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Scale-free behavior and universality in random fragmentation and aggregation
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Two distinct mechanisms underlying the existence of power-law distributions are presented: the distribution
is stationary under the process of merging and splitting of classes and the distribution of the entities under
study is invariant under changes of the classification scheme. We provide an explanation for the ubiquitous
inversen relationship in the species abundance relationship in ecology andrfeistribution of company
sizes based on the minimum impact principle.
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Scale-free power-law distributions are observed com- In a split, a randomly chosen company is divided into
monly[1-8] and there have been many efforts to understandwo, preserving the total number of people. In a merger, all
their ubiquity. The primary focus of our paper is to elucidateof the people from two randomly chosen different companies

two mechanisms for understanding the origins of power-lawyye combined into a single company. Therefore, the probabil-
behavior. The first arises from a generalization of the Smoluﬁy that two companies of sizes, and s, participate in a

chowski equation9], which has been previously studied in : : :
' . ” merging event is proportional to the product of the number of
the context of random fragmentation and agglomersj companies of sizes; ands,. Iterations consisting of a single

16] and in the formation of groups of animal&7]. Such lit. with probabilit 2 sinale meraer. with probabilit
studies of rupture and aggregation have applications in co P, probabilityp, Or a single merger, probability
—p, are performed until the distribution of companies

densed matter physics, statistical physics, and cosmolo L o
and it is known that they can produce power-law distribu- eaches a statistical steady state. In principle, one could con-

tions. We seek to describe mergers and spin-offs in, say, éjder the gene_ral situation in which _the probability of spIit_—
world of companies, and show numerically and analyticallyting and merging depends on the sizes of the two parts in-
that one obtains, in steady state, a stable, nontrivial, fixe§olved in the event. The corresponding equations can be
probability distribution of company sizes with nonuniversal Written down, but it is hard to obtain an analytical solution.
power-law behavior. We restrict our analysis below to some special cases for
A system at a critical poinft3] is characterized by scale which explicit results can be obtained. The common features
invariance leading to power-law behavior and looks muchof the solutions we find are suggestive of their generality.
the same independent of the resolution with which you view We worked with two different types of splits. The first,
it. Such a system is well defined and there is no subjectivityandom split, consists of selecting a company at random and
in measuring its attributes. In contrast, we show that, in situsplitting it into two companies, one with a size randomly
ations in which there is some subjectivity in the categorizaselected between zero and the size of the initial company,
tion, the very fact that a consistent pattern is observed in and the other with the remainder of the people. The second
robust manner imposes a strong constraint on the nature gplit type, Equal split, consists of selecting a company at
the distribution and implies that the underlying pattern ex-random and splitting it into two of exactly half the size of the
hibits algebraic behavior. We call this second mechanism theriginal. In both cases, there is no minimum company size
principle of recategorization invariance, which we illustrateand the size is not required to be an integer. Similarly, we
with the species abundance relationship in ecology. have also considered two types of mergers. First, random
Finally, we present a scaling analy$8, which together merger, consists of selecting two companies at random and
with a minimum impact principle is shown to lead to distinct replacing them with a single company with a size equal to
universal [3] power-law relationships, without any fine- the sum of the two original companies. The second type,
tuning of parameter§2], in the company size distributions closest merger, consists of selecting one company at random
and in ecology in excellent accord with ddte8—21. and then merging it with the company closest to it in size.
We have performed numerical simulations to determinéVe choose a maximum company siké so that mergers
the distributions of company siz§$8] after a series of splits which lead to companies with more thah individuals are
and mergers and, in all cases in which stationarity is attainediot permitted. This could model the action of an antitrust
a power-law distribution of company sizes is obtained, butauthority. Note that the overall population is finitde total
with exponents whose values depend on the rules employedumber of workers in the case of companies, for exajrgie
The number of companies(n) dn, with number of employ- that mergers leading to companies larger than the overall
ees between andn+dn is found to scale as™?, with the  population cannot take place.
power-law behavior being cut off for sufficiently large values  The master equation for the random-splitting—random-
of n. merging process is
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The first two terms on the right-hand side represent the loss %[

and the gain due to splitting while the third and fourth terms

describe the gain and the loss due to merging. | | |
On postulating a power-law form fa(n) in the station- 0.01 1 100 10000 1e+06

ary situation and equating terms in leading order, one obtainc n

the exponent

le-10

FIG. 1. Plot ofs(n) vs company size for three distinct split-
2p merger simulationss(n)dn is the fraction of companies of size
= 2 (number of employegdetweemn andn+dn. All three cases were

