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Reaction front in an A+B—C reaction-subdiffusion process
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We study the reaction front for the proceAstB—C in which the reagents move subdiffusively. Our
theoretical description is based on a fractional reaction-subdiffusion equation in which both the motion and the
reaction terms are affected by the subdiffusive character of the process. We design numerical simulations to
check our theoretical results, describing the simulations in some detail because the rules necessarily differ in
important respects from those used in diffusive processes. Comparisons between theory and simulations are on
the whole favorable, with the most difficult quantities to capture being those that involve very small numbers
of particles. In particular, we analyze the total number of product particles, the width of the depletion zone, the
production profile of product and its width, as well as the reactant concentrations at the center of the reaction
zone, all as a function of time. We also analyze the shape of the product profile as a function of time, in
particular, its unusual behavior at the center of the reaction zone.
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[. INTRODUCTION tially occupying one side, the other occupying the other side,
and a sharp front between thei24]. More recent experi-

It is very well known that diffusion-limited binary reac- ments have been carried out in gel-free systg28s26/. The
tions in low dimensions may lead to the spontaneous appeaevolution of the reactant fronts and of the product of the
ance of spatial order and spatial structures, and to associatégaction in these experiments both reflect the kinetic anoma-
“anomalous” rate laws for the global densities of the react-lies.
ing species. For example, the reactigns A— C (some se- In this paper we extend the front analysis to subdiffusive
lected references of many in the literature are Rgifs.11])  reactions. Subdiffusive motion is characterized by a mean
and A+B—C (again, some of many references are Refssquare displacement that varies sublinearly with time,
[1,12—-23) under “normal” circumstances are described by
second-order rate laws, whereas the asymptotic rate law for 2K
the former reaction is of apparent order« 2/d) for dimen- (r3(t))~ Fl—ytV, (D)
sionsd< 2, and for the mixed reaction it is of apparent order (1+7)

(1+4/) for d<4. The slowdown implied by the higher

order is a consequence of the rapid deviation of the spatiakith 0<y<1. For ordinary diffusiony=1, andK,=D is the
distribution of reactants from a random distribution. This isordinary diffusion coefficient. We argue for the importance
in turn a consequence of the fact that diffusion is not arof this generalization on a number of grounds. First, there
effective mixing mechanism in low dimensions. exists a huge literature on systems that deviate from diffusive

