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Reaction front in an A¿B\C reaction-subdiffusion process
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We study the reaction front for the processA1B→C in which the reagents move subdiffusively. Our
theoretical description is based on a fractional reaction-subdiffusion equation in which both the motion and the
reaction terms are affected by the subdiffusive character of the process. We design numerical simulations to
check our theoretical results, describing the simulations in some detail because the rules necessarily differ in
important respects from those used in diffusive processes. Comparisons between theory and simulations are on
the whole favorable, with the most difficult quantities to capture being those that involve very small numbers
of particles. In particular, we analyze the total number of product particles, the width of the depletion zone, the
production profile of product and its width, as well as the reactant concentrations at the center of the reaction
zone, all as a function of time. We also analyze the shape of the product profile as a function of time, in
particular, its unusual behavior at the center of the reaction zone.
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I. INTRODUCTION

It is very well known that diffusion-limited binary reac
tions in low dimensions may lead to the spontaneous app
ance of spatial order and spatial structures, and to assoc
‘‘anomalous’’ rate laws for the global densities of the rea
ing species. For example, the reactionsA1A→C ~some se-
lected references of many in the literature are Refs.@1–11#!
and A1B→C ~again, some of many references are Re
@1,12–23#! under ‘‘normal’’ circumstances are described
second-order rate laws, whereas the asymptotic rate law
the former reaction is of apparent order (112/d) for dimen-
sionsd,2, and for the mixed reaction it is of apparent ord
(114/d) for d,4. The slowdown implied by the highe
order is a consequence of the rapid deviation of the spa
distribution of reactants from a random distribution. This
in turn a consequence of the fact that diffusion is not
effective mixing mechanism in low dimensions.

To design an experiment in a constrained geometry
order to measure these anomalies is not at all simple, e
cially for the mixed reaction@24–26#. It is simpler for the
A1A problem because a number of appropriate nonchem
species can be identified that essentially undergo the sim
annihilation reaction or variants thereof. Examples inclu
exciton annihilation experiments in one-dimensional po
and in effectively one-dimensional polymer wires@15#, ex-
cited molecule naphthalene fusion and quenching exp
ments in one-dimensional pores@27#, and kink-antikink
simulations in one dimension@28#. Experimental observa
tions of theA1B anomalies instead generally involvereac-
tion fronts. Early on Ga´lfi and Rácz @29# and later others
@30–38# recognized that the kinetic anomalies in the hom
geneous systems would be reflected in the evolution of re
tion fronts. On the basis of scaling arguments, later m
more rigorous, a number of exponents were deduced to c
acterize this evolution. The first experiments confirmi
these results were carried out with speciesA andB diffusing
in a gel contained in a thin capillary, with one species i
1063-651X/2004/69~3!/036126~10!/$22.50 69 0361
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tially occupying one side, the other occupying the other si
and a sharp front between them@24#. More recent experi-
ments have been carried out in gel-free systems@25,26#. The
evolution of the reactant fronts and of the product of t
reaction in these experiments both reflect the kinetic ano
lies.

In this paper we extend the front analysis to subdiffus
reactions. Subdiffusive motion is characterized by a me
square displacement that varies sublinearly with time,

^r 2~ t !&;
2Kg

G~11g!
tg, ~1!

with 0,g,1. For ordinary diffusiong51, andK1[D is the
ordinary diffusion coefficient. We argue for the importan
of this generalization on a number of grounds. First, th
exists a huge literature on systems that deviate from diffus
behavior and are instead characterized by motion all the
from subdiffusive to superdiffusive@39,40#. Subdiffusive
motion is particularly important in the context of comple
systems such as glassy and disordered materials, in w
pathways are constrained for geometric or for energetic
sons. It is also particularly germane to the way in whi
experiments in low dimensions have to be carried out. S
experiments must avoid any active or convective or adv
tive mixing so as to ensure that any mixing is only a con
quence of diffusion. To accomplish this usually requires
use of gel substrates and/or highly constrained geome
~the first gel-free experiments were carried out recen
@25,26#!. Under these circumstances it is not clear whet
the motion of the species is actually diffusive, or if it is
fact subdiffusive. Indeed, a recent detailed discussion
ways to extract accurate parameters and exponents from
experiments concludes that at least the experiments
sented in that work, carried out in a gel, reflect subdiffus
rather than diffusive motion@41#.