2-p run with 20 companies and a total of 200 000 employees. The value

) ) of pin each case is 1/2 and the observed expon@és, 0.42, and

Note that wherp>2/3, #>1 and there is no stationary solu- 1.0 are in good accord with the analytic predictions of 2/3, 0.415,
tion. Similarly, for the equal-splitting—random-merging case,and 1 for the random-split—random-merge, equal-split—random-
the term Z[s'(m)/m]dm in Eq. (1) is replaced by merge, and the random-split—closest-merge cases, respectively.
4s'(2n), leading to

0

scheme employed, it would be natural to think of this as a
pattern worth understanding.

Let us illustrate recategorization invariance with a frag-
mentation example relevant to ecology. How might one cat-
Finally, for the random-splitting—closest-merge case, thesgorize organisms into species? There is clearly no unique
master equation is answer to this questiof22—-24 except that, within any cat-

egorization, organisms belonging to a given species ought to
+(1-p) be closer to ea_lch othe_r tha_n to organis_ms in other species. In
order to simplify the situation and derive the consequences
of this flexibility in classification, we envision starting with a
X[%s'(n/2)—2s'(n)], (4)  coarse definition of the species and ask how the distribution
evolves on recategorizing the organisms into species with a
leading to thep- ¢ relation: finer distinction between them. In other words, we consider
carrying out a simple splitting proceduf25] in which, for
2_00-1 example, each species is divided into two and the integer
(5 population in the original speciggneasured in convenient
units so that, for example, the unit of population corresponds
to extinction thresholdis divided randomly, for simplicity,
into positive integer populations of two new species.

0=2+In

p

—s‘(n)+2fwﬂd

n

s*i(n)-s(n)=p

SRy RPYETS

We have verified these predictions with computer simula

t'or_]l_sh Sfome reprisintthatwse caltseﬁ arekshownt!?mF!g. } We do not concern ourselves with species having a popu-
€ framework of (€ SMOIUCNOWSKI eqUALIBN 1S AISO 1445 of just 1—such a species cannot, of course, be split

relevgnt for understanding the P”F‘C‘P!e of recategqrjzationany further and may be thought of as one that goes extinct. A
invariance. In order to study distributions of quantities Ofrobust law or a consistent pattern is one that ought to be
interest, one needs to categorize or bin them. Often, this Cabserved independently of the precise definition of the spe-

he done in an abjective manner but there are situations iEies. When the total number of species is large, our simula-

V\{h'gh tthh|sd|.str_1§ttp055|fble. For elel”_nrr)llea '.f one V‘;'.?.he.d totions show that the splitting procedure is well described by
study the diStnbution of papers published In SCIENtNE JOUry, . \naan field recursion relation fer 1(n), the number of

nals in various subject categories or t_he distribution °f§pecies with a population of at the §+ 1)th iteration:
people in various employment sectors, different analysts o

the same data could choose distinct categorization schemes

and could presumably get different distributions. If the dis- st n)=2> )
tributions are indeed qualitatively different, then their behav- m>n M—1
ior is not robust and depends on the specific categorization

scheme. More interestingly, if the distributions are in the The stable fixed probability distribution of this recursion
same class or equivalently are described by the same familg one in which each organism belongs to a distinct species.
of mathematical functions independent of the specificAny initial distribution will eventually reach this stable dis-

s'(m)

(6)
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tribution after infinite iterations of the splitting process. An-
other fixed probability solutioifalbeit unstablgto Eq.(6) is

a power-law distribution. This follows readily from consid-
ering an approximate integral representation of @gjwrit-
ten ass' "1(n)=2[7[s'(m)/m]dm and noting thats'(m)
~m~? leads tos' "*(n)~n"".

