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Three-dimensional chaotic flows with discrete symmetries
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There are a number of well-known three-dimensional flows with quadratic nonlinearities, which demonstrate
a chaotic behavior. The most popular among them are Lorenz asdléResystems. Using an exhaustive
computer search, J. Sprott found 19 examples of chaotic flows with either five terms and two quadratic
nonlinearities or six terms and one nonlineatiBhys. Rev. E50, R647(1994]. In contrast to this approach,
we use symmetry-related considerations to construct types of chaotic flows with an arbitrary dimension. The
discussion is based on our previous work devoted to nonlinear dynamics of the physical systems with discrete
symmetriegsee Physica 117, 43 (1998, etc]. Here, we present all possible chaotic flows with quadratic
nonlinearities which are invariant under the action of 32 point groups of crystallographic symmetry. These
systems demonstrate a typical chaotic behavior as well as general dynamical properties of nonlinear systems
with discrete symmetries. In particular, we found a dynamical system with the point symmetrylyauiich
seems to be more simple and more elegant than those by Lorenz asfiRo
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I. INTRODUCTION The Rasler system possesses seven terms and only one qua-
dratic nonlinearity:
The theory of nonlinear dynamics of physical systems
with discrete symmetries was developed in a humber of our X=—-y—z, Yy=x+ay, z=b—cz+xz
previous papergl—7]. In particular, the fundamental concept
of bushesof normal modes, which represestactnonlinear

excitations in such systems, was introduced in Réi. In Ref. [9], Sprott posed the question: *Are there any

three-dimensional systems of autonomous ordinary differen-

\/Svg:gesigteeodre;z a?g\:'etdﬂ:ﬁ ;tgg ugfoﬁf -ttf;]ee (?ruestik(leaf rﬂfe$?d%3| equations with onéas in the Resler casgor two (as in
X ; P the Lorenz casequadratic nonlinearities and fewer then

ods, based on the theory of irreducible representations of the h luti haotic?” Usi di
symmetry groups, were developed in Rds2]. Bushes of seven terms whose solutions are chaotic?” Using a direct

; . ' : . y computer search, Sprott found 19 chaotic flows of this type,
vibrational modes of small dimensions for different classes

of discrete symmetrifor all point groups of crystallographic which appear to be distinct in the sense that there is no ob-

symmetry, for some space groups, for the fuilergg, etc) vious transformation of one to another. In this search, Sprott
were obtained in Refd1.3,4. All “irreducible” bushes of exploited the idea of the “algebraic simplicity” of differen-

modes and symmetry determined similar nonlinear norm lal equations, and his systems indeed I.OOk more simple than
modes, introduced by Rosenbég], for all mechanical sys- hosr—_z by Lorenz and Rsler. I.BUt the simplest case Of- the
" ' . considered systems was published l4fid]. It can be writ-
tems with any of 230 space groups, were found in R&f. ten as
The stability of the bushes of vibrational modes for the
Fermi-Pasta-Ulam chains and for simple octahedral systems ] } ] )
with Lennard-Jones potential was investigated in Ré&&]. X=Yy, Y=z, zZ=—azxy"—X @
All of the above-mentioned papers treat the casesgii-
lar motion and, as a rule, bushes of vibrational modes onlySome additional information on the discussed subject can be
while this paper is devoted to a discussiorchioticmotion  found in a review papeidd].
in some nonlinear systems with discrete symmetry. Here we Note that many systems obtained with the aid of the
consider the class of three-dimensional flows with quadrati@bove idea seem to be rather exotic. Indeed, the chaotic be-
nonlinearities. This is precisely the class to which the well-havior in such systems is often observed for quite narrow
known Lorenz and Rssler systems belong. These two sys-regions of their intrinsic parametefor example, the chaos
tems demonstrate a complex behavior; in particular, theyor system (1) occurs only for the interval 2.0168a
possess strangehaotig attractors for someange of their  <2.0577], and the basins of the appropriate strange attrac-
pertinent parameters. The Lorenz system is characterized hyrs are relatively small.
seven terms and two quadratic nonlinearities on the right |n contrast to the search based on the idea of algebraic
hand side of the corresponding differential equations: simplicity, we implement a search based on symmetry-
related methods. In this paper, we discuss chaotic flows as-
sociated with point groups of crystallographic symmetry. In
X=—o0X+oy, Y=IrX—xz—y, z=xy—bz spite of the fact that these groups, as well as space groups,
act in three-dimensional Euclidean spaowjltidimensional
dynamical systems can be associated with them, if one uses
*Electronic address: chechin@phys.rsu.ru their matrix representations. Below, we present the general
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TABLE I. Irreducible representations of the groDp. TABLE II. Images of the three-dimensional representations of
the groupD,. In square brackets near the symhg| the equivalent
Irreps Symmetry elements point group is indicated. All zero elements of the matrices are
E (4 cy c3 dropped.
r, 1 1 1 1 1 1
r, 1 1 -1 -1 ] §
F3 1 -1 1 -1 LZ[CS]: 1 ; L3[C2:|: -1
r, 1 -1 -1 1 -1 -1
-1
i i i ' i LdGil= -1 ;