To design an experiment in a constrained geometry irbehavior and are instead characterized by motion all the way
order to measure these anomalies is not at all simple, esp&fom subdiffusive to superdiffusivg39,4Q. Subdiffusive
cially for the mixed reactiori24—-26. It is simpler for the motion is particularly important in the context of complex
A+ A problem because a number of appropriate nonchemicaystems such as glassy and disordered materials, in which
species can be identified that essentially undergo the simplepaithways are constrained for geometric or for energetic rea-
annihilation reaction or variants thereof. Examples includesons. It is also particularly germane to the way in which
exciton annihilation experiments in one-dimensional poregexperiments in low dimensions have to be carried out. Such
and in effectively one-dimensional polymer wirgk5], ex-  experiments must avoid any active or convective or advec-
cited molecule naphthalene fusion and quenching experitive mixing so as to ensure that any mixing is only a conse-
ments in one-dimensional pord®7], and kink-antikink quence of diffusion. To accomplish this usually requires the
simulations in one dimensiof28]. Experimental observa- use of gel substrates and/or highly constrained geometries
tions of theA+ B anomalies instead generally involweac-  (the first gel-free experiments were carried out recently
tion fronts Early on G#i and Raz [29] and later others [25,26]). Under these circumstances it is not clear whether
[30—38 recognized that the kinetic anomalies in the homo-the motion of the species is actually diffusive, or if it is in
geneous systems would be reflected in the evolution of readact subdiffusive Indeed, a recent detailed discussion on
tion fronts. On the basis of scaling arguments, later mad&vays to extract accurate parameters and exponents from such
more rigorous, a number of exponents were deduced to chaexperiments concludes that at least the experiments pre-
acterize this evolution. The first experiments confirmingsented in that work, carried out in a gel, reflect subdiffusive
these results were carried out with spedeandB diffusing  rather than diffusive motiof41].
in a gel contained in a thin capillary, with one species ini- We recently solved th&+ A reaction-subdiffusion prob-
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lem in one dimensiof42]. To solve this problem, we gen- field model for the evolution of the concentratioa$x,t)
eralized methods first applied to the reaction-diffusidn and b(x,t) of A and B particles alongx is given by the
+ A problem. For theA+ A— A problem the method of in- reaction-diffusion equations
tervals allows an exact formulation in terms of intervals on
the line that are empty oA particles[4,6,7,9—11 The dis- 9 72
tribution of intervals evolves linearly, and therefore one can —a(x,t)=D —a(x,t)—ka(x,t)b(x,t),
find an exact solution. In the reaction-diffusion problem the Jt ax?
description involves a diffusion equation, while the reaction-
subdiffusion problem involves a subdiffusion equatjdZ]; g 72
both can be solved exactly. For ther A—C problem one —b(x,t)=D —b(x,t)—ka(x,t)b(x,t), %)
uses instead the odd/even parity mettidd], whereby one at x>
keeps track of the parity of the number of particles in an
interval. The associated distribution again satisfies a lineayhereD is the diffusion coefficient assumed to be equal for
diffusion or subdiffusior{42] equation. the two species. The initial conditions are thafx,t)
Before these exact methods were developed, it was-consta, for x<0 anda(x,t)=0 for x=0. Similarly,
customary to model these and other binary reactions by(x,t)=const=b, for x>0 andb(x,t)=0 for x<0. With
writing down a reaction-diffusion equation for each specieghese conditions, no matter the dimensionality of the system,
in the reaction. Such equations typically contain a diffu-the system of equations is effectively one dimensional. The
sion term and a binary reaction term, the latter being som@ont problem was first analyzed via a scaling description
truncated form of a two-particle distribution function. For [29] and later refined by a large number of authors using
instance, in theA+B reaction the typical reaction term more rigorous theoretical and careful numerical approaches
simply involves the product of the local concentrations of[30-38. One upshot of the extensive work is thkt 2 is a
reactants;-ka(r,t)b(r,t) [1]. In the A+ A reaction one has critical dimension for the mean-field description to be appro-
to be slightly more careful because in writing, for example,priate. Belowd=2 one must take into account fluctuations,
—ka’(r,t) one must be careful not to include spurious self-neglected in this description, which completely change the
reaction contributiong5,8]. Once theA+A exact models outcome of the analysis. A particularly transparent argument
were developed that did not require one to explicitly write afor this critical dimension was provided by Krapivskg7].
reaction term, it was possible to analyze the accuracy of theje argued that the reaction constant in the mean-field reac-
approximate truncationt3]. Also, it was not necessary to tion rater =kab should in general depend on the diffusion
consider the generalization of the reaction term to the subconstanD and the radiu® of the reacting particles. Dimen-
diffusive case since the exact methods could be generalizegjonal analysis give&~DRY"2, but on physical grounds
directly. one expects the reaction rate constant to be an increasing
The situation is more complicated for thet- B problem,  function of the radiusR. The conclusion is that the mean-
because no such exact formulations or solutions have begfgld model can therefore not be valid for 2. While it has
developed in this case. There is a large literature on th@een assumed that the mean-field model holds for the critical
reaction-diffusion problem with different truncation schemesdimensionsd=2, Krapivsky finds logarithmic corrections
to represent the reaction term, but the literature on thehat have also been observed in simulati®84]. In our
reaction-subdiffusion problem is far more recent and relagnalysis and simulations we will takk=2 (which turns out
tively unsettled. In particular, at the current stage of develtp be the critical dimension for the subdiffusive problem as
opment of this problem its necessary to think about how to well) and will therefore not deal with the lower-dimensional

(approximately model the reaction term. fluctuation effects. In this first study we will not deal with
In Sec. Il we present a discussion of the model to be useghgarithmic corrections.
for the description of théA+ B reaction-subdiffusion prob-  |n order to generalize the reaction-diffusion problem to a

lem. Having arrived at a particular set of fractional equa-reaction-subdiffusion problem, we must deal with the subdif-
tions, we apply a scaling theory to these equations akin tgusive motion of the particlegyeneralization of the first term

that of Gafi and Racz [29], but now for a subdiffusive front. in Eq. (2)] and with their reaction rate laggecond term We
To support the theoretical conclusions, it is necessary to pegtiscuss each separately.