We recently solved theA1A reaction-subdiffusion prob-
©2004 The American Physical Society26-1
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lem in one dimension@42#. To solve this problem, we gen
eralized methods first applied to the reaction-diffusionA
1A problem. For theA1A→A problem the method of in-
tervals allows an exact formulation in terms of intervals
the line that are empty ofA particles@4,6,7,9–11#. The dis-
tribution of intervals evolves linearly, and therefore one c
find an exact solution. In the reaction-diffusion problem t
description involves a diffusion equation, while the reactio
subdiffusion problem involves a subdiffusion equation@42#;
both can be solved exactly. For theA1A→C problem one
uses instead the odd/even parity method@7,8#, whereby one
keeps track of the parity of the number of particles in
interval. The associated distribution again satisfies a lin
diffusion or subdiffusion@42# equation.

Before these exact methods were developed, it w
customary to model these and other binary reactions
writing down a reaction-diffusion equation for each spec
in the reaction. Such equations typically contain a dif
sion term and a binary reaction term, the latter being so
truncated form of a two-particle distribution function. F
instance, in theA1B reaction the typical reaction term
simply involves the product of the local concentrations
reactants,2ka(r ,t)b(r ,t) @1#. In theA1A reaction one has
to be slightly more careful because in writing, for examp
2ka2(r ,t) one must be careful not to include spurious se
reaction contributions@5,8#. Once theA1A exact models
were developed that did not require one to explicitly write
reaction term, it was possible to analyze the accuracy of
approximate truncations@43#. Also, it was not necessary t
consider the generalization of the reaction term to the s
diffusive case since the exact methods could be genera
directly.

The situation is more complicated for theA1B problem,
because no such exact formulations or solutions have b
developed in this case. There is a large literature on
reaction-diffusion problem with different truncation schem
to represent the reaction term, but the literature on
reaction-subdiffusion problem is far more recent and re
tively unsettled. In particular, at the current stage of dev
opment of this problem itis necessary to think about how t
~approximately! model the reaction term.

In Sec. II we present a discussion of the model to be u
for the description of theA1B reaction-subdiffusion prob
lem. Having arrived at a particular set of fractional equ
tions, we apply a scaling theory to these equations akin
that of Gálfi and Rácz @29#, but now for a subdiffusive front
To support the theoretical conclusions, it is necessary to
form numerical simulations, which is not a trivial matter f
a problem involving subdiffusion. In Sec. III we discuss o
Monte Carlo simulation methods. Section IV is a compe
dium and comparison of numerical and theoretical resu
Some closing comments are presented in Sec. V.

II. THE MODEL

We start with a system ofA particles on one side andB
particles on the other of a sharp linear front, defined to
perpendicular to thex axis. The particles diffuse and rea
with a given probability upon encounter. A standard me
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field model for the evolution of the concentrationsa(x,t)
and b(x,t) of A and B particles alongx is given by the
reaction-diffusion equations

]

]t
a~x,t !5D

]2

]x2
a~x,t !2ka~x,t !b~x,t !,

]

]t
b~x,t !5D

]2

]x2
b~x,t !2ka~x,t !b~x,t !, ~2!

whereD is the diffusion coefficient assumed to be equal
the two species. The initial conditions are thata(x,t)
5const5a0 for x,0 and a(x,t)50 for x>0. Similarly,
b(x,t)5const5b0 for x.0 andb(x,t)50 for x<0. With
these conditions, no matter the dimensionality of the syst
the system of equations is effectively one dimensional. T
front problem was first analyzed via a scaling descript
@29# and later refined by a large number of authors us
more rigorous theoretical and careful numerical approac
@30–38#. One upshot of the extensive work is thatd52 is a
critical dimension for the mean-field description to be app
priate. Belowd52 one must take into account fluctuation
neglected in this description, which completely change
outcome of the analysis. A particularly transparent argum
for this critical dimension was provided by Krapivsky@37#.
He argued that the reaction constant in the mean-field re
tion rater 5kab should in general depend on the diffusio
constantD and the radiusR of the reacting particles. Dimen
sional analysis givesk;DRd22, but on physical grounds
one expects the reaction rate constant to be an increa
function of the radiusR. The conclusion is that the mean
field model can therefore not be valid ford,2. While it has
been assumed that the mean-field model holds for the cri
dimensionsd52, Krapivsky finds logarithmic correction
that have also been observed in simulations@31#. In our
analysis and simulations we will taked52 ~which turns out
to be the critical dimension for the subdiffusive problem
well! and will therefore not deal with the lower-dimension
fluctuation effects. In this first study we will not deal wit
logarithmic corrections.

