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Crossover behavior in three-dimensional dilute spin systems
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We study the crossover behaviors that can be observed in the high-temperature phase of three-dimensional
dilute spin systems, using a field-theoretical approach. In particular, for randomly dilute Ising systems we
consider the Gaussian-to-random and the pure-Ising-to-random crossover, determining the corresponding
crossover functions for the magnetic susceptibility and the correlation length. Moreover, for the physically
interesting cases of dilute IsinkY, and Heisenberg systems, we estimate several universal ratios of scaling-
correction amplitudes entering the high-temperature Wegner expansion of the magnetic susceptibility, of the
correlation length, and of the zero-momentum quartic couplings.
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I. INTRODUCTION Unlike Ising systems, multicomponent ®{-symmetric
spin systems do not change their asymptotic critical behavior
The critical behavior of randomly dilute magnetic materi- in the presence of random impurities. Indeed, according to
als is of considerable theoretical and experimental intereshe Harris criterior{17], the addition of impurities to a sys-
[1-5]. A simple model describing these systems is providedem which undergoes a continuous transition does not change
by the Hamiltonian the critical behavior if the specific-heat critical exponerdf
the pure system is negative, as is the case for My2.
From the point of view of RG theory, the Wilson-Fisher FP
Hp=JZ piP;Si*Sj, (1.7 of the pure OM) theory is stable under random dilution.
(i) The presence of impurities affects only the approach to the
critical regime, giving rise to scaling corrections behaving as
where the sum is extended over all nearest-neighbor sites, |72, wherer is the reduced temperature af\g= — . The
are M-component spin variables, ang are uncorrelated exponentA; is rather small for the physically relevant cases
quenched random variables, which are equal to one withi=2 and M=3—a=-0.0146(8) (Ref. [18]) and
probability p (the spin concentratiorand zero with probabil- «=-0.133615) (Ref. [19]), respectively—giving rise to
ity 1—p (the impurity concentration For sufficiently low  very slowly decaying scaling corrections. Experiments on
dilution 1—p, i.e., above the percolation threshold of the “He in porous materialg20,21] and on randomly dilute iso-
spins, the system described by the Hamiltoritdg under-  tropic magnetic materials, see, e.g., R€2&2-24, show that
goes a second-order phase transitiom &p)<T.(p=1). the critical exponents oXY and Heisenberg systems are
The nature of the transition is rather well established. Inunchanged by disordésee also the list of results reported in
the case of the random Ising mod&IM) corresponding to  Ref. [4]). But, in order to observe the correct exponents in
M =1, the transition belongs to a new universality classmagnetic systems in which the reduced temperature is usu-
which is distinct from the Ising universality class describingally not smaller than 10% it is important to keep into ac-
the critical behavior of the pure system. This has been clearlgount the scaling corrections in the analysis of the experi-
observed in experimen{8] on dilute uniaxial antiferromag- mental datd22].
nets, such as k&n,_,F, and MnZn, _,F,, in the absence In this paper we study the crossover behaviors that can be
of magnetic field 6] and in Monte Carlo simulations of the observed in the high-temperature phase of three-dimensional
RIM, see, e.g., Refd.7—10Q]. The critical exponents are in- dilute spin systems. First, we consider the crossover from the
dependent of the impurity concentration and definitely differ-Gaussian FP to the stable FP of the model, i.e., the random
ent from those of the pure Ising universality class. Field-FP forM=1 and the pure QNI)-symmetric FP forM =2.
theoretical(FT) studies[11-16 confirm these results. The Such a crossover can be observed at fixed impurity concen-
fixed point(FP) related to the pure Ising universality class is tration by varying the temperature.|lF—T.|/T.>G, where
unstable with respect to the addition of impurities and theG is an appropriate Ginzburg numbg5], fluctuations are
renormalization-grougRG) flow is driven towards a new irrelevant and mean-field behavior is expected, while|Tor
stable random FP that controls the critical behavior. —T.|/T.<G the asymptotic critical behavior sets in. This
crossover is not universal. Nonetheless, there are limiting
situations in which the crossover functions become indepen-
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[26]. In this limit the crossover functions can be computedwhere A, , are the exponents associated with the first two
by using FT methods: fob(M) models precise results have independent scaling corrections. For dilute Ising systems, a
been obtained in Ref27] by using the three-dimensional recent Monte Carlo study8] provided the estimate\,
massive scheme and in Ref28,29 by using the minimal- =0.253); arough estimate oA, is A,=0.55(15), cf. Sec.
subtraction scheme withoutexpansion. Il B. For XY and Heisenberg systends, = — a, while A,

In Ising systems there is also another interesting crossovemwincides with the leading correction-to-scaling exponent of
associated with the RG flow from the pure Ising FP to thethe pure modelA,=0.53(1) forM =2 andA,=0.56(2) for
random FP. When the concentratipris close to 1, by de- M=3, cf. Ref.[4]. The ratios¢,;/x,; and x, /Gy ,; for
creasing the temperature at fixpdone first observes Ising i=1,2 are universal. Their determination may be useful for
critical behavior, then a crossover sets in, ending with thehe analysis of experimental or Monte Carlo data. In Egs.
expected random critical behavior. In a suitable limit in(1.6)—(1.8) we only report the leading term for each
which p—1 this crossover is universal. The correspondingcorrection-to-scaling exponent, but it should be noted that
universal crossover functions can be computed by using Fihere are also corrections proportional 461, 7321, etc.,
methods. that may be more relevant—this is the case of systems with

These crossover behaviors are investigated here by using =2—than those with exponent‘2,
the fixed-dimension perturbative approach in powers of ap- The crossover behavior in dilute models was already stud-
propriate zero-momentum quartic couplings. We determinged in Refs[30,14 in the Ising-like case and in Ref31] for
the RG trajectories and the crossover functions of the magmulticomponent systems. However, R€f30,14,3] studied
netic susceptibilityy and of the second-moment correlation the crossover and computed the related effective exponents

length &, defined from the two-point function with respect to the RG flow parameter, while we compute
effective exponents with respect to the reduced temperature,
G(X)={pg pxSo"Sx)» (1.2 which have a direct physical interpretation.