form numerical simulations, which is not a trivial matter for  supdiffusion is not modeled in a universal way in the
a problem involving subdiffusion. In Sec. Ill we discuss our |iterature. Among the more successful approaches to the sub-
Monte Carlo simulation methods. Section IV is a compen-diffusion problem have been continuous time random walks
dium and comparison of numerical and theoretical resultsyith non-Poissonian waiting time distributiof$4—46, and
Some closing comments are presented in Sec. V. fractional dynamics approaches in which the diffusion opera-
tor is replaced by a generalizéchctional diffusion operator
[39,45,47-49 The relation between the two has also been
discussed 39,45,48. In particular, the fractional dynamics

We start with a system oA particles on one side arld  formulation that leads to the mean square displacertignt
particles on the other of a sharp linear front, defined to liecan be associated with a continuous time random walk with
perpendicular to thex axis. The particles diffuse and react a waiting time distribution between steps which at long times
with a given probability upon encounter. A standard meanbehaves as

Il. THE MODEL
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() ~t~ 7L (3)  tionsin Eq.(4), and its form therefore does not matter at this
point. Generalizing the procedure in RE29], one can scale
We adopt the fractional dynamics approach, and commerthe resulting equation by measuring concentrations in units
later on some issues associated with it that must carefully bef a,, time in units of r=1/(kay), and length in units of
considered in the context of numerical simulations. We thus:(KyTV)lfz, so that the equation is simply
replace Eq.(2) with the set of reaction-subdiffusion equa-

tions 9 0 D1—7‘92 0 ®
—u(x,t)= —u(x,
9 72 ot REPNE
Ea(x,t)=Ky 0Dtl’y—za(x,t)—Ry(x,t), _ . o
IX and the only control parameter gg=Dby/a, in the initial
condition
d 1
PO =K, oDy Vﬁb(x,t)—Ry(x,t), (4) u(x,00=1 for x<O

whereK , is the generalized diffusion coefficient that appears ux,0)=-q for x>0. ©)
in Eq. (1) and (D}~ is the Riemann-Liouville operator, The solution is

it = e L[4 T y)
ot X,0)= e T e 1+ X 1=

F(y)at)o (t—-nt- u(x,t):—q+TqH}€ —| ' 2 (10)
The reaction termR,(x,t)=R will be discussed subse- 0.1

quenty, because certan aspects of the problef are NSPEf oy 119 s the Foxt-funcrion 48,50, When y-1 ths

reduces to the diffusion resui29]

A. Scaling independent of reaction term n (

X
—) . (12)

As the reaction proceeds, a depletion zone develops U(th)z—q+—2 erfg T

around the front. This is the region where the concentrations
of reactant; are significantly. sm_aller.than their initial values.g ., Eq.(10) we see that the width of the depletion zone
How the widthWy evolves with time is one of the measures g .;jag as
typically used to characterize the process. Within this deple-
tion zone lies the so-called reaction zone, the region where Wy~t7"2, (12)
the concentration(x,t) of the producC is appreciable. This
concentration profile has a widtw whose variation with i.e., 9a(x,t)/dx~ db(x,t)/dx~t~ 2. Then, from Eq(6), the
time is another characteristic of the evolving reaction. Thefollowing relation between scaling exponents follows imme-
evolution of the production rate @& [which determines the diately:
height of the profile ot(x,t) in the reaction zongis a third
measure of the process. To find these time dependences we Y
adapt the original scaling approaf29,31] to the subdiffu- Ot a=>. (13
sive case, and assume the scaling forms

The second relation follows from the fact that the concen-

a(x,t)=t"fa(xt™ ), tration gradient ofA andB leads to a flux of particles toward
A the reaction region. The assumption that the reaction is fed
b(x,t)=t" b(xt™ %) (6) by these particle currents then leads to the quasistationary

form in the reaction zone,

for the concentrations and
2

" _d
R,(X,t) =t #R,(xt™ %) (7) 0=K, oD} Vﬁa(x,t)—Ry(x,t),

for the reaction term. The exponemis«, and u are to be

determined from three relations. The scaling forms are only 1—y

valid for x<Wj, that is, well within the depletion zone. 0=K, oDy yb(x,t)— Ry(X,1), (14)
Two of the three relations needed to fix the scaling expo-