Figure 2 shows the results of integrating the recursion
relation for three commonly studied classes of distributions
[19,2Q, the canonical log-normal, the broken stick, and a
power-law form. The power-law distribution retains the most
fidelity to its functional form on successive iterations. The
canonical log-normal form is somewhat robust under itera-
tion with just a weak variation in the adjustable parameter.
Note, however, that a power-law is a reasonable approxima-
tion to the tail of a canonical log-normal distribution.

It is important to emphasize that the species abundance
relationship arises from evolution and natural selection, and
the observed regularities do not derive from the way in
which one categorizes the species. Instead, the distributions
which have been commonly put forward to characterize the
relative abundance of specighke log-normal and the power-
law) are invariant under recategorization of the quantities
being studied and are therefore consistent with the robust
observability requirement discussed here.

Our studies of successive splitting and mergers and the
principle of invariance under recategorization both lead to
power-law distributions but with no unique exponent. We
now turn to a scaling analysj8] of such distributions. Lell
represent the total number of individuals across all species:

N=fws(n)n dn. (7)

1

Our simulations have shown that the number of companies
(specieg of sizen (with n individualg, s(n;N), is a homo-
geneous function of the type

s(n;N)~n~F(n/ny(N)). (8)

The scaling functior-(x) approaches a constant value for
small compared to 1 and becomes zero whénlarge com-
pared to 1, sag is the upper limit cutoff of the algebraic
behavior ofs(n;N). A sample of the results of our simula-
tions is shown in the collapse plot af’s(n;N) versus
n/ny(N) in Fig. 3. This scaling form is well captured by the
Fisher log serief21] which states that the number of species
with a populationn is proportional toe™""o/n.

The total number of individuals is given by

_ ” __n2-0 T 10
N Ls(n)ndn ng f X F(x)dx. 9

1ng
In order forng to diverge adN— < and the scaling regime to

nies(specieg is equal to

log,,[s(n)]

d {log,[s(n)]}/ dllog,,(n)]

log,,[s(n)]

FIG. 2. Plot of the original distributios(n) and those obtained
after the first four iterationssi(n), i=1,...,4, of thesplitting
procedure described in E¢6). The distributions are depicted by

. Ve circles, squares, diamonds, triangles, and asterisks, respectively.
be extended indefinitelyy<2. The total number of compa- The three panels refer to the three initial distributions discussed in

the text:s(n)~1/n if L<n<n,,, 0 otherwise(power-law, upper
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FIG. 3. Scaling collapse plot for the random-split—random-
merger case with equal probability for split or mergpr<(1/2) for
differing numbers of companieS and total employeehl. For the
scaling cutoffny we used the mean company sil#C. The expo-
nent here is 2/3 as predicted in E®). We have confirmed that
similar scaling, but with different exponents in accord with the the-
oretical predictions, is found for other values pfand for other
split-merger scenarios.

There are two distinct scenarios that one needs to consider.
one requires that the number of compari{sgseciesbecomes
infinitely large whenny and the number of individuals di-
verge one obtains a more restricted inequakitgl. This is

indeed the case in ecology in which the number of distinct
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In any case, one finds thag is simply proportional to the
average company siZenean species abundanchl/C, and
that

C~N(l*6’)/(276). (11)
This leads to the result
AC~N"YE=OAN, (12

which quantifies the increase in the number of companies
(specieg due to a small increase in the total number of indi-
viduals. In a free market society or in an ecosystem in which
the biodiversity is maximized, one expects that the impact on
the number of companie&pecie$ is minimum when one
introduces a small number of additional individuals. This
follows from the observation that a large impact on the num-
ber of companiegor specieswould imply that the economy
(ecosystemis not optimized for maximal profitbiodiver-
sity). On minimizingA C subject to the constraints ah we

find that the optimal value of is given by

0=1 or 2. (13

It is remarkable that this drive towards optimality leads to
the observed 1V or 1/h? dependencies in the species abun-
dance relationship in ecology and in the company size dis-
ﬂlfﬁaution, respectively. These two distinct universality classes
correspond to the exponent being at the edge of the allowed

ange.
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