In order to generalize the reaction-diffusion problem to
reaction-subdiffusion problem, we must deal with the subd
fusive motion of the particles@generalization of the first term
in Eq. ~2!# and with their reaction rate law~second term!. We
discuss each separately.

Subdiffusion is not modeled in a universal way in th
literature. Among the more successful approaches to the
diffusion problem have been continuous time random wa
with non-Poissonian waiting time distributions@44–46#, and
fractional dynamics approaches in which the diffusion ope
tor is replaced by a generalizedfractional diffusion operator
@39,45,47–49#. The relation between the two has also be
discussed@39,45,48#. In particular, the fractional dynamic
formulation that leads to the mean square displacement~1!
can be associated with a continuous time random walk w
a waiting time distribution between steps which at long tim
behaves as
6-2
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c~ t !;t2g21. ~3!

We adopt the fractional dynamics approach, and comm
later on some issues associated with it that must carefull
considered in the context of numerical simulations. We th
replace Eq.~2! with the set of reaction-subdiffusion equ
tions

]

]t
a~x,t !5Kg 0Dt

12g ]2

]x2
a~x,t !2Rg~x,t !,

]

]t
b~x,t !5Kg 0Dt

12g ]2

]x2
b~x,t !2Rg~x,t !, ~4!

whereKg is the generalized diffusion coefficient that appe
in Eq. ~1! and 0Dt

12g is the Riemann-Liouville operator,

0Dt
12g f ~x,t !5

1

G~g!

]

]tE0

t

dt
f ~x,t!

~ t2t!12g
. ~5!

The reaction termRg(x,t)[R will be discussed subse
quently, because certain aspects of the problem are inde
dent of the specific form of this term.

A. Scaling independent of reaction term

As the reaction proceeds, a depletion zone devel
around the front. This is the region where the concentrati
of reactants are significantly smaller than their initial valu
How the widthWd evolves with time is one of the measur
typically used to characterize the process. Within this dep
tion zone lies the so-called reaction zone, the region wh
the concentrationc(x,t) of the productC is appreciable. This
concentration profile has a widthw whose variation with
time is another characteristic of the evolving reaction. T
evolution of the production rate ofC @which determines the
height of the profile ofc(x,t) in the reaction zone# is a third
measure of the process. To find these time dependence
adapt the original scaling approach@29,31# to the subdiffu-
sive case, and assume the scaling forms

a~x,t !5t2uâ~xt2a!,

b~x,t !5t2ub̂~xt2a! ~6!

for the concentrations and

Rg~x,t !5t2mR̂g~xt2a! ~7!

for the reaction term. The exponentsu, a, andm are to be
determined from three relations. The scaling forms are o
valid for x!Wd , that is, well within the depletion zone.

Two of the three relations needed to fix the scaling ex
nents do not require further specification of the react
term. Since the reaction zone increases more slowly than
width of the depletion zone~an assumption that ex post turn
out to be correct!, we can focus on the concentration diffe
enceu(x,t)5a(x,t)2b(x,t) to deduce the width of the lat
ter. The reaction term drops out when one subtracts the e
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tions in Eq.~4!, and its form therefore does not matter at th
point. Generalizing the procedure in Ref.@29#, one can scale
the resulting equation by measuring concentrations in u
of a0, time in units oft51/(ka0), and length in units ofl
5(Kgtg)1/2, so that the equation is simply

]

]t
u~x,t !5 0Dt

12g ]2

]x2
u~x,t ! ~8!

and the only control parameter isq5b0 /a0 in the initial
condition

u~x,0!51 for x,0

u~x,0!52q for x.0. ~9!

The solution is

u~x,t !52q1
11q

2
H1,1

1,0F x

tg/2U S 1,
g

2D
~0,1!