method for constructingy-dimensional flows associated with
group representations, but consider its realization only for -1
the caseN=3. 1 1 1

Il. DYNAMICAL SYSTEMS INVARIANT UNDER LfCl=| 1 A O ;

REPRESENTATIONS OF SYMMETRY GROUPS -1 1 -1

We consider dynamical systems invariant under the trans- 1 -1 -1
formations induced by the representatigreducible and ir- LdCs = 1 -1 -1
2hl— ’ ’

reducible of the different groups of discrete symmetry. This
approach corresponds to the well-known proposition that if a
given physical system is characterized by a certain symmetry 1 -1 -1
groupG [12], its properties are described by variables which
transform according to the representations of the gBulm Lo Canl= -1 : L ' -1 ?
the present paper, we discuss the case wieisone of 32 -1 1 -1
point groups of crystallographic symmetry.

Let us consider amN-dimensional dynamical system de-
scribed byN variablesu;(t): Lg[D,]= -1 , 1 , -1

ILLJ:f](,(Ll,,(Lz,,ILLN), J:1,2,N (2)

We fix the dimensiorN of system(2) and construct all dif-
ferentN-dimensional representatiofia general, they are re-
ducible of the given grougs. This procedure is indeed pos-
sible since every representatidh of the groupG can be
written as the direct sum of a number of its irreducible rep-
resentationgirreps I

to each other. For our purpose, we need to obtain anly
agesof these representations, i.e., the matrix groups, corre-
sponding to the representations, independent of the manner
of correspondence between their matrices and the elements
of the symmetry group. In other words, one must write out
only differentmatrices of every representation without taking
into account the order of their appearance in the representa-
tion. All different images of three-dimensional representa-
tions[14] of the groupG=D, are given in Table IlI. In this
and because all'; of the point groups of crystallographic taple, we omit the identity matrices in all images(j
symmetry are well knowisee, for example, Ref13]). Note =12 . ,8), asvell as the identity image
that one and the same irréy can be contained in the direct
sum(3) several times. Then we choose, by turn, each of the 1
above representations and demand our dynamical system to
be invariant under the transformations of its variabigét) L= 1
(j=1,2,...N) induced by this representation. 1

Let us illustrate the above procedure with the following
example. We consider the point groly (the Schoenflies which does not pose any constraint on the coefficients of the
notations are used throughpuionsisting of four symmetry dynamical system. Each of the imagdes, L3, andL, has
elementsE (identity elementandC5, C¥, C5, which are  one generator which is the matrix explicitly indicated in
the 180° rotations about the y, z axes, respectively. Being Table Il, while each of the other imagek, Lg, L7, Lg)
Abelian, the grouD, possesses four one-dimensional irrepspossesses two generatdiise first two matrices may be cho-

®
r=> T, dimI=N, 3

listed in Table I. sen as such generators, because the last matrix is simply the
Let us construct all possible three-dimensiof@D) re- product of the former matrices
ducible representations of the group, by combining the It is essential that we can ascribe a certain point symmetry

irreps from Table | into the appropriate direct sur®. group to each of theéhree-dimensionalmages(obviously,
There are 20 variants, but many of them turn out to be equéhis is impossible for the case &f>3). Indeed, the three-
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dimensional matrices act on the vectors, $ay(x,y,z), and 1
we can consider every image from Table |l agextor rep-

resentationof a certain point group. The action of such rep-
resentation on the vectdris equivalent to the action on it by 1

the corresponding symmetry group. For example, the matrix ) . ,
is the matrix corresponding to a 120° rotation about a space

diagonal of the cube.
On the other hand, each image singles out a certain dy-

-1 namical system which must be invariant under the transfor-

-1 mations of the dynamical variables induced by this image.
Two dynamical systems are called equivalent if there exists a
transformation(linear, in our casefrom the variables of the
first system to the variables of the second system. Obviously,
equivalent images generate equivalent dynamical systems.
Therefore, we must leave only one copy of the set of equiva-
-1 lent images in the list of all different images. For this reason,

1 we exclude the imagkg[ C3,,] from list (4).

