invariant under the transformations of its variablesm j (t)
( j 51,2, . . . ,N) induced by this representation.

Let us illustrate the above procedure with the followi
example. We consider the point groupD2 ~the Schoenflies
notations are used throughout! consisting of four symmetry
elements:E ~identity element! andC2

x , C2
y , C2

z , which are
the 180° rotations about thex, y, z axes, respectively. Being
Abelian, the groupD2 possesses four one-dimensional irre
listed in Table I.

Let us construct all possible three-dimensional~3D! re-
ducible representations of the groupD2 by combining the
irreps from Table I into the appropriate direct sums~3!.
There are 20 variants, but many of them turn out to be eq

TABLE I. Irreducible representations of the groupD2.

Irreps Symmetry elements
E C2

x C2
y C2

z

G1 1 1 1 1
G2 1 1 21 21
G3 1 21 1 21
G4 1 21 21 1
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to each other. For our purpose, we need to obtain onlyim-
agesof these representations, i.e., the matrix groups, co
sponding to the representations, independent of the ma
of correspondence between their matrices and the elem
of the symmetry group. In other words, one must write o
only differentmatrices of every representation without takin
into account the order of their appearance in the represe
tion. All different images of three-dimensional represen
tions @14# of the groupG5D2 are given in Table II. In this
table, we omit the identity matrices in all imagesL j ( j
51,2, . . . ,8), aswell as the identity image

L15S 1

1

1
D

which does not pose any constraint on the coefficients of
dynamical system. Each of the imagesL2 , L3, andL4 has
one generator which is the matrix explicitly indicated
Table II, while each of the other images (L5 , L6 , L7 , L8)
possesses two generators~the first two matrices may be cho
sen as such generators, because the last matrix is simpl
product of the former matrices!.

It is essential that we can ascribe a certain point symm
group to each of thethree-dimensionalimages~obviously,
this is impossible for the case ofN.3). Indeed, the three

TABLE II. Images of the three-dimensional representations
the groupD2. In square brackets near the symbolL j , the equivalent
point group is indicated. All zero elements of the matrices
dropped.

L2@Cs
z#5S1

1

21
D; L3@C2

x#5S1

21

21
D;

L4@Ci#5S21

21

21
D;

L5@C2v
x #5S1

1

21
D, S1

21

1
D, S1

21

21
D;

L6@C2h
z #5S1

1

21
D, S21

21

1
D, S21

21

21
D;

L7@C2h
x #5S1

21

21
D, S21

1

1
D, S21

21

21
D;

L8@D2#5S1

21

21
D, S21

1

21
D, S21

21

1
D;
2-2
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THREE-DIMENSIONAL CHAOTIC FLOWS WITH . . . PHYSICAL REVIEW E69, 036202 ~2004!
dimensional matrices act on the vectors, say,rW5(x,y,z), and
we can consider every image from Table II as avector rep-
resentationof a certain point group. The action of such re
resentation on the vectorrW is equivalent to the action on it b
the corresponding symmetry group. For example, the ma

S 21

21

21
D

acts on the arbitrary vectorrW as aninversion( i ), the matrix

S 21

21

1
D

acts on it as a 180° rotation about thez axis, and the matrix

S 1

1

21
D

describes the reflection in the mirror plane normal to thz
axis ~all these symmetry elements are determined with
spect to the origin of coordinates!. Because of this interpre
tation of the above matrices of the 3D images, it is easy
find the point symmetry groups corresponding to these
ages. In Table II, the Schoenflies symbol of the appropr
point group is indicated near eachL j .

Thus, analyzing the possible 3D representations of
group D2, we obtained the vector representations of a f
different symmetry groups:

Cs , C2
x , Ci , C2v

x , C2h
x , C2h

z , D2 . ~4!

This is not an accidental fact. Indeed, one can find all
transformations associated with point groups of crysta
graphic symmetry by writing out the vector representatio
of all such groups without using the above-described com
natorial procedure. Since this is impossible for t
N-dimensional cases withN.3, let us return to a discussio
of the images of theN-dimensional representations of th
groups of discrete symmetry.

Note that the groupsC2h
x andC2h

z from list ~4! are equiva-
lent in the crystallographic sense: they differ from each ot
only by the orientation of the symmetry elements~the two
fold axes of these groups coincide with thex and z coordi-
nate axes, respectively!. Such equivalence is the cons
quence of the existence of a certain unitary transforma
which connects the images associated with these gro
@15#:

L65S†L7S. ~5!