G , ~10!

where H1,1
1,0 is the FoxH-function @49,50#. When g51 this

reduces to the diffusion result@29#

u~x,t !52q1
11q

2
erfcS x

2t1/2D . ~11!

From Eq.~10! we see that the width of the depletion zon
scales as

Wd;tg/2, ~12!

i.e., ]a(x,t)/]x;]b(x,t)/]x;t2g/2. Then, from Eq.~6!, the
following relation between scaling exponents follows imm
diately:

u1a5
g

2
. ~13!

The second relation follows from the fact that the conce
tration gradient ofA andB leads to a flux of particles toward
the reaction region. The assumption that the reaction is
by these particle currents then leads to the quasistatio
form in the reaction zone,

05Kg 0Dt
12g ]2

]x2
a~x,t !2Rg~x,t !,

05Kg 0Dt
12g ]2

]x2
b~x,t !2Rg~x,t !, ~14!

which requires that

m5u12a112g. ~15!

For the width of the reaction zone to grow more slow
than the depletion zone caused by subdiffusion requires
6-3
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a,g/2. ~16!

On the other hand, the quasistationarity condition requ
that

Kg 0Dt
12g ]2

]x2
a~x,t !;t2(u12a112g)@

]

]t
a~x,t !;t2(u11),

~17!

which again leads to Eq.~16!.
Equations~13! and ~15! combined lead to the relationa

2m5g/221 that is easily checked by numerical simul
tions, since it is determined by the production rate ofC. The
rate of change of the total amount of product,dNC /dt, is
given by the integral of the reaction rate over the react
zone,

dNC

dt
5Ereaction

zone

dx Rg~x,t !

;t2mEreaction
zone

dx R̂g~x/ta!;t2(m2a);tg/221, ~18!

that is,

NC~ t !;tg/2. ~19!

We stress that this total amount of product as a function
time, which is numerically more robust than its derivative,
predicted to grow astg/2 regardlessof the specific form of
the reaction term.

Another accessible quantity that is independent ofRg is
the locationxf of the point at which the production rate ofC
is largest. This should occur wherea(x,t);b(x,t), that is,
u(xf ,t);0. The time dependence of this equimolar point
found from Eq.~9! to be

xf~ t !5K ft
g/2, ~20!

whereK f is determined from the equation

2q

11q
5H11

10F K fU S 1,
g

2D
~0,1!

G . ~21!

B. Choice of reaction term and resultant scaling

Further relations involving the scaling exponents aimed
their expression in terms of model quantities require spe
cation of the reaction term. There is a varied literature on
subject, based on a number of different assumptions@51–
54#. Most do not associate a memory with the reaction te
Some assume that, as in the case of ordinary diffusion, r
tions can simply be modeled by a space-dependent form
the law of mass action, e.g., by settingR5ka(x,t)b(x,t).
Some of these assumptions may be appropriate if the r
tion is very rapid, but not if many encounters between re
tants are required for the reaction to occur.

We adopt the viewpoint put forth in a recent theory d
veloped for geminate recombination@53,54# but, as the au-
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thors themselves point out, much more broadly applica
This theory goes back to the continuous time random w
picture from which the fractional diffusion equation can
obtained, and considersboth the motion and the reaction in
this framework. In the context of geminate recombination
authors define a reaction zone and argue that a geminate
within the reaction zone will not necessarily react for a
finite intrinsic reaction rate~which they callg rc) because one
of the particles may leave the zone before a reaction ta
place. The dynamics of leaving the reaction zone is ruled
the waiting time distributioncout(t)5c(t)e2grct, where
c(t) is the waiting time that regulates the rest of the dyna
ics @cf. Eq. ~3!#, and therefore the reaction rate will acquire
memory that arises from the same source as the mem
associated with the subdiffusive motion. In the continuu
limit this model then leads to a reaction-subdiffusion equ
tion in which both contributions have a memory. Sekiet al.
obtain a subdiffusion-reaction equation which at long tim
corresponds to choosing a reaction term of the form

Rg~x,t !5k 0Dt
12ga~x,t !b~x,t !. ~22!

Here ‘‘long times’’ set in very quickly if the reaction zone i
narrow and the intrinsic reaction rate small. As noted earl
although the derivation is specifically for geminate recom
nation, the arguments can be generalized.