nents do not require further specification of the reactionpnich requires that

term. Since the reaction zone increases more slowly than the

2

width of the depletion zoné&n assumption that ex post turns uw=0+2a+1—7y. (15)
out to be corregt we can focus on the concentration differ-
enceu(x,t) =a(x,t) —b(x,t) to deduce the width of the lat- For the width of the reaction zone to grow more slowly

ter. The reaction term drops out when one subtracts the equéran the depletion zone caused by subdiffusion requires that
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a<yl2. (16) thors themselves point out, much more broadly applicable.
This theory goes back to the continuous time random walk
On the other hand, the quasistationarity condition requirepicture from which the fractional diffusion equation can be
that obtained, and considefmoth the motion and the reaction in
2 5 this framework. In the context of geminate recombination the
1— (04204 1— o+ authors define a reaction zone and argue that a geminate pair
Ky oDt yﬁa(x't)q (orzard 7)>Ea(x,t)~t o+, within the reaction zone will not necessarily react for any
(17) finite intrinsic reaction ratéwhich they cally,;) because one
of the particles may leave the zone before a reaction takes
which again leads to Eq16). place. The dynamics of leaving the reaction zone is ruled by
Equations(13) and (15) combined lead to the relatiom  the waiting time distributiony,,(t) = ¢(t)e” <!, where
—u=1vyl2—1 that is easily checked by numerical simula- (t) is the waiting time that regulates the rest of the dynam-
tions, since it is determined by the production rat€CofThe  ics|[cf. Eq.(3)], and therefore the reaction rate will acquire a
rate of change of the total amount of produdi\-/dt, is memory that arises from the same source as the memory
given by the integral of the reaction rate over the reactiorassociated with the subdiffusive motion. In the continuum

zone, limit this model then leads to a reaction-subdiffusion equa-
tion in which both contributions have a memory. Sekial.
d&:f CAXR(x,1) obtain a subdiffusion-reaction equation which at long times
dt reactioff X Ry(X, corresponds to choosing a reaction term of the form

zone

— 1-vy
U ol X R I~ I~ 2, (1) ROk oD TaDboGD: 22
zone Here “long times” set in very quickly if the reaction zone is
that is, narrow and the intrinsic reaction rate small. As noted earlier,
although the derivation is specifically for geminate recombi-
Ne(t)~t"2, (199  nation, the arguments can be generalized.

) ) Our full reaction-subdiffusion starting equations on which

time, which is numerically more robust than its derivative, is

predicted to grow as”’? regardlessof the specific form of 52

the reaction term. —a(x,t)= ODtl"[ Ky—za(x,t)—ka(x,t)b(x,t)] ,
Another accessible quantity that is independenRofis at X

the locationx; of the point at which the production rate ©f

is largest. This should occur wheagx,t) ~b(x,t), that is, d 1-y

u(x;,t)~0. The time dependence of this equimolar pointis  z; P(X1)= oDs Kyﬁb(x,t)—ka(x,t)b(x,t) -

found from Eq.(9) to be 23)

2

= yI2
x(D) =Kt ™, (20 From the specific reaction term given in Eg2) we can now

obtain the third relation between the scaling exponents by

whereK; is determined from the equation . S
f a balancing the terms within the brackets,

Y
2 15 =20+1—v. 24
%=H}2 K, ( 2) . (21) # Y 24
(0,1 Simultaneous solution of Eqg13), (15), and (24) finally
yields
B. Choice of reaction term and resultant scaling

. . . . . Y Y Y

Further relations involving the scaling exponents aimed at a=g 0= 3 M= 1- 3 (25

their expression in terms of model quantities require specifi-

cation of the reaction term. There is a varied literature on this

subject, based on a number of different assumpti@is- C. Simulated quantities

54]. Most do not associate a memory with the reaction term. |t is yseful to list here the quantities that will be compared
Some assume that, as in the case of ordinary diffusion, reagyith numerical simulations. Each is characterized by an ex-
tions can simply be modeled by a space-dependent form gfonent explicitly given in terms of. The first and second
the law of mass action, e.g., by settifg=ka(x,t)b(X,t).  are independent of the choice of reaction term, but the others
Some of these assumptions may be appropriate if the reagye sensitive to this choice.

tion is very rapid, but not if many encounters between reac- (1) The total amount of produe produced as a function

tants are required for the reaction to occur. of time, given in Eq(19), is
We adopt the viewpoint put forth in a recent theory de-
veloped for geminate recombinati¢b3,54 but, as the au- Ne(t)~t"2, (26)