The paper is organized as follows. In Sec. Il we discuss
where the overline indicates the average over dilution@nd the FT approach. We first introduce the effective Landau-
indicates the sample average at fixed disorder. This studginzburg-Wilsong* Hamiltonian and some general defini-
allows us to compute the corresponding effective exponentgions. Then, we generalize the approach of Heéf?] by
and to determine several universal ratios of scalingshowing how to compute the crossover functions of the mag-
correction amplitudes entering their high-temperature Wegnetic susceptibility and of the correlation length in terms of
ner expansions. Besidg and £ we also consider zero- an effective temperature. These exact expressions allow us to
momentum quartic correlations and appropriate combinadetermine the temperature dependence of several quantities
tions that have a universal high-temperature critical limit,near the critical point and, as a consequence, to compute

such as some universal ratios of scaling-correction amplitudes enter-
ing the high-temperature Wegner expansionyoé, G,, and
Gi=— im X4 G,, for dilute Ising, XY, and Heisenberg systems. These
4 M +2H0+§7?' results are presented in Sec. lll. Finally, in Sec. IV we extend

the computation to the whole crossover regime, determining
RG trajectories and effective exponents for Isixgy¢, and
Gy=— lim ﬁ, (1.3 Heisenberg systems with random dilution. In the case of
1% Ising systems, we also discuss the Ising-to-RIM crossover,
give analytic expressions for the crossover scaling
where 7 is the reduced temperaturey, is the zero- functions—details are reported in Appendix B—and explic-
momentum four-point connected correlation function averditly compute the crossover function associated with the mag-

7—0"

aged over dilution, i.e., setting==,p,s,, netic susceptibility. In Appendix A we prove some useful
identities among the RG functions introduced in the FT ap-
M+ 2 proach.
Vxa=({(p- w)?) === (m- )%, (1.4)

(V is the volume and y,, is defined by II. RG TRAJECTORIES AND CROSSOVER FUNCTIONS

A. Definitions

_ ——2
Vixao=(p- p)?—(p-p) (1.9 The FT approach is based on an effective Landau-
o L Ginzburg-Wilson Hamiltonian that can be obtained by using
Their high-temperature Wegner expansion is given by the replica metho@i32—39, i.e.,
X=X7777(1+XT,1TA1+X7,27A2+ T )l (16) 1
HMNZJ dx % E[(a,u¢ai)2+r¢azli]
E=E1 (L EamiitEoret ), (L)
+> i(u +0o8,) b2 bE; (2.)
G#:Gz(1+G#,T,1TA1+G#,T,ZTA2+ e )v (18) ijab 41 0 0ij aiv’bj [ '
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(a) ISING-LIKE b M>l

FIG. 1. Sketch of the RG
flow in the coupling plane ,v)
for (&8 Ising (M=1) and (b)
M-component 1>1) randomly
dilute systems.

Gaussian

Gaussian

where a,b=1,... M andi,j=1,... N. In the limit N The critical behavior is determined by the stable FP of the
—0 the Hamiltoniari+,\ with uy<<0 andv,>0 is expected theory, i.e., by the common zerd', v* of the B functions
to describe the critical properties of dilut&component spin
systems. Thus, their critical behavior can be investigated by
studying the RG flow of+y, in the limit N— 0. For generic
values of M and N, the HamiltonianH,,y describesM
coupledN-vector models and it is usually callddN model  whose stability matrix has positive eigenvalu@stually a
[1]. Hun is bounded from below foNuy+vy>0 andu,  positive real part is sufficient The critical exponents are
+vy>0. But, as discussed in Rgf36], in the limit N—0 obtained by evaluating the RG functions
the only stability condition i®g>0. Figure 1 sketches the
expected flow diagram in the quartic-coupling plane, for anZ, dn Z
Ising (M=1) and multicomponentN|=2) systems in the 7p(U0)= Znr (W)= s
limit N—O. The relevant region for dilute systems corre-
sponds tau<0 and thus the relevant stable FP is the randor@it u* ,v™:
FP(RIM in Fig. 1) for M=1 and the O) FP forM=2.

The most precise FT results have been obtained in the
framework of the fixed-dimension expansion in powers of
zero-momentum quartic couplings. In this scheme the theory (2.8

is renormalized by introducing a set of zero-momentum CON= 1 ivcloon perturbative expansions of {Bdunctions and
ditions for the one-particle irreducible two-point and four- bp P

; ; . of the critical exponents are reported in Réfkl,37.
point correlation functions: In the MN model, the RG functions satisfy a number of
re (p)=6 -b'Z;l[szr p?+0(p%] (2.2 identities. Along theu=0 axis we have
ai,bj , .

Ju Jdv
ﬂu(u,v)=ma—m , ﬁ”(“’”):ma_m , (2.6)

Ug.Ug Ug.Ug

2.7)

1
n=n4U*,0*), ;=2— N4(U* ,0*)+ p(u*,0*).

aibj
Jd d d
Whereb‘ai'b]‘Eﬁabﬁij, and Pu — ﬁv + IBU =0, (2.9
Ju U=0 Jv u=0 ou u=0
F.(a‘i‘,)bj,ck,m(o):lem(usai,bj,ck,m+UCai,bj,ck,d|), ; ;
2.3
23 % - % -0, (2.10
where Ul P lu-o
while along thev =0 axis we obtain
Sai bjckdl = 3(Sai,bjSck,dit Oai.ckObj,di T Oaidi Obj,ck)» g
By aB, MN+2 48,
Caibj.ckdl= 3 5ij OikOil ( SabScd™ SacObdT Saddbe)- 2.4 ou 70_ T 70— M2 90 70=0, (2.11
. v= v= v=
In addition one defines the functidf through the relation Ing|  MN+2d9, ~o (2.12
12) . au | _ M+2 v 'm0 ' '
I'5i5i1(0) = SaipiZ; ~, (2.9
J MN+2 9
wherel'(?) is the one-particle irreducible two-point function AL I VR /LI (2.13
with an insertion of; 3 ,;¢2; . Ml,_o MF2 dvf _,
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These identities can be proved order by order in the pertuwhich the quartic Hamiltonian parametersandvy are kept
bative expansion; see Appendix A. The second set of relafixed. They are implicitly characterized by the equation
tions was already reported in R¢88] for M=1.