Here
03620
ix

-

o
-

te

e

-
s
i-

r

n
ps

S5S 1

1

1
D

is the matrix corresponding to a 120° rotation about a sp
diagonal of the cube.

On the other hand, each image singles out a certain
namical system which must be invariant under the trans
mations of the dynamical variables induced by this ima
Two dynamical systems are called equivalent if there exis
transformation~linear, in our case! from the variables of the
first system to the variables of the second system. Obviou
equivalent images generate equivalent dynamical syste
Therefore, we must leave only one copy of the set of equi
lent images in the list of all different images. For this reas
we exclude the imageL6@C2h

x # from list ~4!.
In the general case, the elimination of the mutua

equivalent images is a difficult task. Indeed, ordering of
matrices in each image is inessential and, consequently
do not know which matrix of the first image may transfor
to a given matrix of the second image. Nevertheless, a s
lar problem for the images of theirreducible representations
in the framework of phase transition theory, was solved
Gufan and co-workers@16# and by Hatch and Stokes@17# for
all 230 space groups.

There are 32 different 3D images for the 32 point grou
of crystallographic symmetry, but it turns out that many
them do not induce dynamical systems which can dem
strate a chaotic behavior. Let us consider this question
more detail.

A definite transformation of the dynamical variablesx(t),
y(t), z(t) corresponds to each matrix of every 3D imag
For example, the first matrix of the imageL8@D2# ~see Table
II ! generates the transformation

x→x, y→2y, z→2z, ~6!

while the second matrix gives

x→2x, y→y, z→2z. ~7!

The transformation induced by the third matrix is redund
since this matrix is equal to the product of the first two m
trices ofL8@D2#.

In the most general form, the 3D dynamical system w
quadratic nonlinearities can be written as

ẋ5a11b11x1b12y1b13z1c111x
21c112xy

1c113xz1c122y
21c123yz1c133z

2,

ẏ5a21b21x1b22y1b23z1c211x
21c212xy

1c213xz1c222y
21c223yz1c233z

2, ~8!

ż5a31b31x1b32y1b33z1c311x
21c312xy

1c313xz1c322y
21c323yz1c333z

2.

Let us demand that this system be invariant under trans
mation~6! and then under transformation~7!. As a result, we
2-3
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G. M. CHECHIN AND D. S. RYABOV PHYSICAL REVIEW E69, 036202 ~2004!
obtain the following dynamical system with six arbitrary c
efficients which cannot be found with the aid of the grou
theoretical arguments:

ẋ5b11x1c123yz,

ẏ5b22y1c213xz, ~9!

ż5b33z1c312xy.

The number of these arbitrary coefficients can be redu
to two unknown coefficients by rescaling the dynamical va
ables x, y, and z, and time t. Thus, we must analyze th
possibility of chaotic behavior of our dynamical system f
all possible values of these two arbitrary coefficients o
~see the next section!.

As the second example, let us consider the imageL4@Ci #.
Its single matrix determines the inversion:

x→2x, y→2y, z→2z. ~10!

Performing this transformation on the general system~8!,
we see that quadratic terms do not change their signs, w
the linear terms do change. Multiplying each transform
equation by21 and comparing it with that before the su
stitution ~10!, we arrive at the conclusion that all coefficien
of the quadratic terms must be zero. In other words,
resulting system turns out to belinear. Since chaotic behav
ior is impossible in linear dynamical systems, we must d
all imagescontaining the inversion, such asC2h @see list
~4!#, D2h , D4h , Th , Oh , etc., from the overall set of the 3D
images.

III. THREE-DIMENSIONAL DYNAMICAL SYSTEMS
WITH CHAOTIC ATTRACTORS

Besides the linearity, there are other properties, wh
lead to the elimination of a given dynamical system from
list of candidates for chaotic behavior.