In the general case, the elimination of the mutually
equivalent images is a difficult task. Indeed, ordering of the
matrices in each image is inessential and, consequently, we
do not know which matrix of the first image may transform
to a given matrix of the second image. Nevertheless, a simi-
1 lar problem for the images of thigreducible representations,

-1 in the framework of phase transition theory, was solved by
Gufan and co-workersl 6] and by Hatch and Stok¢47] for
all 230 space groups.

There are 32 different 3D images for the 32 point groups
of crystallographic symmetry, but it turns out that many of
them do not induce dynamical systems which can demon-

-1

acts on the arbitrary vectaras aninversion(i), the matrix

-1

acts on it as a 180° rotation about thaxis, and the matrix

1

describes the reflection in the mirror plane normal to zhe
axis (all these symmetry elements are determined with re
spect to the origin of coordinatesBecause of this interpre-
tation of th? above matrices of the 3D Images, LIS €asy Q1o 4 chaotic behavior. Let us consider this question in
find the point symmetry groups corresponding to these iM=ore detail
ages. In Tab.le.”’ _the Schoenflies symbol of the appropriate A definite transformation of the dynamical variabigs)
point group is indicated near eath. (t), z(t) corresponds to each matrix of every 3D image.

10U D we obtained the vector representations of & fef. " SXaMPIE, the first matr of the image[ D (see Table
group Lo, P Il) generates the transformation

different symmetry groups:

X—X, Yy——Yy, zZ——2, (6)

Cs, C3, C;, C5,, C, C3, Dy (4) , o
while the second matrix gives
This is not an accidental fact. Indeed, one can find all 3D
transformations associated with point groups of crystallo-
graphic symmetry by writing out the vector representationsThe transformation induced by the third matrix is redundant
of all such groups without using the above-described combisince this matrix is equal to the product of the first two ma-
natorial procedure. Since this is impossible for thetrices ofLg[D,].
N-dimensional cases with>3, let us return to a discussion  In the most general form, the 3D dynamical system with
of the images of theN-dimensional representations of the quadratic nonlinearities can be written as
groups of discrete symmetry. _
Note that the group€%,, andC%, from list (4) are equiva- X=ay+byX+byy+bygz+cyyx’+eyXy

lent in the crystallographic sense: they differ from each other 2 2
only by the )érientaqcior? of the symmgtry elemefitise two T OnKZF Cray " F Crody 2+ Coa”,
fold axes of these groups coincide with thend z coordi-
nate axes, respectivgelySuch equivalence is the conse-

X—=X, Y-y, Z——2Z (7)

o 2
y=as+boX+ by +boygz+ Co1X“+ Co1 Xy

guence of the existence of a certain unitary transformation + Cp1XZ+ Coopy? + Copdy Z+ Cpz?, 8
which connects the images associated with these groups
[15]: z=ag+bgX+bgpy +bggZ+ Caq X+ Car Xy
+ C319XZ+ Cappy° + C3p3y Z+ Ca32°.
Le= STL7S. (5) 313X 328y 323 33¢

Let us demand that this system be invariant under transfor-
Here mation(6) and then under transformati@n). As a result, we
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obtain the following dynamical system with six arbitrary co- and to image.[ O] which differs fromL[T] by adding the
efficients which cannot be found with the aid of the group-fourth matrix:
theoretical arguments:

1
X:bllx+ C1o3y 7, 1
y=bay + Xz, 9) 1
7= D3z + Ca1XY. One and the same dynamical system corresponds to both of
the above images:
The number of these arbitrary coefficients can be reduced _
to two unknown coefficients by rescaling the dynamical vari- X=Db1X+C123y7,
ablesx, y, and z, and timet. Thus, we must analyze the
possibility of chaotic behavior of our dynamical system for y=Db11y+C1oXZ, (13
all possible values of these two arbitrary coefficients only
(see the next section 72=b11Z+ CoXY.
As the second example, let us consider the image€; ].
Its single matrix determines the inversion: This is indeed an Onsager system with(x,y,z)=
—3b(x*+y?+7%) —Croxxyz
X—==X, y=—Y, Z=>~Z (10 (2) Some images induce systems of differential equations

for which there exists a first integral of motion. The order of

Performing this transformation on the general syst8m g ,ch 4 system can be reduced by 1, and the chaotic behavior
we see that quadratic terms do not ch_ange their signs, whilg, -« ot to be impossible according to the Poincare
the linear terms do change. Multiplying each transformedzgndixon theorem.