036126-4



REACTION FRONT IN ANA+B—C REACTION-SUBDIFFUSION PROCESS PHYSICAL REVIEW &9, 036126 (2004

This scaling is independent of the form of the reaction termcontrolled regime described by the usual reaction-diffusion
(2) We measure the widtV, of the depletion zone as the equations is that the random walkers on average perform a

width of the profile large number of steps before reacting.
Adjustments that must be made to this procedure in order
Up(x,t)=1—[a(x,t) —b(x,1)]. (27)  to describe subdiffusion are neither trivial nor straightfor-

ward. First and most importantly, one cannot assume that the
particles all jump at the same time. The distribution of jump-
ing times is now very broad: one can imagine each particle
Wy~t2, (28) outfitted with an alarm clock, with a jump to a randomly
selected nearest neighbor taking place when the alarm goes
(3) We carry out our simulations with an equal initial unit off, at which time the alarm is reset according to a distribu-
concentration ofA andB. In this casex;=0 for all time. We  tion whose asymptotic behavior goes as in &). Jumping
monitor the number o€ particles produced at this point of is therefore a renewal procef$5]. An example of a normal-
maximum production ofC, Nc(x=04). Since R,(0}) ized distribution with this behavior is the Pareto law:

=dNc(x=01)/dt~t #=t"*"1 we have

The prediction, which is also independent of the form of
the reaction term, is given in E@12),

viT

AUt %

Nc(0.t) ~t7=, (29) p(t)=

This is thus a check on the exponent The particles are labeled, and jumping times are assigned to

(4) The concentratiora(0) =b(01) of each reactant at them according to this distribution. These times, from small-

the center of the reaction zone is difficult to monitor becaus%St to largest, must be sorted, and the list must be sorted after

it is very small and therefore subject to large quctuatlons.eaCh jump or reaction.

Instead, we monitor the integral of this concentration over Since the particles no longer jump at the same time, a
time, decision must be made about when they are allowed to react.
t t There are at least two alternativedd) A reaction attempt
J a(O,r)dr~J T Bdr~t1 B (300  occurs only when a particle first arrives at a si®.Reaction
0 0 attempts occur at each site at periodic intervats, and
occur with probabilitykab. The first alternative does not
seem physically reasonable for the subdiffusive problem
since it implies that a pair o& andB particles that remain at
a given site and that did not react upon first encounter will
not react no matter how long they remain at the site, which
on average is infinite. They can only react if they move apart
w(t)~176 (31) and then encounter one another again. The second alterna-
' tive, which we choose for most of our simulations, can be
(6) Finally, we monitor the entire profil7) as a function —associated with a number of physical explanations. On one
of position and time. This is a difficult quantity to follow hand, one can think of reactions induced or activated peri-
because it involves regions of very low concentration. In godically by some external age(d laser, for example More
way it constitutes a check of the simulation methodology, adn line with our thinking of subdiffusion as a way to describe

with a similar result for the other reactant. This then is a
check on the exponertt

(5) The widthw(t) of the product profile grows, accord-
ing to the scaling equatiofi7), asw(t)~t“. According to
Eqg. (25) we then have, as a test af

we will see below. movement in a disordered or glassy or porous medium is to
think of this as a mesoscopic description. At a microscopic
Ill. SIMULATION DETAILS level small jumps may occur diffusively, but the motion from

one mesoscopic region to another on a longer time scale is

Monte Carlo simulation methods for reaction-diffusion much slower because of geometric bottlenecks that affect
processes are ubiquitous. For a two-dimensional simulatiothis longer range movement. Our “sites” would then corre-
one starts with a square lattice and deploys a given numbespond to mesoscopic regions in which a walker can spend a
of particles at each site according to the initial distribution.long time moving diffusively from one part of the region to
The particles then perform a random walk simulated by theanother. Reactions can then take place within one of these
parallel update of the coordinates of all particles at each timeegions at regular time intervals.
stept=mAt, m=1,2,.... Theentire lattice is explored at Since the subdiffusive process has a long memory, we
periodic intervalsAt, (which could and often does coincide must be careful about the initiation of the process. In particu-
with At), and reactions take place at each site on which thertar, it is not appropriate to choose the initial jumping times as
areA andB particles, with probabilitkab. Herek<1 is the indicated above because that would bias the initial condition
reaction rate constant araland b are proportional to the to one in which all the particles jumped simultaneously at
number of particles of typA andB on that site. Clearhkab  time t=0. Instead, after this first selection of times we
must (in the appropriate sense, since the quantity is not dichoose another set of jumping times from the distribution,
mensionlessbe small. There are variants of this procedureand repeat this procedure a large number of times. The num-
that are inconsequential for our analy&@sg., some excluded ber of repetitions is usually chosen as the total number of
volume effects A necessary condition to be in the diffusion- particles initially in the system. Only then do we chodse
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=0 by taking the smallest jumping time as our new origin of T T T
time from which the process is launched.