Our full reaction-subdiffusion starting equations on whi
the remainder of this paper is based then are

]

]t
a~x,t !5 0Dt

12gH Kg

]2

]x2
a~x,t !2ka~x,t !b~x,t !J ,

]

]t
b~x,t !5 0Dt

12gH Kg

]2

]x2
b~x,t !2ka~x,t !b~x,t !J .

~23!

From the specific reaction term given in Eq.~22! we can now
obtain the third relation between the scaling exponents
balancing the terms within the brackets,

m52u112g. ~24!

Simultaneous solution of Eqs.~13!, ~15!, and ~24! finally
yields

a5
g

6
, u5

g

3
, m512

g

3
. ~25!

C. Simulated quantities

It is useful to list here the quantities that will be compar
with numerical simulations. Each is characterized by an
ponent explicitly given in terms ofg. The first and second
are independent of the choice of reaction term, but the oth
are sensitive to this choice.

~1! The total amount of productC produced as a function
of time, given in Eq.~19!, is

NC~ t !;tg/2. ~26!
6-4
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This scaling is independent of the form of the reaction te
~2! We measure the widthWd of the depletion zone as th

width of the profile

UP~x,t ![12ua~x,t !2b~x,t !u. ~27!

The prediction, which is also independent of the form
the reaction term, is given in Eq.~12!,

Wd;tg/2. ~28!

~3! We carry out our simulations with an equal initial un
concentration ofA andB. In this casexf50 for all time. We
monitor the number ofC particles produced at this point o
maximum production ofC, NC(x50,t). Since Rg(0,t)
5dNC(x50,t)/dt;t2m5tg/321, we have

NC~0,t !;tg/3. ~29!

This is thus a check on the exponentm.
~4! The concentrationa(0,t)5b(0,t) of each reactant a

the center of the reaction zone is difficult to monitor beca
it is very small and therefore subject to large fluctuatio
Instead, we monitor the integral of this concentration o
time,

E
0

t

a~0,t!dt;E
0

t

t2g/3dt;t12g/3, ~30!

with a similar result for the other reactant. This then is
check on the exponentu.

~5! The widthw(t) of the product profile grows, accord
ing to the scaling equation~7!, as w(t);ta. According to
Eq. ~25! we then have, as a test ofa,

w~ t !;tg/6. ~31!

~6! Finally, we monitor the entire profile~27! as a function
of position and time. This is a difficult quantity to follow
because it involves regions of very low concentration. In
way it constitutes a check of the simulation methodology,
we will see below.

III. SIMULATION DETAILS

Monte Carlo simulation methods for reaction-diffusio
processes are ubiquitous. For a two-dimensional simula
one starts with a square lattice and deploys a given num
of particles at each site according to the initial distributio
The particles then perform a random walk simulated by
parallel update of the coordinates of all particles at each t
step t5mDt, m51,2, . . . . Theentire lattice is explored a
periodic intervalsDt r ~which could and often does coincid
with Dt), and reactions take place at each site on which th
areA andB particles, with probabilitykab. Herek!1 is the
reaction rate constant anda and b are proportional to the
number of particles of typeA andB on that site. Clearly,kab
must ~in the appropriate sense, since the quantity is not
mensionless! be small. There are variants of this procedu
that are inconsequential for our analysis~e.g., some excluded
volume effects!. A necessary condition to be in the diffusion
03612
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controlled regime described by the usual reaction-diffus
equations is that the random walkers on average perfor
large number of steps before reacting.

Adjustments that must be made to this procedure in or
to describe subdiffusion are neither trivial nor straightfo
ward. First and most importantly, one cannot assume that
particles all jump at the same time. The distribution of jum
ing times is now very broad: one can imagine each part
outfitted with an alarm clock, with a jump to a random
selected nearest neighbor taking place when the alarm
off, at which time the alarm is reset according to a distrib
tion whose asymptotic behavior goes as in Eq.~3!. Jumping
is therefore a renewal process@55#. An example of a normal-
ized distribution with this behavior is the Pareto law:

c~ t !5
g/t

~11t/t!11g
. ~32!

The particles are labeled, and jumping times are assigne
them according to this distribution. These times, from sm
est to largest, must be sorted, and the list must be sorted
each jump or reaction.