equation by—1 and comparing it with that before the sub- £, example, the image[C,,], as well as the image

stitution (10), we arrive at the conclusion that all coefficients L[C ;
e enerates one and the same dynamical sy§&h
of the quadratic terms must be zero. In other words, the[ ol 9 y ye

resulting system turns out to i@ear. Since chaotic behav-
ior is impossible in linear dynamical systems, we must drop
all imagescontaining the inversion, such &3, [see list U= b
= +Cnyz, 14
(4)], Doy, Dan, Th, Oy, etc., from the overall set of the 3D y=buy T Cud (14
images.

X=Dbq X+ Cq1XZ,

z=ag+bagz+ Ca1y (X2 +y?) +Ca32”.

IIl. THREE-DIMENSIONAL DYNAMICAL SYSTEMS

It is easy to check that the value=x/y turns out to be the
WITH CHAOTIC ATTRACTORS

first integral of motion for Eq(14) and, therefore, this sys-

Besides the linearity, there are other properties, whicH€m must be excluded from our consideration.
lead to the elimination of a given dynamical system from the A similar analysis of all dynamical systems generated by

list of candidates for chaotic behavior. the images of the 3D representations of the 32 point groups
(1) We must exclude the so-called Onsager dynamicaPf crystallographic symmetry leads us to the listsof non-
systemq 18]: trivial candidates containing flows with chaotic attractors:
_ U Cs.,C2,D2,C3,C3,, 5. (15
Xj=———, (12)
aXi

Actually, each image determines a certelassof dynamical
wherei=1,2, ... N, andU(X{,X,, . .. Xy) is a function of ~ System, since a number of arbitrary coefficients enters into
all dynamical variables. Indeed, Eqd1) are equivalent to the appropriate differential equatiofsee, for example, Egs.
those for the continuous variant of the well-known numerical(®): (13), and(14)]. A chaotic behavior appears only fepe-
method of steepest descent. The functidrfrom Eq. (11)  Cific valuesof these coefficients.

cannot increase during such descent and the phase trajectory /& USe & numerical procedure similar to that by Spt
leads to a local minimuntin particular, it can be equal to for finding the coefficients of dynamical systems with cha-

— ), or to some subspaces of minima. No chaotic behavioPtiC attractors. That is,_ for _each coefficient, a definite range
can appear in such situation. For example, an Onsager sys— A, +A] and appropriate incremehiare chosen. Then, for

tem corresponds to the image9)] every site of the resulting grid, we employ the fourth-order
Runge-Kutta integration procedure for the corresponding dy-
1 -1 1 namical system, and select only systems with chaotic behav-

ior as evidenced by a decidedly positive Lyapunov exponent.
L[T]= -1 ' 1 ' 1] Below, for every case, we present the image, the general
-1 -1 1 form of the flow generated by this image, an example of the

(12) flow with the specific choice of the appropriate coefficients,

036202-4



THREE-DIMENSIONAL CHAOTIC FLOWS WITH . .. PHYSICAL REVIEW EB9, 036202 (2004

FIG. 1. Chaotic attractor for th€, system described by Egs.
7. FIG. 2. Chaotic attractor for th€, system described by Egs.
(19) (Lorenz’s system
and a picture of the corresponding chaotic attractor. Note that
in all our pictures the initial transients are removed from the y=rx—xz—y, (19)
plots of the chaotic attractors.

A. Point group Cq z=xy=bz,
Image
g oc=10, r=28, b=8/3.
-1
1 . C. Point group D,
1 Image
General form of the flow: -1 1
X=D1X+ C11 XY+ C113XZ, -1 ' -1
1 -1

- 2 2 2
Y=a,+ 0y + 0552+ Co1 X+ Copy “+ Copay Z+ Co32°,

(160  General form of the flow:
Z=ag+ by + bgsz+ Ca1 X%+ Cappy?+ Cpy Z+ Ca32°.

)-(: b11X+ C123yZ,
Exampleof the flow (Fig. 1):

X=—Xy—XZ, Y=bozy+CxnXZ, (20)

y=—2-2z+x% 17 7=DbgsZ+ C3yXY.