In the limit N— O, the perturbative expansions in powers
of uandv are not Borel summable at fixed ratidv (Ref.
[39] shows it explicitly for the zero-dimensional theory
with M =1, but the argument has general valigitgxcept RG trajectories can also be determined by solving the differ-
when u=0 that corresponds to th®(M)-symmetric ¢*  ential equations
theory. ForM =2, this is a minor problem since the relevant
FP is the OM)-symmetric one. On the other hand, this is a _)\E:ﬁ W\, o(\)
notable limitation of the perturbative approach for the RIM. dx u ' '

Nevertheless, rather reliable results for the critical exponents

of the RIM universality class have been obtained from dv

the analysis of properly resummed perturbative series. Sev- ~A gy =B M) u(N)), (2.19
eral methods have been used: the PRBdesl method at fixed

u/v or the strictly related Chisholm-Borel method, the directwhere\ €[0,0), with the initial conditions
conformal-mapping method, an expansion around the Ising

F(uw)=2oU0) _to_ (2.14
v S vZ,(uv) ve ’

FP[7], and the double-PaeRorel and the conformal-Pade u(0)=v(0)=0,

Borel method[11], which, at least in zero dimensiof40],

are able to treat correctly the non-Borel summability of the du dv

expansions at fixedi/v. The FT estimates of the critical ax A 0_57 ax A 0=1- (2.16

exponents obtained from the analysis of the six-loop expan-
sions reported in Ref$37,11] depend only slightly on the
resummation method. For instance, Rdfll] reports
»=0.6738) and »=0.0293) from the direct conformal-

mapping method, and=0.67810) and »=0.0303) from attraction domain of the stable FP is given by the values of

an analysis that follows the ideas of ReA0J. A second Ug andv, corresponding to trajectories ending at the stable
source of uncertainty is the position of the FP. Monte Carlo 9 vo P 9 J 9

[7] simulations givar* = — 18.6(3) andy* =43.32), which "+ € trajectories for which
are significantly different from the FT estimat¢$l] u*
=—13(2) andv* =38.0(1.5), obtained from the numerical

determination of the stable common zero of ;iunctions. - The crossover functions from the Gaussian to the Wilson-
However, as discussed in R¢T], the critical-exponent esti- Fisher stable FP have been much studied in the case of the
mates show a relatively small dependence on the position qh(\)-symmetric theories, both in the field thedig7—29

the FP. By using the Monte Carlo results for the location ofyng jn medium-range modeig6]. In order to determine the
the FP in theu-v plane, one obtaing7] »=0.6884) and  crossover functions along the RG trajectories, and in particu-
1=0.0263), which are close to the above-reported ones, obiar those related with the correlation lengththe magnetic
tained by using the field-theoretical estimates of the FP. Iysceptibilityy, and the reduced temperaturer —r., we

any case, itis reassuring that the FT results are in satisfactogyend the method of Ref27] to Hamiltonians with many
agreement with the Monte Carlo estimates of the critical eXquartic parameters, such 2,y . Using the relations

ponents, i.e.[7] »=0.6833) and =0.0352). The compari-

son of the different analyses shows that all different resum- 1

mation methods give results of similar accuracy. In E=1m, x= MX=Z¢§2,
particular, the more sophisticated analyses suggested in Ref.

[40] and employed in Ref{11] apparently do not provide r® (o
more accurate results than those at fixéd. For this reason, I 0)= Il 5 b;(0)
in the following we only use the Padorel and the ai.bj o
conformal-mapping method at fixadv. In the latter case, (2.18
for the singularity of the Borel transform we use the naive

analytic continuation foN—0 of the result for the cubic and Eq.(2.7), and defining

model reported in Ref37]. The results of Ref.39] suggest

The solutionau(\,s) andv (\,s) provide the RG trajectories
in the (u,v) plane as a function o§. The RG trajectories
relevant for dilute spin systems are those witi0. The

UN=o,5)=u*, v(\=w,5)=v*. (2.17

= SainiZ

that this should allow us to take into account the leading 74(N,8)=17,4U(N,S),v(\,S)),
divergent behavior of the series at least for sufficiently small
|u/v]| (in zero dimensions for- 1/2<u/v <0). n(N,8)= 7 (U(N,S),0(N,8)) = 7,(U(N,S),0(N,9)),
(2.19
B. Renormalization-group trajectories we derive the following expressions:
The RG trajectories in the planes,p) are lines which 5
start from the Gaussian FP locatedwatv=0 and along E(N,S)=¢vg=N\, (2.20
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~ — A A7I¢(X!S) Uy 1(5) wl_bvv buv
\,s)=xv5=\%ex —J dx———|, (2.2 == = ,
X ) X F{ 0 X @21 ! U)\,l(s) b,y 01— by,
5 © D A7]¢(X,S) x  m(y,s) _ U)\z(S) :wz_bvv _ by,
FN,8)=1lvy= ﬁ\ deexpf dy y R, NG b, oo’ (3.9

(2.22 These ratios are independentsfas expected because they
are universal. Indeed, as we shall see, they can be related to
the universal ratiosG,, /G, ,; of the scaling-correction
amplitudes ofG, andG,,, cf. Eqs.(1.3) and(1.9).

We also expand the RG functions associated with the

where?, ¥, and7 are dimensionless quantities. One can
easily verify that in the Gaussian limit, i.e., far—0" or
7—o, we haveu,u=0(\), 74(\,5)=0(\?), 7(\,S)

=0(\); thereforé7é2—1 andyé 2—1, as expected. critical exponents,
Equations(2.20—(2.22 allow us to Comput% andy as
functions of7 ands. We can then define effective exponents o(U,p)= 1

by taking logarithmic derivatives of andY at fixeds: 2+ (u,v) = ny(U,v)

~y+y,(u—u*)+v,(v—v*),

(hs) oIngé t9) any
Ve T,S)= — —| Veif( T,S) = — —|
In7 s din7 . y(u,v)=[2—n4u,v)]v(u,v)
~ ~y+ v (U=U*)+ y,(v—0v*), (3.5
~ . dny
el 7:8) =2 an'é S' 2.23 and define thes-independent quantities

One can easily check thafes=2— Yer/ ver= 7,4. OnN the IS YRy, = nRt Y, A= e,

other hand,y.s# y(u,v) and ves# v(u,v), where y(u,v)
and »(u,v) are the RG functions associated with the expo-for i =1,2. Then, using Eq:3.2), we find
nentsy and v.