Finally, it is noted that even in a diffusive process, reac- ,
tion events are not really restricted to occur only at periodic 10°¢
time intervalsAt, . A large literature points to the fact that i
the continuous time process underlying such a step process is <,
one in which times are selected from an exponential distri-
bution[56,57,

N

10°;
P(t)=xe *, (33 [

wherek is the reaction rate constant. We have also tested this 10 10° 10°
procedure in our subdiffusive system, allowing each pair ¢

(A,B) of particles on one site to react at a time dictated by

such an exponential distribution. If a particle leaves a site FIG. 1. Log-log plots of the total number of product particles vs
before a reaction takes place, the reaction “clock” of eachtime for y=0.75(square} y=0.5(circles, and y=0.25(triangles.
particle is reset. This is also the viewpoint followed by SekiThe linear fit slopes are 0.37, 0.25, and 0.15, respectively. The
et al.[53,54. Note that whereas in the At, formulation of mean-field prediction for the slope is given in E88) as y/2.

the reaction events one specifies two parameters, in the e
ponentially distributed reaction events the reactions ar
specified by the single rate parameter which identifies

both the reaction rate constantand the mean time between obtam these results. . . .
reaction events il Figure 3 shows our simulation results for the production

The parameters used in our simulations are as follows: wBrefile of the product of the reaction &t=0 as a function of
place two particles initially at each sitéhis corresponds to M€, for several values of. For the largery the linear fit
unit concentration for each specieShe lattice dimensions slope agrees well with the theoretical prediction given in Eq.
are usually L,,L,)=(20,10), except fory=3/4 where we (29).

useL, =90, and in some cases specified later where we use Figure 4 presents our simulation results for the time inte-
(L LX)=(,160 20). The maximum number of particles al- gral of the concentration of a reactant at the center of the
X1=y 1 .

lowed at a given site is 40. The rate coefficienkis 0.05 reaction zone, to be compared with the theoretical prediction
and the time between reaction eventsiis = 10. For som,e of Eq. (30). While the agreement is not spectacular, the trend

of the simulations we use exponentially distributed reactior> correct. AIso. of mtergst here is the improved agreement
events withx=10"* or x=10"5, which corresponds to a when the reaction rate is greatly reduced, as expected. Even

much lower reaction rate. The maximum time per run ismhore dramatlfc effe(;:_ts of the re?cr':lon re}te are seen below in
tmax=1 024 000. Results are averaged over 100 runs. the context of our discussion of the pro U, (x,1). .

Figure 5 contains our simulation results for the width of
the product profile, which should be compared with the pre-
IV. COMPARISONS WITH SIMULATIONS diction of Eq.(31). The agreement is very good for all the

Here we compare simulations of the six quantities enu_values Ofy.
0 d Finally, in Figs. 6 and 7 we present perhaps the most

merated in Sec. Il with the theoretical predictions. The simu-
lations rapidly become increasingly difficult and time inten- )
sive with decreasingy, and it is therefore expected that 10 ' ' ' ' '
agreement with the theory improves with increasingAs

we will show, the agreement is on the whole good, especially
for the larger values of. We also stress that four of the six
comparisons involve results that decidedly depend on the
choice of reaction term. Agreement would not be obtained N 10'F
with the usual memoryless local law of mass action.

Figure 1 shows our simulation results for the total number
of product particles as a function of time in units 6£1.0
(used throughouitfor several values of. This is perhaps the
most robust global quantity to be simulated. The linear fit
slope is given for eachy, and agrees very well with the 10° I Y Y
theoretical prediction given in Eq26) for the two larger 10 10 10 10 10
values ofy.