Since the particles no longer jump at the same time
decision must be made about when they are allowed to re
There are at least two alternatives:~1! A reaction attempt
occurs only when a particle first arrives at a site.~2! Reaction
attempts occur at each site at periodic intervalsDt r , and
occur with probabilitykab. The first alternative does no
seem physically reasonable for the subdiffusive probl
since it implies that a pair ofA andB particles that remain a
a given site and that did not react upon first encounter w
not react no matter how long they remain at the site, wh
on average is infinite. They can only react if they move ap
and then encounter one another again. The second alte
tive, which we choose for most of our simulations, can
associated with a number of physical explanations. On
hand, one can think of reactions induced or activated p
odically by some external agent~a laser, for example!. More
in line with our thinking of subdiffusion as a way to describ
movement in a disordered or glassy or porous medium i
think of this as a mesoscopic description. At a microsco
level small jumps may occur diffusively, but the motion fro
one mesoscopic region to another on a longer time sca
much slower because of geometric bottlenecks that af
this longer range movement. Our ‘‘sites’’ would then corr
spond to mesoscopic regions in which a walker can spen
long time moving diffusively from one part of the region t
another. Reactions can then take place within one of th
regions at regular time intervals.

Since the subdiffusive process has a long memory,
must be careful about the initiation of the process. In parti
lar, it is not appropriate to choose the initial jumping times
indicated above because that would bias the initial condit
to one in which all the particles jumped simultaneously
time t50. Instead, after this first selection of times w
choose another set of jumping times from the distributio
and repeat this procedure a large number of times. The n
ber of repetitions is usually chosen as the total number
particles initially in the system. Only then do we chooset
6-5
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50 by taking the smallest jumping time as our new origin
time from which the process is launched.

Finally, it is noted that even in a diffusive process, rea
tion events are not really restricted to occur only at perio
time intervalsDt r . A large literature points to the fact tha
the continuous time process underlying such a step proce
one in which times are selected from an exponential dis
bution @56,57#,

P~ t !5ke2kt, ~33!

wherek is the reaction rate constant. We have also tested
procedure in our subdiffusive system, allowing each p
(A,B) of particles on one site to react at a time dictated
such an exponential distribution. If a particle leaves a s
before a reaction takes place, the reaction ‘‘clock’’ of ea
particle is reset. This is also the viewpoint followed by Se
et al. @53,54#. Note that whereas in thek,Dt r formulation of
the reaction events one specifies two parameters, in the
ponentially distributed reaction events the reactions
specified by the single rate parameterk, which identifies
both the reaction rate constantk and the mean time betwee
reaction events 1/k.

The parameters used in our simulations are as follows:
place two particles initially at each site~this corresponds to
unit concentration for each species!. The lattice dimensions
are usually (Lx ,Ly)5(20,10), except forg53/4 where we
useLx590, and in some cases specified later where we
(Lx ,Ly)5(160,20). The maximum number of particles a
lowed at a given site is 40. The rate coefficient isk50.05,
and the time between reaction events isDt r510. For some
of the simulations we use exponentially distributed react
events withk51024 or k51025, which corresponds to a
much lower reaction rate. The maximum time per run
tmax51 024 000. Results are averaged over 100 runs.

IV. COMPARISONS WITH SIMULATIONS

Here we compare simulations of the six quantities e
merated in Sec. II with the theoretical predictions. The sim
lations rapidly become increasingly difficult and time inte
sive with decreasingg, and it is therefore expected tha
agreement with the theory improves with increasingg. As
we will show, the agreement is on the whole good, especi
for the larger values ofg. We also stress that four of the s
comparisons involve results that decidedly depend on
choice of reaction term. Agreement would not be obtain
with the usual memoryless local law of mass action.

Figure 1 shows our simulation results for the total num
of product particles as a function of time in units oft51.0
~used throughout! for several values ofg. This is perhaps the
most robust global quantity to be simulated. The linear
slope is given for eachg, and agrees very well with the
theoretical prediction given in Eq.~26! for the two larger
values ofg.

Figure 2 shows our simulation results for the width of t
depletion zone as a function of time for two values ofg. The
linear fit slope is in good agreement with the theory as giv
in Eq. ~28! for the larger value ofg. Later we discuss som
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difficulties, particularly for small values ofg, in the accurate
simulation of the profileUP(x,t) whose width is used to
obtain these results.