2
IIl. UNIVERSAL RATIOS OF SCALING-CORRECTION X(N\,8)=x\(S)N"7 1+i§l Xni(SNT“it ],
AMPLITUDES
A. General results 1 4(X,9) ©  pus(X,S)—
] . ) . Xk(s)zexp(—J' dx%——f dxM ,
In order to determine the scaling-correction amplitudes, 0 X 1 X

we compute the crossover functions close to the critical
point, i.e., forh—o or7—0". For this purpose, we consider YN N
the expansion of the RG functions around the stable FP X*v‘(s)_A_i(T_T)vM(S)’ 3.7
(u*,v*). We write
and

Bu(u-v)%buu(u_U*)*—bUU(v_U*)i )

B,(U,v)~b,,(u—u*)+b,,(v—0v%). (3.1 7(N,S)=Ty(S)N 1+Z1 NI SR

Then, using Eq(2.15 we have the following behavior, in R R
the limit\—z and for values o§in the atraction domainof =~ o o fldx m(x.s) fmdx m(x,8)+2—1lv
the stable FP, ™ Y o X 1 X '

U(N,S)~U* + Uy 1(SIN™ 14Uy o(S)N ™2+ -+, _ _
7i(8)= L—M)Ms) (38
)\’ s . .
v(N,S)~v* + v\ ((S)NT I+ vy oSN 24+, (3.2 I (1+4ApDy A
wherew, ,w, are the eigenvalues of the matrix Using Egs«(3.7) and(3.8), we can derive the Wegner expan-
sion of ¢, x, and of the zero-momentum quartic couplings
buu by andv in terms of the reduced temperatreWe obtain
b b | (3.3
vu vv

2
ET9)=E(s)7 | 1+ igl §T,i(S)7Ai+ .

and we are keeping only the leading terms in powerns ¢f?
and A~ “2, In particular, we have neglected terms of order
N "291, X\ 7391, etc., which may be as important as those of  ¢.(s)=7,(5)", &..i(S)=vTy i(S)v, ()7 ()2,
order\ —“2. Moreover, we have (3.9
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and ing the double-PadBorel and the conformal-Padgorel
method and w;=0.34(11) (using the direct conformal-

2 . . . .
mapping methoyd in substantial agreement with the Monte

X(7.8)=xA8)7"7 1+i=21 Xri (770 |, Carlo resultw;=0.37(5) of Ref.[8]. In those analyses the
field-theoretical estimate of the FP was used. We tried to
XA(S)=xr(S)7y(5)7, computew, by also using the Monte Carlo estimate of the

FP. However, all methods gave largely fluctuating results and

i ;N no estimate could be obtained. Then, we determiagdIn
Xi(S)=— mvx,i(s)n(s) ' (310  this case, the conformal-mapping method provided reason-
' ' ably stable results up to the Monte Carlo FP. We obtained
and also [42] w,=0.8(2).
5 Similar analyses were done f&; andR,. Our final re-
sults are
v(7,8)=v*+ > v, (s)FA+ -,
=1 R;=—-0.902), R,=—0.7(3). (3.19
vi(8) =0\ ,i(S)Tr(8) "™, (3.1)  Finally, we determined the ratios of scaling-correction am-

plitudes using relation$3.14). In order to have a check of
the results, for each quantity we considered several series
with the same FP value. We obtained

2
u(#,s)=u* +Zl Uy ()it -,

Ui(8) =R, i(8) 7, (9) . (312 Xral6ra=1.994),
The results of Ref{41] allow us to identify X71/G4z1=—1.003),
G4(7,5)=v(7,5), Guy7,s)=3u(7s), (3.13 G227,1/Ga1=2.1(1),
and to obtain the corresponding scaling-correction ampli- Xr2l€:,=1.7(2),
tudesG, . ; andG,, . ; defined in Eq(1.8).
From the above-reported relations we derive the follow- X721G4:2=—0.42),
ing expressions for the universal ratios of scaling-correction
amplitudes: G224,2/Ga72=1.6(7). (3.16
Uy The errors take into account the results obtained from dif-
» =R, ferent series and different resummation methods, and also
™! the uncertainty on the location of the FP. It is interesting to
£ v(1+A) A, note t_hat th2e results for the ratig(s,,i'lgﬂi show' that the
= quantity x/&- has much smaller scaling corrections than
X7 I Y and & This fact was used in Ref7] in order to obtain a

precise Monte Carlo estimate gffrom the high-temperature
Xri _ _ L (3.14  behavior ofy/ 2. For comparison, we report the correspond-
Ui Ai(1+4y) ing values for the pure Ising universality class. From the
analysis of high-temperature series one obtaing/¢,
=1.11(12) (Ref. [43]) and x, 1/¢,,1=1.32(10) (Ref. [44]),
while field theory gives [27] x,./é,,=1.47(4) and
X711G4,1=—0.304).

Their universality is explicitly verified since they are inde-
pendent ofs=ug/vg.

B. Results for dilute Ising systems

Using the results reported in Sec. Ill A, we can estimate C. Results for dilute multicomponent systems
several universal scaling-correction amplitude ratios. We
analyze appropriate perturbative series that can be derive&
from those of theg functions and the critical exponents.
Again, we use the conformal-mapping method and the Pad
Borel method at fixed ratioi/v. The errors we report take
into account the resummation error and the uncertainty in th
location of the FP. We compute each quantity at the FT an
at the Monte Carlo FP. The final error is such to include bothsul
estimates.

As a first step in the analysis we computed the subleading R;=—1, R,=0, (3.17
exponents and the ratid®;, andR,. The exponentv; was
already computed in Ref11], obtainingw;=0.25(10)(us-  which hold independently df1. We also obtain

As in the Ising case, we determine the universal ratios of
aling-correction amplitudes by analyzing the six-loop ex-
ansions of thdN model[11]. Since the corresponding RG

unctions must be evaluated at theND(-symmetric FP, i.e.,

along theu=0 axis, the series are Borel summable and the
tandard conformal-mapping method works well.

Identity (2.9) allows us to obtain the following exact re-

ts for the universal quantitie®; :

036120-6



CROSSOVER BEHAVIOR IN THREE-DIMENSIONA. .. PHYSICAL REVIEW E 69, 036120 (2004

tegrating the RG equation§2.15, after resumming the
B-functions. The figure has been obtained by using a single
approximant, but others give qualitatively similar results.
The resummation becomes less and less effectiVis|as-
creases. This is expected since the singularities that make the
perturbative series non-Borel summable play an increasingly
important role ags| gets larger. In any case, forl1<s
<0, the RG trajectories flow towards the random FP. &or
=< -1, PadeBorel resummation§én this case we cannot use
the conformal-mapping method since the singularity we use
is on the positive real axisint at runaway RG trajectories.
If this is true and not simply an artifact of the perturbative
approach, this suggests the existence of a valysg~—1
-30 . . . . . . . . . such that systems correspondingstos,,,;, do not undergo a
v continuous transition. As a consequence, sinds directly
related to the variance of disorder, the continuous transition
FIG. 2. Ising systems: RG trajectories in the,f) plane for is expected to disappear for sufficiently large disorder. This
several values of in the interval—1<s<0. prediction may be checked by considering a lattice version of
the continuum Hamiltonian

X'r,llgfr,l: 197(2) ’

f d3x
X71/Ga1=—17(2) (3.18

1 1
5[&M<P(X)]2+ St r(x)]e(x)%+ %@(X)“},

4.9
for dilute XY systems, and _ _ ) )
whereo is a scalar field and(x) is a Gaussian uncorrelated