~1! We must exclude the so-called Onsager dynam
systems@18#:

ẋi52
]U

]xi
, ~11!

wherei 51,2, . . . ,N, andU(x1 ,x2 , . . . ,xN) is a function of
all dynamical variables. Indeed, Eqs.~11! are equivalent to
those for the continuous variant of the well-known numeri
method of steepest descent. The functionU from Eq. ~11!
cannot increase during such descent and the phase traje
leads to a local minimum~in particular, it can be equal to
2`), or to some subspaces of minima. No chaotic beha
can appear in such situation. For example, an Onsager
tem corresponds to the image@19#

L@T#5S 1

21

21
D ,S 21

1

21
D ,S 1

1

1
D ,

~12!
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and to imageL@O# which differs fromL@T# by adding the
fourth matrix:

S 1

1

1
D .

One and the same dynamical system corresponds to bo
the above images:

ẋ5b11x1c123yz,

ẏ5b11y1c123xz, ~13!

ż5b11z1c123xy.

This is indeed an Onsager system withU(x,y,z)5
2 1

2 b11(x
21y21z2)2c123xyz.

~2! Some images induce systems of differential equati
for which there exists a first integral of motion. The order
such a system can be reduced by 1, and the chaotic beh
turns out to be impossible according to the Poinca´-
Bendixon theorem.

For example, the imageL@C4v#, as well as the image
L@C6v# generates one and the same dynamical system@20#:

ẋ5b11x1c113xz,

ẏ5b11y1c113yz, ~14!

ż5a31b33z1c311~x21y2!1c333z
2.

It is easy to check that the valueI 5x/y turns out to be the
first integral of motion for Eq.~14! and, therefore, this sys
tem must be excluded from our consideration.

A similar analysis of all dynamical systems generated
the images of the 3D representations of the 32 point gro
of crystallographic symmetry leads us to the list ofsix non-
trivial candidates containing flows with chaotic attractors:

Cs ,C2 ,D2 ,C3 ,C3v ,S4 . ~15!

Actually, each image determines a certainclassof dynamical
system, since a number of arbitrary coefficients enters
the appropriate differential equations@see, for example, Eqs
~9!, ~13!, and~14!#. A chaotic behavior appears only forspe-
cific valuesof these coefficients.

We use a numerical procedure similar to that by Sprott@9#
for finding the coefficients of dynamical systems with ch
otic attractors. That is, for each coefficient, a definite ran
@2A,1A# and appropriate incrementh are chosen. Then, fo
every site of the resulting grid, we employ the fourth-ord
Runge-Kutta integration procedure for the corresponding
namical system, and select only systems with chaotic beh
ior as evidenced by a decidedly positive Lyapunov expone

Below, for every case, we present the image, the gen
form of the flow generated by this image, an example of
flow with the specific choice of the appropriate coefficien
2-4
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and a picture of the corresponding chaotic attractor. Note
in all our pictures the initial transients are removed from
plots of the chaotic attractors.

A. Point group Cs

Image:

S 21

1

1
D .

General form of the flow:

ẋ5b11x1c112xy1c113xz,

ẏ5a21b22y1b23z1c211x
21c222y

21c223yz1c233z
2,

~16!

ż5a31b32y1b33z1c311x
21c322y

21c323yz1c333z
2.

Exampleof the flow ~Fig. 1!:

ẋ52xy2xz,

ẏ5222z1x2, ~17!

ż5212x22yz.

B. Point group C2

Image:

S 21

21

1
D .

General form of the flow:

ẋ5b11x1b12y1c113xz1c123yz,

ẏ5b21x1b22y1c213xz1c223yz, ~18!

ż5a31b33z1c311x
21c312xy1c322y

21c333z
2.

Exampleof the flow ~Lorenz’s system, Fig. 2!:

ẋ52sx1sy,

FIG. 1. Chaotic attractor for theCs system described by Eqs
~17!.
03620
at
e ẏ5rx2xz2y, ~19!

ż5xy2bz,

s510, r 528, b58/3.

C. Point group D2

Image:

S 21

21

1
D ,S 1

21

21
D .

General form of the flow:

ẋ5b11x1c123yz,

ẏ5b22y1c213xz, ~20!

ż5b33z1c312xy.

Exampleof the flow ~Fig. 3!:

ẋ524x1yz,

ẏ52y1xz, ~21!

ż5z2xy.

FIG. 2. Chaotic attractor for theC2 system described by Eqs
~19! ~Lorenz’s system!.