Figure 2 shows our simulation results for the width of the  FiG. 2. width W, of the depletion zone vs time fop=0.5
depletion zone as a function of time for two valuesyofThe  (circles and y=0.25 (triangles. The linear fit slopes are 0.257 and
linear fit slope is in good agreement with the theory as givern.154, respectively. The mean-field prediction for the slope is given
in Eq. (28) for the larger value ofy. Later we discuss some in Eq. (28) as /2.

ifficulties, particularly for small values of, in the accurate
simulation of the profileUp(x,t) whose width is used to
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10' . . . 10" r : : :

FIG. 5. Log-log plot of the width of the product profile as a
FIG. 3. Log-log plots of the production profile of produCtat  function of time fory=0.75(squares y=0.5 (circles, andy=0.25
x=0 as a function of time fory=0.75 (square} y=0.5 (circles,  (triangles. The linear fit slopes are 0.129, 0.084, and 0.042, respec-
and y=0.25 (triangles. The linear fit slopes are 0.24, 0.162, and tjvely. The mean-field prediction for the slope is given in [Eafl)
0.093, respectively. The mean-field prediction for the slope is giveras /6.
in Eq. (29) as /3.

o i _ both the simulation result§agged curvesand those of our
difficult qua}nuty_to capture accurately_, nam_ely, the prof'letheory (dashed curves now with exponentially distributed
Up(x,t) deﬁned in Eq.(27). For these s.|mulat|ons We USE @ raaction events according to E€B3), with =105, The
lattice of size [,,L,)=(160,20). As pointed out earlier, the e hear =0 remains pointed for all the times shown, as
%{/fvlccu(l?cg::tsr?a?i;or?t Ezeirfztitz;r:s/teltt:)n;fﬁj I\s/tethree?r:anif(f)ii::J/ﬁ;y predicted by the theory. The quantitative disagreements for

) ' long times (=237 185 and especialty=545 708) are due to

and that is why we have included Fig. 6. The simulationﬁnite size effects. Boundary effects are negligible only as
rofiles shown at the different times are actually time aver- :
prof W I ! Haly o v ng asUy(x=—L,/2t)=Up(x=L,/2t)=0, and for the

aged over a small time interval around the times shown. Th ; i Py
ong times we find that this is not the case. In our other

noteworthy feature is the evolution of the sharp-pointed pro-- lati | h included h Its |
file near the origin at short times to a more rounded shape gmulation results we have not included such results In our

longer times. The mean-field theory presented in this pap Verages, but have left them in this figure s_imply to Stfess the
does not produce this rounding, so that it seemed at first th pite Size effects one .must be aware of in calculating the
the theory and simulations differed in some profound wayPehavior of quantities in the depletion zone when the zone
However, the simulations in Fig. 6 were carried out with thee_xtends all the way to the boundarl_es of_the system. To pro-
rate coefficienk=0.05 with reactions occurring periodically v!de accurate results for such long times it is necessary to run
at time intervalAt, =10, a reaction rate that turns out to be simulations on larger systems.

too high for comparison with our theory. In Fig. 7 we show

1.0 : ‘ :

= 18
S 10 0.8} ]
5
= 0.6 -
S 10° 3
5 = 04
= > 0.4¢ 1
£
£ 10 0.2
= 21 1
o
g
el ' 0.0 Saclail) '

10°5 — - -100 50 0 50 100

10 10 10 x

FIG. 6. Simulation results for the profildp(x,t) for y=0.75

FIG. 4. Time integrals of reactant concentrations at the center oandt= 946, 3777, 15073, 60 149, 240 025, and 957 828. The width
the reaction zone. The mean-field prediction for the slopes is giveof the profiles increase with time, as seen in Fig. 5. The simulation
in Eq. (30) as 1-v/3. The steeper curve is fop=0.25 and the was carried out on a lattice of siz&60, 20 and averaged over 102
reaction events governed by the exponential distribution (B8). runs. Notice the apparent evolution from a characteristic sharp-
with k=1075. The linear fit slope is 0.814, while mean-field theory pointed profile for short times to a vaulted profile at longer times.
yields 0.917. The shallower curve is fgr=0.5 andx=10*. The For a discussion of this anomaly, and for the values of other param-
linear fit slope is 0.683, the mean-field slope is 0.833. eters, see text.
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1.0 ' ' ' ; ' ' ' be calculated from the model. Some of these quantities de-
pend explicitly on the form chosen for the reaction term,
0.8 while others do not. We compared the resulting exponents
with those obtained from numerical simulations. We found
06 very good agreement between the theory and simulations for
’;T ’ the exponentw and « that characterize the reaction term,
51 04 Eq. (7). In particular, in terms of the powey<1 that char-
’ acterizes the subdiffusive process we found that the theoret-
02 ical valuesu=1-1+/3 anda=+/6 are recovered in the simu-
’ lations with greater fidelity for largery. The exponent,
0.0 kel governing the time decay of the reactant concentrations as in