X:1l€:1=1.972), random variable. Such a model is the starting point of the FT
studies of dilute systems and, by using the replica trick, can
X:1/G4r1=—2.54) (3.19  be shown to be equivalent to the model with Hamiltonian

(2.1. Our results suggest that there is a critical valysuch
for dilute Heisenberg systems. The ratias,/¢,, and that, if the variance of (x) is larger tharv,, the continuous
X-2/G4,» are just the universal ratios of scaling-correctiontransition disappears.
amplitudes of the Q{l)-symmetric models. Referen¢27] Besidess=s,,, there is a second interesting valuespf
reports x,./¢.,=1.57(2) andy.,,/¢,,=1.634), respec- the values* such that the RIM FP is approached from above
tively, for XY and Heisenberg systems. We add the resultfor s* <s<0 and from below fos,,,<s<s*. One can easily
X+21G4,2=—0.47(5) andy, /G, ,,=—0.59(5) again for realize that for this particular value sfthe leading scaling
XY and Heisenberg systems. We finally mention ancorrections proportional te”1—and more generally propor-
e-expansion study of the universal ratios of scaling-tional to 7"*1—are not present in the Wegner expansions of
correction amplitude§45], where the specific-heat and low- the thermodynamic quantities. Numerically, by using the
temperature quantities are considered. These results diffeonformal-mapping method, we obta#i= —0.255).
significantly from those determined in experimef28] on The behavior of the RG trajectories close to the RIM FP
Nigg_ xF&(B,Si)sq. can be determined by using the results presented in Sec.
Il A. We find thatv(\,s) can be expanded as
IV. CROSSOVERS IN RANDOMLY DILUTE SPIN

1
SYSTEMS U()\,S)*U*-FR—(U—U*)
1

A. Crossover from Gaussian-to-random critical behavior

in Ising systems 1 1\ [ u—u*\@2/e1
: , —UyAS)| 5~ 5 , (4.2
In the case of the RIM, the FP’s have been determined by Ry Ry/\uya(s)

using FT and Monte Carlo methods. For the random FP, we
mention again the estimates* =—18.6(3) and v* whereR; and R, are universal constants reported in Sec.
=43.3(2) obtained by Monte Carlo simulatiofg and the Il A, cf. Eq. (3.4), andu, 1(s) and u, ,(s) are expansion
FT results reported in Ref[11], u*=-13(2) andv* coefficients defined in Eq3.2). Note the presence of the
=38.0(1.5). The position of the unstable Ising FPuis nonanalytic correction which shows that, close to the FP,
=0, v,=23.56(2) (Ref. [43]). The RG trajectories fos  trajectories are only defined fou(-u*)/uy 4(s)>0. This is
>0 are not interesting for dilute systems; we only mentionexpected on the basis of general arguméA®-49: along
that they are attracted by another stable FP withN)ogym-  any RG trajectory one expects nonanalytic corrections pro-
metry (N—0), located af4,46] u=26.34), v=0. portional, for instance, tow;/w,;+m, n,m being integers.

In Fig. 2 we show the RG trajectories for several values of Using Egs(2.20—~(2.22, one can compute the crossover
s in the interval—1=<s<0, as obtained by numerically in- functions¢ andy along the RG trajectories, i.e., for fixexql
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0.7 pend on the chosen quantity because of the universality of
ratios of subleading correctioiithe ratios of theB;'s and of
theB,'s of two different quantities are univergaNote, how-
ever, that the existence of this mapping is not guaranteed. In
particular, Eq.(4.6) requiresA;(s)/B; and A,(s)/B, to be
both positive. Sincéd;(s) changes sign fos=s*, it is al-
ways possible to havAa;(s)/B;>0. But there is no guaran-
tee thatA,(s)/B, can always be made positive. This is the
well-known sign problem that has been discussed at length in
O(M) models[50-52,48. For instance, it prevents to match
the crossover curves for the scaléit theory with the results
obtained for the three-dimensional Ising model. Reference
[52] suggested the use of the “strong-coupling” brangh
>g*, but this proposal fails in the massive zero-momentum
renormalization scheme because of the nonanalyticity of the
RG functions at the FIP47—49. This phenomenon is even
FIG. 3. Ising systems: The effective exponents and v for more evident in the RIM case, cf. E@t.2). It should also be
several values of in the interval—1<s<0. stressed that the mapping defined by E@s5 and (4.6)
does not imply that the field-theoretical crossover curves ex-
and the corresponding effective exponenfs and y.¢, cf.  actly match the corresponding ones for the considered sys-
Eq.(2.23. The effective exponentg.; andves are shown in  tem for all values ofr. In particular, there is no relation
Fig. 3 for several values &< 0 within the attraction domain among the neglected coefficients in the Wegner expansions.
of the RIM FP. We note that they become nonmonotonic for Finally, let us discuss the RIM with nearest-neighbor in-
s<s*~ —0.25, where the RG trajectories reach the RIM FPteractions on a cubic lattice with spin densftyNumerical
from below; see Fig. 2. simulations show the presence of a dilution-independent con-
The crossover from the Gaussian FP to the RIM FP hasinuous transition up tp=0.40[8]. It is usually conjectured
also been investigated in Ref80,14 in the framework of that the transition persists up to the percolation threshold of
the minimal-subtraction scheme withoatexpansion. The the spinp=p., p.=0.311608 1(13) on a cubic latti¢3].
effective exponents computed here differ from those define@®elow the percolation point the spins form finite domains
in Refs.[30,14], since there the nontrivial relation between and are therefore unable to show a critical behavior. It should
temperature and RG flow parameter was neglected. In spitee remarked that the transition fpe=p. is not described by
of the different definitions, the crossover curves obtained irthe field-theory mode(2.1) and thus the RIM fop=p, does
Refs. [30,14 have the same qualitative features as thosenot correspond te=s,;,. For the same reasons, the fact that
shown in Fig. 3. the transition disappears fp p, does not provide evidence
The above field-theoretical results may be related within favor of a finites,,;,. However, if the RIM can be related
those obtained in a specifitattice or experimentalsystem  with the field-theory modeffor example if Eq.(4.6) can be
by comparing the behavior in a neighborhood of the criticalsolved for any value op] and the RIM withp— p, corre-
point. Given a quantity®, we can write for the field- sponds to the field-theory model with—s, then we can
theoretical model conclude[s]<|spn|- Now we show that this condition is ap-
. A , proximately verified. For this purpose, we must determine
(O)=C(8)7 [1+A(S) T 1+Ax(S)72], (4.3 the relation between the RIM and the field-theory model. We
use the results of Ref34] that map the RIM onto a transla-
tionally invariant effective Hamiltoniark ;' for a field ¢.