FIG. 3. Chaotic attractor for theD2 system described by Eqs
~21!.
2-5
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D. Point group C3

Image:

S 21/2 A3/2

2A3/2 21/2

1
D .

General form of the flow:

ẋ5b11x1b12y1c111~x22y2!12c211xy1c113xz1c123yz,

ẏ52b12x1b11y1c211~x22y2!22c111xy2c123xz1c113yz,

~22!

ż5a31b33z1c311~x21y2!1c333z
2.

Exampleof the flow ~Fig. 4!:

ẋ5x2y12xy2xz,

ẏ5x1y1~x22y2!2yz, ~23!

ż52z1~x21y2!.

E. Point group C3v

Image:

S 21/2 A3/2

2A3/2 21/2

1
D ,S 1

21

1
D .

General form of the flow:

ẋ5b11x1c111~x22y2!1c113xz,

ẏ5b11y22c111xy1c113yz, ~24!

ż5a31b33z1c311~x21y2!1c333z
2.

An exampleof such flow with chaotic behavior is unknown

FIG. 4. Chaotic attractor for theC3 system described by Eqs
~23!.
03620
F. Point group S4

Image:

S 1

21

21
D .

General form of the flow:

ẋ5b11x1b12y1c113xz1c123yz,

ẏ52b12x1b11y1c123xz2c113yz, ~25!

ż5b33z1c311~x22y2!1c312xy.

Exampleof the flow ~Fig. 5!:

ẋ522x1y2xz,

ẏ52x22y1yz, ~26!

ż5z1~x22y2!1xy.

Note that among the above flows, there is a case wit
C3v point group for which we could neither find any ex
ample of the chaotic behavior, nor prove that such a beha
is impossible for this type of dynamical system.

IV. SOME GENERAL PROPERTIES OF THE CHAOTIC
ATTRACTORS

Let us consider the very simple and elegant dynam
system~20! with point groupD2. We can turn four coeffi-
cients of this system to61 by rescaling each of the fou
variables (x, y, z, t), and reduce our flow to the forms

ẋ5ax1yz,

ẏ5by1xz, ~27!

ż5z2xy.

Note that in this way, we can obtain some other forms
the same equations~20!, for example, the form with theposi-
tive nonlinear term in the last equation in Eqs.~27!, but such

FIG. 5. Chaotic attractor for theS4 system described by Eqs
~26!.
2-6
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THREE-DIMENSIONAL CHAOTIC FLOWS WITH . . . PHYSICAL REVIEW E69, 036202 ~2004!
a dynamical system happens to be of Onsager type witU
52 1

2 (ax21by21z2)2xyz, and, therefore, it cannot dem
onstrate any chaotic behavior.

Our computer simulation shows that the chaotic behav
of system ~27! appears for somenegativevalues of both
parameters:a,0, b,0. Example~21! belongs precisely to
this two-parametric family of the flows withD2 symmetry.

The domain of thea2b plane where chaotic attractors o
the system~27! can exist is represented in Fig. 6 by bla
color. Actually, this domain is strongly riddled with window
of periodicity where cascades of bifurcations are observe

According to the general theory@2#, different dynamical
regimes in a nonlinear physical system with discrete sym
try group G can be classified by the subgroupsGj of this
group (Gj#G). As a consequence, we expect that the c
otic attractors, as well as the ordinary attractors, in the ab
listed flows are associated with certain subgroups of the s
metry groups of their dynamical equations. Indeed, the c
otic attractor for the flows withD2 symmetry @Eqs. ~21!#
turns out to be ofC2 symmetry~as can be seen from Fig. 3!,
andC2,D2. We checked this fact not only visually, but als
with the aid of the computer program, which utilized th
following algorithm. Let us imagine that our attractor
completely located in a big cube which, in turn, is divid
into a large number of little cubic cells. Then we integra
the dynamical system and store in each of the abo
mentioned cells the number of times the phase trajec
passes through it. The action of a given symmetry elemeg
on the cube transforms its cells into each other, and we
compare the numbers stored in the cells before and afte
action ofg. If these numbers coincide for all cells with goo
accuracy, one can conclude thatg is indeed a symmetry ele
ment of the chaotic attractor. Moreover, proceeding in suc
way we can calculate theprobability that g is a symmetry
element of our attractor. Certainly, the correct probability c
be obtained only for the limit of infinite partitioning of th
cube into the cells and fort→`. However, it is possible, in
principle, to estimate the probability of the fact that the ch
otic attractor possesses the given symmetry group.