S a2
z=-1-x"-yz Exampleof the flow (Fig. 3):

B. Point group C,

X=—4x+yz,
Image
-1 y=—-y+xz (21
-1 ) .
1 z=z—Xxy.

General form of the flow:
X=Db1 X+ by +C11XZ+ Cioy Z,
Y=D021X+ Dy + Coy X Z+ Cpoay Z, (18

o 2 2 2
Z=a3+ D337+ C31X“+ C31 XY+ Cpy“ + Ca32”.

Exampleof the flow (Lorenz’s system, Fig.)2

FIG. 3. Chaotic attractor for thB, system described by Egs.
X=—oX+ gy, (21).
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FIG. 4. Chaotic attractor for th€; system described by Egs. FIG. 5. Chaotic attractor for th§, system described by Egs.

3. (26).
D. Point group C, F. Point group S,
Image Image
—1/2 312 1
—32 —112 : -1
1 -1
General form of the flow: General form of the flow:

X=X+ D15y + C111(X2—y?) + 2Co XY+ C11XZ+ C1py 2, X=D1X+ by + Cug 2t Crod 2

. 5 y=—Db1X+byy+CroxXZ—C11y 7, (25)
Y= =01 X+ D11y + Co1i(X“—Y7) —2C11XY— C1oXZ+ C11y Z,
(22 7=z + Ca14(X*—y?) + Ca1XY.
z=ag+b3gz+ Ca11(X°+Y?) + Caa2”. Exampleof the flow (Fig. 5):
Exampleof the flow (Fig. 4): X=—=2X+y—Xxz
y=—X—2y+yz, (26)

X=X—Yy+2Xy—XZ,
5 2_\,2
y=xty+02-y?)-yz, (23 TR
Note that among the above flows, there is a case with a
z=—z+(X*+y?). C,, point group for which we could neither find any ex-
ample of the chaotic behavior, nor prove that such a behavior

E. Point group Ca, is impossible for this type of dynamical system.

Image IV. SOME GENERAL PROPERTIES OF THE CHAOTIC
—1/2 \/§ /2 1 ATTRACTORS
—J312 —1/2 -1 Let us consider the very simple and elegant dynamical
’ ' system(20) with point groupD,. We can turn four coeffi-
1 1 cients of this system ta-1 by rescaling each of the four

variables K, v, z t), and reduce our flow to the forms
General form of the flow:

X=ax+yz,
X=X+ Cq19(X2—y?) + 12,
y=by+xz (27
y=b11y—2¢11:Xy+C113y7, (29) =7 xy
z=ag+ bz + Ca1y(X*+y?) + C32°. Note that in this way, we can obtain some other forms of

the same equationf®0), for example, the form with thposi-
An exampleof such flow with chaotic behavior is unknown. tive nonlinear term in the last equation in E@27), but such
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FIG. 6. Domain of the coefficienta and b for system(27) FIG. 7. Twins of the chaotic attractors for the dynamical system
where chaotic behavior is possible. (20).

a dynamical system happens to be of Onsager type With fig 7, These twins possess different basins of attraction, and
=—z(ax*+by*+2z) —xyz and, therefore, it cannot dem- e phase trajectory leads to one or the other chaotic attractor
onstrate any chaotic behavior. . _ twin, depending on the choice of initial conditions.

Our computer simulation shows that the chaotic behavior | et ys note that systei27) possesses the following criti-
of system(27) appears for someegativevalues of both  ¢a1 points(they are determined by the conditioRs-0, ¥
parametersa<0, b<<0. Example(21) belongs precisely to =0, z=0):
this two-parametric family of the flows witB, symmetry.

The domain of the— b plane where chaotic attractors of (1) (0,0,0), (4) Cpv,—uv),
the system(27) can exist is represented in Fig. 6 by black (2) (u,v,uv), 5) (—u,—v,uv),
color. Actually, this domain is strongly riddled with windows  (3) (u,—v,—uv),

of periodicity where cascades of bifurcations are observed. _ _ , . o
According to the general theof2], different dynamical whereu=y—b, v=+y—a. The first twin envelops the criti-
cal points(2) and (4), and the second twin envelops the

regimes in a nonlinear physical system with discrete symme=°.. . ;
tryggroqu can be clazs?:‘ied byythe subgrou@s of th)i/s critical points(3) and(5). The chaotic attractor of flou23)

group (G;CG). As a consequence, we expect that the chay\{ith the parent symmetry grous,=Cs demonstrates pre-