b
o -
=206

0.5

while for the lattice or experimental system we write

(O)~Dr(1+ BlT§1+BzT§2)- (4.4  The expansion of{ rFf”V.' for $—0 has the same form, up to
order ¢*, of the Hamiltonian(2.1) with M=1. The corre-
Then, we require these two expansions to agree apart fromsponding quartic couplings§™ andv§™ appearing in this
rescaling of the reduced temperaturgs-cr, i.e., expansion are related to the magnetic concentrgiidnote
that such result does not depend on the lattice type and on
B;=c*1A(s), By=c*2Ay(s), (4.5  the spin-spin interaction as long as it is of short-range type
by
which gives
A(s)  [Ay(s)|d1/d2 ug"'=p(p—1), vg"ep, 4.7
= . (4.6
B B

and, in particular,
Thus, in order to match the two expansions one should first

determines by using Eq.(4.6) and then fixc by using Eq. uRM 3
(4.5). This provides a mapping between the field-theoretical T 5(1— p). 4.9
model and the considered system. This relation does not de- Uo
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1.16 . : ~
nation as a function ofs|* /" for several values oé. The

curves, obtained by using E¢2.21) and the conformal-
mapping method, rapidly converge to a limiting function.

In order to compute the crossover functions, we must first
study the limits— 0~ of the RG trajectories. As can be seen
from Fig. 2, in this limit the trajectory will eventually be
formed by two parts connecting at the Ising FP the line
=0 starting at the Gaussian FP and ending at the Ising FP,
and a linev =g(u) connecting the Ising FP to the RIM FP.
The linev=g(u) corresponds to a RG trajectory and there-
fore [u(\),v(N)]=[u(\),g(u(N))] must satisfy Eq(2.15.
— s=-0.0001 Therefore,g(u) is the solution of the differential equation

L 1 dg_ B,(u,9(u)
JsjEe du” Bu(u,g(u))

FIG. 4. Ising systems: The quant(\,s)\ 2" " as a function ~ With the initial conditiong(0)=v, . As discussed in Appen-
of |s[Z /" for several values oé. dix B, g(u) is expected to be analytic far—0 and thus it

can be expanded as

1.15 1

1.14

113 4=

[

(4.10

It is tempting to assume~u™/v§™ , which means that we =
neglect the fact that it }'' there are interactiong” with W) =v,+ > g,u". (4.11)
n=1

any n>4. The relations~ —3(1— p)/2 follows. Using this
relation and the numerical results of R€fi8,7], we can get . ) - o
an independent approximate estimatesdf Since in the In r,lAppendnlx we fcﬁg]%liit&;hgi flrst_cgeggge?lgl— N dl, a
RIM on a cubic lattice one does not observe the Ieadin&O sequence ot ide -9, 92=0.00331), and gs

i i : . =1(2)x10°°.
scaling correction fop* ~0.8, we obtains* ~ —0.3, which ; . .
is reasonably close to the FT estimate= —0.255). More- Sinceg(u) corresponds to a RG trajectory with=0, Eq.

over, the percolation threshofasl—p.=0.311608 1(13) on (4.2) implies that, close to the RIM FP, we have
a cubic lattice [53]—apparently corresponds te~—1,

1
which is compatible with the predicted inequalityg] g(u)~v*+ R—(u— u*)
<|Smin|- .
1 u— U* wywq
B. Crossover from Ising-to-random critical behavior - Ux,2(0)<R_l_ R_2> (—um(O) (4.12

The FT approach presented in Sec. Il allows us to deterEquation(4.12) shows thaig(u) is not analytic at the RIM

mine also the Ising-to-RIM crossover functions. Considering .
: . . .. “FP. Of course, one should check that,(0) does not vanish.
er:egzrgirearl]cae q(;agitétgr) dtehratat_;in?vitsaigglg Ilgggafpﬁrlﬁzr,lt? We are not able to verify numerically this condition, but we
show that. in the Iimitp—:l and£=(T—T )IT,—0 ?/vhere believe that it is unlikely that, ,(0)=0. Indeed, the curve

, - | | , . . . .

: " . u) is a special curve only at the Ising FP, but it has no
Tiis t_he cr_|t|cal temperature of the pure Ising mod@lecan g;()e)cial statIlDJs at the RIM F)l/3 and thus i? should be nonana-
be written in the scaling form lytic as any generic RG trajectof4].

O=apt ""By(gt™?)=a,£1Cp(gé?"), (4.9 The curveg(u) can be compl_JteEES] by resumming the
perturbative series for th@ functions and then by explicitly
solving Eg.(4.10 with the initial conditiong(0)=wv,. The
result turns out to be very well approximated by the simple
expression

wherege1—p is the scaling field associated with disorder,
which is a relevant perturbation of the Ising FP, agdand
a, are normalization constants. The crossover expoteist
equal[1] to the Ising specific-heat exponemt, ¢=«a,. The
functionsB, andC, are universal, apart from trivial normal-
izations. By properly choosing, and a; we can require  \herey,=23.56(2) is the coordinate of the Ising FR3]
Bo(0)=Cp(0)=1. Another condition can be added by andg,~0.0033. Such an approximation is effective, within
properly fixing the normalization af. the resummation errors, up to the RIM FP. A graph is re-
Within the FT approach the limg—O0 corresponds t8  ported in Fig. 5. The results obtained by usigyl], [4,1],
—0~ andgé?"~s\ "1, Therefore, crossover functions are and[5,1] PadeBorel approximants would not be distinguish-
obtained by taking the limis—0~ and é=A—o of the able from the curvg4.13 shown in Fig. 5. For instance,
quantity O& 1, keepings\® /" fixed. In Fig. 4 we show g(—13)~37.1 andg(—18.6)~43.3, so that Eq(4.13 is
numerically that such a limit exists for the susceptibility = perfectly compatible with the Monte Carlo estimate of the
We consideryé 2" m=%(\,s)A 277 and plot this combi- FP, u* =—18.63), v*=43.32), andwith the FT result,

g(u)~v,—u+g,u?, (4.13
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FIG. 6. The crossover functio@,(y) normalized according to
Eq. (4.18. The dashed line represents the asymptotic behavior
(4.20. The inset shows the smallbehavior: the expansion to order
y? corresponds to the dotted line while the expansion to oyder
corresponds to the dashed line.

FIG. 5. Plot of the curve=g(u). The full line represents the
quadratic curve given in Eq4.13), while the dotted line shows the
linear approximatiorg(u)=v,—u. We also show the position of
the RIM FP as obtained by Monte CanbIC) simulations of the
RIM (circle) and by FT calculationgtriangle.