40 -20 30 Eq. (6), is, theoretically, given byy/3. Simulation results
give values which correctly follow this trend, but the agree-
ment is not quantitative. However, we have to remember that

FIG. 7. Simulation(jagged Iine$ and theory(dashed Iine)sfor the quan“tya(O,t) is local and, Consequenﬂy' it is more dif-
the profileUp(x,t) for y=0.75 andt=3738, 8577, 19682, 45165, ficult to achieve good statistical averages with the small sys-

103638, 237 815, and 545 708. Notice the absence of the roundingms and number of particles considered in the simulations.

anomalu_es in the profile for smak. _The r(_aactlon rate_ls much Perhaps the most challenging quantity to capture is the pro-

smaller in this case; see text. The simulation was carried out on fle Up(x,t). The theory predicts a cusp &0 which we
lattice of size(160, 20 and averaged over 102 runs. The times are, are able to capture by our simulations when the reaction
approximately equivalent to those used in Fig. 6 if the total number oo, ., otant is sufficiently small. The quantitative agreement
of C particles in the system is used as a measure of time. between the theory and the simulations for this profile was
ultimately limited by our finite system size. We note that our

V. CLOSING COMMENTS results are a good example of what is sometimes referred to

as subordination in that the subdiffusive scaling behavior can

i h f i f
In this paper we have proposed a set of continuum racbe deduced from the corresponding diffusive behavior with

tional diffusion equations to describe the behavior of a reac o y
tion front in the A+B—C reaction-subdiffusion problem. the sgbst|tut|ort—>t [58]. .
Subdiffusion may be appropriate to describe the way reac- Th|s work can clearly _be pursued a]orjg a numper of di-
tants move in complexglassy, disordered, highly con- recthns. Amc_)ng .them is the . description Of. this Same
strained geometries, and we were interested in eXp|0rim\:]react_|qn-subdlf“fUSlon problem with _the usual uniform initial
how this constraint on the motion would affect the evolution€0Ndition for the species, to investigate what sorts of segre-

of a reaction front. Because we are working with a set ofdation patterns T“'gh.t ev_olve on th? way to extinction, or on
mean-field continuum equations, our results are only valic}he way to equilibration if thg reaction is reversible. Another
above the critical dimensiod= 2. Is the _study of the fluqtuatlo_ns that must be added to the
The subdiffusive motion is modeled via the usual frac-"Medel in order to describe this process in a one-dimensional
system where the mean-field description is no longer appro-

tional equation that contains the Riemann-Liouville operator,

Eq. (5). This choice has a long history, and its virtues andp_riate, and the possible logarithmic correction in two dimen-

ions that may explain some of our smallliscrepancies. A

shortcomings are clearly understood. Less clear has been ti . . e h
selection ofqthe local re);ction term, and the question of thé ird is the effect of different subdiffusion coefficients for the

way in which the memory in the Riemann-Liouville operator Spec_'GSA andB, and even 9f d!ﬁerent exponents, a_nd YB-

does(or does not affect the way in which the reaction is In th|s. latter case subordination would neces_sanly be more

modeled. While the literature on this subject has presented g°MPlicated if valid at all. Work along these directions is in

number of viewpoints, we argued, in agreement \\i,55, progresg59].

that the reaction term should also be modified from its usual

simple instantaneous product form, at least for small reaction

rate constants. Our reaction-subdiffusion model is thus given This work was partially supported by the Ministerio de

by Eq. (23). Ciencia y Tecnolog (Spain through Grant No. FIS2004-
Following the approach of Gfaand Raz [29] for the 01399 and by the Engineering Research Program of the Of-

evolution of a front in the reaction-diffusion problem, we fice of Basic Energy Sciences at the U. S. Department of

assumed scaling solutions for the various quantities that caBnergy under Grant No. DE-FG03-86ER13606.
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