otic attractors, as well as the ordinary attractors, in the abovgIsely tI:[ns full symfn:ﬁtry grou;(x.e., .(E.: Gq,dwrlefreG |§_the4
listed flows are associated with certain subgroups of the Syms_ymme fy group of the & racioms i IS evident from Fig. 4
Another interesting phenomenon is demonstrated by flow

metry groups of their dynamical equations. Indeed, the cha- . ) ;
otic attractor for the flows wittD, symmetry[Egs. (21)] (25) .W'th t_he point symmetry grog|54. This system can -
turns out to be o, symmetry(as can be seen from Fig),3 rewritten in a fprm with fpur arbitrary coefficientparam-

andC,CD,. We checked this fact not only visually, but also eters)' by rescaling the vgnables ¥, Z andt, and one of the
with the aid of the computer program, which utilized the possible reduced forms is

following algorithm. Let us imagine that our attractor is

. : L A Xx=ax+by+cxz+dyz
completely located in a big cube which, in turn, is divided

into a large number of little cubic cells. Then we integrate y=—bx+ay+dxz—cyz (28)
the dynamical system and store in each of the above-
mentioned cells the number of times the phase trajectory 7=7+XY,

passes through it. The action of a given symmetry elergent
on the cube transforms its cells into each other, and we caBy settingc=d=—1, we come to the equations
compare the numbers stored in the cells before and after the

action ofg. If these numbers coincide for all cells with good x=ax+by—xz-yz,
accuracy, one can conclude tlgpis indeed a symmetry ele- .
ment of the chaotic attractor. Moreover, proceeding in such a y=—bx+ay-xztyz (29

way we can calculate thprobability that g is a symmetry
element of our attractor. Certainly, the correct probability can
be obtained only for the limit of infinite partitioning of the
cube into the cells and fdr—. However, it is possible, in
principle, to estimate the probability of the fact that the cha

ofic attractor possesses the given symmetry group. shown in Fig. 8. The symmetry groups of these attractors are

H X
Aciordlng to the general theor_lyt,Z],_ the elementy  jiftarent subgroups of the symmetry groupy) of Egs.(29)
and C5 of the parent grouf,, which disappear when the (C, andS,, respectively.

symmetry is lowered,— C}, must generate the twin®r Note that asix-dimensionatlynamical system represent-
so-called “dynamical domainsf21]) of the dynamical re- ing a certain coupling of two three-dimensional systems by
gime with the subgrou@? . In our case, the rotatior®; and | orenz and Rssler was proposed in Rd22]. This system

C3 produce only one new twin of the chaotic attractor with produces the chaotic attractors similar to those discovered by
the same symmetry group}. Both twins are depicted in Lorenz and Rssler, depending on the values of its intrinsic

Z=z+Xy.

There is a number of domains in the- b plane to which
different chaotic attractors correspond. Two such attractors
“for system(29) with [a=—2, b=1] and[a=—3, b=1] are
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a)a=-2,b=1. the representations of discrete symmetry groups. Three-
dimensional flows with quadratic nonlinearities, which are
invariant under the action of all point groups of crystallo-
graphic symmetry, were found, and the possibility of their
chaotic behavior was analyzed. We considered some
symmetry-related properties of their chaotic attractors in the
frame of the general theory of nonlinear dynamics of systems
with discrete symmetry2]. Of special interest is the elegant
two-parametric dynamical syste(@7) corresponding to the
point groupD,. We will discuss its chaotic behavior in more
detail elsewhere.

We want to emphasize that the three-dimensi@alow
with the different attractors in the different domains of its
parameters seems to be a typi@alther than exoticcase for
other types of nonlinearities, as well as for the flows with
N>3. Indeed, different chaotic attractors correspondlife
ferent subgroup®f the parent symmetry grou@, of the
considered dynamical system. In general, there exist various
subgroups of the grou@,, and one can hope to find a num-
ber of different chaotic attractors for a fixed system or for a
fixed class of such systems. In conclusion, let us note that
our list (15) is exhaustive, i.e. there are no other three-
dimensional chaotic flows with quadratic nonlinearities and
point groups of crystallographic symmetry.

FIG. 8. Two different chaotic attractors for tH® dynamical
system determined by Eq&9).

parameters. In contrast to the dynamical system from Ref.
[22], we have revealed an analogous phenomenon for very
simple three-dimensional and two-parametric fldg. (29)] ACKNOWLEDGMENTS
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