. . . where p(u,v) is the corresponding RG function such that
u*=-13(2),v* =38.0(1.5), see Fig. 5. The fact that both , g, Y=, . The crossover limit is studied in detail in Ap-

estimates lie on the limiting curve=g(u) shows that the pendix B2. We find that the crossover functiGp(y) can be
FT approach is effective in determining the Ising-to-RIM |\ itten as

trajectory, although it is apparently unable to determine pre-

cisely the position of the FP on this curve. As a final check, U@ p(x,9(X))—p,
we computey’ (u*). Using Eq.(4.12) and the estimate d®; Co(y)=exp{ - f X xg(x) |
reported in Sec. Ill BR;=—0.90Q2), we obtaing’(u*)= e

—1.1%2), while Eq.(4.13 givesg'(u*)=—-1.12 (-1.09)  \here the relation betwegrando should be fixed by choos-
at the Monte Carldfield-theoretical estimate of the FP. The ing an additional normalization condition.

agreement is satisfactory. We wish now to specialize the previous discussion to the
_ Once we have determingg{u), we can comput@(X,S)  magnetic susceptibility. In this cagg(u,v)=2— 7,(u,v).

in the crossover |Iml'{. In Append|x I%l, we show that, in the | order to completely specify the functiad,(y) appearing
crossover limits—0~ keeping|s|A* ™ fixed, u(\,s) con- i Eq. (4.9 we must fix the normalization of. We use the
verges toU (o) which is implicitly defined by smally expansion oC,(y). SinceC/(0)=0, see Appendix

B 2, we require

(4.17

U(o) p{ a'fU(U)d 1 ,m
o=U(o)exp —— X" t+t——
viJo Bu(X,9(X))  ayx]|’ _ 2 n
414 C,(y)=1+y +n§3 Cry (4.18
where for y—0 andC,(y) to be defined foy>0. With these nor-
malizations we have
N ay v
ESE (—) , 4.1 U(o) X,g(X))—
=534 5 (4.15 ey —exp[ "B IN—m g
0

Bux,g(x)) '

andX; andX, are normalization constants such thato)
~ ¢ for 0—0. Their explicit expressions are reported in Ap-
pendix B1. Of coursey (\,s)=g(U (o)) in the scaling limit
s—07. The curveg(u) and Eq.(4.14 completely fix the
relevant RG trajectory in the crossover limit.

The computation of the crossover functions is then com
pletely straightforward. We consider the RG functi©(\,s)

wherey= —ygo. The constanty, is positive and is com-
puted numerically in Appendix B 3/,=0.0748). Thescal-
ing functionC, (y) is shown in Fig. 6.

We study the smal- and largey behavior ofC,(y). A
rough estimate of the coefficient is c;=—4(2); see Ap-
pendix B3. For large values gf we have

associated with® and assume that it satisfies the RG equa- e uni(m— e
tion Cly)=c.y : (4.20
where 7 is the RIM exponent. The best estimates of the
N d_(9= (U,)O 4.16 exponentsy, and » of the Ising and RIM universality classes
dn P ' are 5, =0.036 39(15)Ref. [43]), 7,=0.0368(2)(Ref.[56]),
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FIG. 7. RG trajectories in the diluteXY model for
—1<s<0.

and »=0.0352) (Ref. [7]). These results suggest;> 7.

-10 . 5 ' 0
log, 1

FIG. 9. The effective exponentg.; and vz oOf the dilute

XY model for —1<s=<0. In the Gaussian limiv=1/2 and»=0,
while in the Wilson-Fisher limitv=0.671 5%27) and »=0.038Q4)

(Ref.[18]).

This is confirmed by the analysis of the fixed-dimension FT
series: all analyses fing,> 7. In particular, analyses based [4,18,19,46,5F v* =21.16(5)(FT) andv* =21.14(6) (lat-

on an expansion around the Ising HF] find 7 — 17
=0.0042). This suggests that,(y) diverges for largey
with a very small exponenty,(7,— n)/ ¢, =0.01(1). We
also estimated the coefficiert, appearing in the largg-

class.

tice) for the XY universality class, and* =19.06(5) (FT)
andv* =19.13(10) (lattice) for the Heisenberg universality

In Figs. 7 and 8 we show, respectively, fotY and

behavior ofC, (y), obtainingc..=1.055). Weproceeded as Heisenberg systems, the RG trajectories inuhe plane for
follows. First, for given approximants of the RG functions, several values of in the range— 1<s<0. Figures 9 and 10

we computed the exponenig, v, and#, and the function
C,(y). Then, we calculate (y)y "~ 7' and deter-
mined the constart,, from its largey behavior. This proce-

report the corresponding effective exponemts and vy,
respectively, forXY and Heisenberg systems. They are non-
monotonic. In particular, fos close to—1, 7.z becomes

dure gave an estimate of, for a given set of approximants. negative for intermediate values f As in the Ising case,
The final result was obtained as usual, by comparing théhe resummations become less reliable—and again hint at
results of different approximants and of series of differentrunaway trajectories—fos<—1.

Finally, we mention that the RG trajectories and the ef-
fective crossover exponents of dilute Heisenberg systems

order.

C. Crossover in randomly dilute multicomponent spin systems

have been recently investigated in RE31], using a two-

In the case of multicomponent systems, the stable FP ig)op approximation within the minimal-subtraction scheme
the OM)-symmetric FP (@*). Precise estimates af*

have been obtained by employing FT and lattice techniques

o iy

Heisenberg

s=0

s=-0.1
c=- 5=-0.2
= s=-04
v g=-().6
s=-0.8

—

i e

FIG. 8.
<s=<0.

RG trajectories in the dilute Heisenberg model fat

25

FIG. 10. The effective exponentg. and v Of the dilute

Heisenberg model for- 1<s<0. In the Gaussian limit=1/2 and

7=0, while in

the Wilson-Fisher

limit »=0.71125) and

7=0.03785) (Ref.[19]).
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without e expansion and neglecting the nontrivial relationused, the diagram has the following properties: it does not
between temperature and RG flow parameter. In spite of altontain tadpole subgraphs; given a vertéxhe subdiagram
simplifying assumptions, the results are in qualitative agreeb/V obtained by deleting the lines going out dfmay be
ment with ours. Moreover, Reffi31] discusses crossover phe- disconnected, but each piece contains at least one external
nomena observed in experiments on isotropic magnetdine. The contribution of the diagrar® is the product of
showing several results for the effective exponents that are ithree factors: the first is the integral over the internal mo-
gualitative agreement with the curves shown in Fig. 10. menta, the second the symmetry factor, and the third
one—we call itl(D) o ... p—takes into account the inter-
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Clearly, we are only interested in the last term which can be

APPENDIX A: SOME RELATIONS AMONG written in the form

THE RG FUNCTIONS I(D)an, ... A
In this section we prove identitig¢2.9) and(2.10 holding
along theu=0 axis, and identitieg2.11)—(2.13 holding = 1(D)an .. A — 2 I(DNV)aa . atskL

c=0 VeD c=0

(A8)

along thev =0 axis.