According to the general theory@1,2#, the elementsC2
x

and C2
z of the parent groupD2, which disappear when th

symmetry is loweredD2→C2
y , must generate the twins~or

so-called ‘‘dynamical domains’’@21#! of the dynamical re-
gime with the subgroupC2

y . In our case, the rotationsC2
x and

C2
z produce only one new twin of the chaotic attractor w

the same symmetry groupC2
y . Both twins are depicted in

FIG. 6. Domain of the coefficientsa and b for system~27!
where chaotic behavior is possible.
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Fig. 7. These twins possess different basins of attraction,
the phase trajectory leads to one or the other chaotic attra
twin, depending on the choice of initial conditions.

Let us note that system~27! possesses the following criti
cal points ~they are determined by the conditionsẋ50, ẏ
50, ż50):

(1) (0,0,0), (4) (2m,n,2mn),
(2) (m,n,mn), (5) (2m,2n,mn),
(3) (m,2n,2mn),

wherem5A2b, n5A2a. The first twin envelops the criti-
cal points ~2! and ~4!, and the second twin envelops th
critical points~3! and ~5!. The chaotic attractor of flow~23!
with the parent symmetry groupG05C3 demonstrates pre
cisely this full symmetry group~i.e., G5G0, whereG is the
symmetry group of the attractor!, as it is evident from Fig. 4.

Another interesting phenomenon is demonstrated by fl
~25! with the point symmetry groupS4. This system can be
rewritten in a form with four arbitrary coefficients~param-
eters! by rescaling the variablesx, y, z, andt, and one of the
possible reduced forms is

ẋ5ax1by1cxz1dyz,

ẏ52bx1ay1dxz2cyz, ~28!

ż5z1xy,

By settingc5d521, we come to the equations

ẋ5ax1by2xz2yz,

ẏ52bx1ay2xz1yz, ~29!

ż5z1xy.

There is a number of domains in thea2b plane to which
different chaotic attractors correspond. Two such attract
for system~29! with @a522, b51# and@a523, b51# are
shown in Fig. 8. The symmetry groups of these attractors
different subgroups of the symmetry group (S4) of Eqs.~29!
(C2 andS4, respectively!.

Note that asix-dimensionaldynamical system represen
ing a certain coupling of two three-dimensional systems
Lorenz and Ro¨ssler was proposed in Ref.@22#. This system
produces the chaotic attractors similar to those discovere
Lorenz and Ro¨ssler, depending on the values of its intrins

FIG. 7. Twins of the chaotic attractors for the dynamical syst
~21!.
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parameters. In contrast to the dynamical system from R
@22#, we have revealed an analogous phenomenon for v
simple three-dimensional and two-parametric flow@Eq. ~29!#
with the point symmetry groupG5S4.

V. SUMMARY

In this paper, we discussed the method for constructing
N-dimensional dynamical systems invariant with respect

FIG. 8. Two different chaotic attractors for theS4 dynamical
system determined by Eqs.~29!.
es
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es

n

a

J.
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the representations of discrete symmetry groups. Th
dimensional flows with quadratic nonlinearities, which a
invariant under the action of all point groups of crystall
graphic symmetry, were found, and the possibility of th
chaotic behavior was analyzed. We considered so
symmetry-related properties of their chaotic attractors in
frame of the general theory of nonlinear dynamics of syste
with discrete symmetry@2#. Of special interest is the elegan
two-parametric dynamical system~27! corresponding to the
point groupD2. We will discuss its chaotic behavior in mor
detail elsewhere.

We want to emphasize that the three-dimensionalS4 flow
with the different attractors in the different domains of
parameters seems to be a typical~rather than exotic! case for
other types of nonlinearities, as well as for the flows w
N.3. Indeed, different chaotic attractors correspond todif-
ferent subgroupsof the parent symmetry groupG0 of the
considered dynamical system. In general, there exist var
subgroups of the groupG0, and one can hope to find a num
ber of different chaotic attractors for a fixed system or fo
fixed class of such systems. In conclusion, let us note
our list ~15! is exhaustive, i.e. there are no other thre
dimensional chaotic flows with quadratic nonlinearities a
point groups of crystallographic symmetry.
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