Figure 3 shows our simulation results for the producti
profile of the product of the reaction atx50 as a function of
time, for several values ofg. For the largerg the linear fit
slope agrees well with the theoretical prediction given in E
~29!.

Figure 4 presents our simulation results for the time in
gral of the concentration of a reactant at the center of
reaction zone, to be compared with the theoretical predic
of Eq. ~30!. While the agreement is not spectacular, the tre
is correct. Also of interest here is the improved agreem
when the reaction rate is greatly reduced, as expected. E
more dramatic effects of the reaction rate are seen below
the context of our discussion of the profileUP(x,t).

Figure 5 contains our simulation results for the width
the product profile, which should be compared with the p
diction of Eq. ~31!. The agreement is very good for all th
values ofg.

Finally, in Figs. 6 and 7 we present perhaps the m

FIG. 1. Log-log plots of the total number of product particles
time for g50.75~squares!, g50.5 ~circles!, andg50.25~triangles!.
The linear fit slopes are 0.37, 0.25, and 0.15, respectively.
mean-field prediction for the slope is given in Eq.~28! asg/2.

FIG. 2. Width Wd of the depletion zone vs time forg50.5
~circles! andg50.25 ~triangles!. The linear fit slopes are 0.257 an
0.154, respectively. The mean-field prediction for the slope is gi
in Eq. ~28! asg/2.
6-6
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difficult quantity to capture accurately, namely, the profi
Up(x,t) defined in Eq.~27!. For these simulations we use
lattice of size (Lx ,Ly)5(160,20). As pointed out earlier, th
difficulty arises from the fact that it involves regions of ve
low concentration. It is instructive to illustrate the difficult
and that is why we have included Fig. 6. The simulati
profiles shown at the different times are actually time av
aged over a small time interval around the times shown.
noteworthy feature is the evolution of the sharp-pointed p
file near the origin at short times to a more rounded shap
longer times. The mean-field theory presented in this pa
does not produce this rounding, so that it seemed at first
the theory and simulations differed in some profound w
However, the simulations in Fig. 6 were carried out with t
rate coefficientk50.05 with reactions occurring periodicall
at time intervalDt r510, a reaction rate that turns out to b
too high for comparison with our theory. In Fig. 7 we sho

FIG. 3. Log-log plots of the production profile of productC at
x50 as a function of time forg50.75 ~squares!, g50.5 ~circles!,
and g50.25 ~triangles!. The linear fit slopes are 0.24, 0.162, an
0.093, respectively. The mean-field prediction for the slope is gi
in Eq. ~29! asg/3.

FIG. 4. Time integrals of reactant concentrations at the cente
the reaction zone. The mean-field prediction for the slopes is g
in Eq. ~30! as 12g/3. The steeper curve is forg50.25 and the
reaction events governed by the exponential distribution Eq.~33!
with k51025. The linear fit slope is 0.814, while mean-field theo
yields 0.917. The shallower curve is forg50.5 andk51024. The
linear fit slope is 0.683, the mean-field slope is 0.833.
03612
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at
er
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both the simulation results~jagged curves! and those of our
theory ~dashed curves!, now with exponentially distributed
reaction events according to Eq.~33!, with k51025. The
profile nearx50 remains pointed for all the times shown,
predicted by the theory. The quantitative disagreements
long times (t5237 185 and especiallyt5545 708) are due to
finite size effects. Boundary effects are negligible only
long as Up(x52Lx/2,t)5UP(x5Lx/2,t)50, and for the
long times we find that this is not the case. In our oth
simulation results we have not included such results in
averages, but have left them in this figure simply to stress
finite size effects one must be aware of in calculating
behavior of quantities in the depletion zone when the zo
extends all the way to the boundaries of the system. To p
vide accurate results for such long times it is necessary to
simulations on larger systems.

n

of
n

FIG. 5. Log-log plot of the width of the product profile as
function of time forg50.75~squares!, g50.5 ~circles!, andg50.25
~triangles!. The linear fit slopes are 0.129, 0.084, and 0.042, resp
tively. The mean-field prediction for the slope is given in Eq.~31!
asg/6.

FIG. 6. Simulation results for the profileUP(x,t) for g50.75
andt5946, 3777, 15 073, 60 149, 240 025, and 957 828. The w
of the profiles increase with time, as seen in Fig. 5. The simula
was carried out on a lattice of size~160, 20! and averaged over 102
runs. Notice the apparent evolution from a characteristic sha
pointed profile for short times to a vaulted profile at longer tim
For a discussion of this anomaly, and for the values of other par
eters, see text.
6-7
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V. CLOSING COMMENTS

In this paper we have proposed a set of continuum fr
tional diffusion equations to describe the behavior of a re
tion front in the A1B→C reaction-subdiffusion problem
Subdiffusion may be appropriate to describe the way re
tants move in complex~glassy, disordered, highly con
strained! geometries, and we were interested in explor
how this constraint on the motion would affect the evoluti
of a reaction front. Because we are working with a set
mean-field continuum equations, our results are only va
above the critical dimensiond52.

The subdiffusive motion is modeled via the usual fra
tional equation that contains the Riemann-Liouville opera
Eq. ~5!. This choice has a long history, and its virtues a
shortcomings are clearly understood. Less clear has bee
selection of the local reaction term, and the question of
way in which the memory in the Riemann-Liouville operat
does~or does not! affect the way in which the reaction i
modeled. While the literature on this subject has present
number of viewpoints, we argued, in agreement with@54,55#,
that the reaction term should also be modified from its us
simple instantaneous product form, at least for small reac
rate constants. Our reaction-subdiffusion model is thus gi
by Eq. ~23!.

Following the approach of Ga´lfi and Rácz @29# for the
evolution of a front in the reaction-diffusion problem, w
assumed scaling solutions for the various quantities that

FIG. 7. Simulation~jagged lines! and theory~dashed lines! for
the profileUP(x,t) for g50.75 andt53738, 8577, 19 682, 45 165
103 638, 237 815, and 545 708. Notice the absence of the roun
anomalies in the profile for smallx. The reaction rate is much
smaller in this case; see text. The simulation was carried out o
lattice of size~160, 20! and averaged over 102 runs. The times a
approximately equivalent to those used in Fig. 6 if the total num
of C particles in the system is used as a measure of time.
m
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be calculated from the model. Some of these quantities
pend explicitly on the form chosen for the reaction ter
while others do not. We compared the resulting expone
with those obtained from numerical simulations. We fou
very good agreement between the theory and simulations
the exponentsm and a that characterize the reaction term
Eq. ~7!. In particular, in terms of the powerg,1 that char-
acterizes the subdiffusive process we found that the theo
ical valuesm512g/3 anda5g/6 are recovered in the simu
lations with greater fidelity for largerg. The exponentu,
governing the time decay of the reactant concentrations a
Eq. ~6!, is, theoretically, given byg/3. Simulation results
give values which correctly follow this trend, but the agre
ment is not quantitative. However, we have to remember
the quantitya(0,t) is local and, consequently, it is more di
ficult to achieve good statistical averages with the small s
tems and number of particles considered in the simulatio
Perhaps the most challenging quantity to capture is the
file UP(x,t). The theory predicts a cusp atx50 which we
were able to capture by our simulations when the reac
rate constant is sufficiently small. The quantitative agreem
between the theory and the simulations for this profile w
ultimately limited by our finite system size. We note that o
results are a good example of what is sometimes referre
as subordination in that the subdiffusive scaling behavior
be deduced from the corresponding diffusive behavior w
the substitutiont→tg @58#.

This work can clearly be pursued along a number of
rections. Among them is the description of this sam
reaction-subdiffusion problem with the usual uniform initi
condition for the species, to investigate what sorts of seg
gation patterns might evolve on the way to extinction, or
the way to equilibration if the reaction is reversible. Anoth
is the study of the fluctuations that must be added to
model in order to describe this process in a one-dimensio
system where the mean-field description is no longer app
priate, and the possible logarithmic correction in two dime
sions that may explain some of our small-g discrepancies. A
third is the effect of different subdiffusion coefficients for th
speciesA andB, and even of different exponentsgA andgB .
In this latter case subordination would necessarily be m
complicated if valid at all. Work along these directions is
progress@59#.
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