Let us first prove the identities along the=0 axis in the
caseM =1; the extension to other values Mfis straightfor-
ward. We consider a generic theory with fieldg' and
Hamiltonian density

XCiykL=(—9)"—n(—9)" 'Canan

wheren is the number of vertices dd. In the last step, we
have used the two properties we have mentioned above: they
guarantee that I(D/V)an, ... arak=(—9)" "SaikL,
since forC=0 a connected diagram does not vanish only if
the indices on the external legs are all equal. Equatks)
gives immediately Eq(A3).
Identities(2.11)—(2.13 along thev = 0 axis can be proved
in a similar fashion. Let us again restrict ourselves to the case
M =1, the extension to generic values Mfbeing straight-
For Cagcp=0 the model is simply a collection of decoupled forward. Consider the Hamiltonian density
Ising ¢* theories. In order to compute the corrections to first
order in Cagcp, We consider the one-particle irreducible 1 1 g
correlation functions of the fields expressed in terms of the 7= 5 MEA (5M¢A)2+§r; (™2 + 27 AEB (6%2%(45)
bare couplingg andC,gcp and of the inverse susceptibility ’
x ! as effective maséhe results also hold for the massless

1 1 g
H=5 2, (0,451 2 (#1974 77 2 (4Y*

1
+Z > Cascod ¢ oP. (A1)
! ABCD

theory in dimensional regularizatigin

Ta, o =(d", @) (A2)
Then, we prove that, if all indices are equal,
at(g)
Fan .. A= f(g)+CAAAAW +0(C?)
=f(g+Canan +O(C?). (A3)

Using this relation, one can derive identiti&s9) and(2.10.
Indeed, Eq.(A3) implies that (setting ug=uy/m and v,
=Ug /m)

Z4=1 4(Up+00) +O(v3), (A4)
U+v="Fy,,(Ug+ve)+0(v3), (A5)
Bu+ B, =T 5(Ug+vo) +O(vg). (A6)

To prove Eq.(A3), consider a generic diagraB contribut-

1
+77 .2 Cascod"#°6°¢°, (A9)

+ ABCD
whereCagcp is symmetric in all indices. FOCpgcp=0 the
model is simply arlN-vector ¢* theory, whereN is the di-
mension of the field. In order to compute the corrections to
first order in Cagcp, We consider here a different set of
correlation functions: Q{)-invariant(therefore there are no
external indicep one-particle irreducible correlation func-
tions of the fields and of any ®l)-invariant operator. Con-
sider again a diagram, a vertexV, and the interaction con-
tribution 1(D/V), ;. for C=0. Because of the M)
invariance, its symmetrized part is given by

I(D/V){I,J,K,L}|C:O:i(D/V)(5IJ5KL+ Ok St L 63k)-
(A10)
Then, repeating the argument leading to E8), we obtain

|<D>=|<D>|c=o—3§ f(D/V)% Cuyy- (A1)

ing to the correlation function. I~ ! is used as effective The constanEVT(D/V) is determined by computing the de-
mass or the mass vanishes and dimensional regularization fivative of I (D) with respect tog at C=0.
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dl(D) +0(v?) forv—0 andB,(0v)=—w,(v,—v) forv—uv,. In
o9 _VZD I%L (DIV) 3L the limit we are interested in, the RG equatiq@sl5 be-
c=0 V'€ C=0 come
| = 2| (8138 + B o+ 51,8 v du
3 (6136kL+ Sik 631+ 611 63k) ~A——=8,0p), —\A=—=uf(v). (B3)
d\ d\
=— > T(DIV)N(N+2). (A12)  Keeping into account the initial conditiort8.16), we obtain
VeD
- v 1 1
It follows A=vex _fo dx B.(0%) it (B4)
(X 1
3% Cia u= Svexpf dx(ﬁ (O)X)_;)' (B5)
I(D)=f +0(C?), (A13) v

9T NN+2) | o
Equations(B4) and (B5) implicitly define u(\,s). We must

now match the two solutions near the Ising FP, determining
the unknown constari(s). If we define

f(X) _E_ a )
B,(0X) X vw(v;—X)

where f(g)=1(D)|c—o. This relation is valid only for
O(N)-invariant quantities, but it can also be applied to the
correlation functions of the elementary fields by simply con- o)
tracting the external indices. It allows us to derive a number 21Ev|expf dx(
of relations involving theg functions and the RG functions 0
associated with the exponents. For example, considering the . 1 1 1
MN model (2.1) for M=1, relation (A13) implies Egs. EzEmeXF{—f ldx(—+ _+—)
(2.1)—(2.13 with M=1. B,(0X) X (v, —X)

(B6)
APPENDIX B: THE ISING-TO-RIM CROSSOVER for v—v,, Egs.(B4) and(B5) can be written as
In this appendix we compute the limgt-0~ of the RG A=3,(v,—v) Yer,
trajectories and the Ising-to-RIM crossover functiop(y),
cf. Eq. (4.9). u~s3(v,—v) /e, (B7)
1. The limit s—0~ of the RG trajectories Therefore, fory—v, we have
alv
Here, we wish to prove Eq$4.14) and (4.15 that give U(N,8)~SS (L) 1) @8
u(\,s) in the crossover limis—0~ keeping|s|A /" fixed. n=, '

As discussed in Sec. IV B, in the crossover limit the RG
trajectory is formed by two parts connecting at the Ising FPON the other hand, EqB2) gives foru—0,
the lineu=0 starting at the Gaussian FP and ending at the u()\,s)~[)\/A(s)]“l’”l. (B9)
Ising FP and the line@ =g(u) connecting the Ising FP to the
RIM FP. Now, we will solve the flow equatiori®.15 in the By comparing Egs(B8) and (B9) we obtainA(s). Finally,
two cases and we will match the two solutions in the neighEq. (B2) can be written as
borhood of the Ising FP. Let us consider first the behavior w1
nearv=g(u). The flow equation fou(A,s) can be written 521(2_) =u(\,s)
2

as
du
—\ gy = BuUg(w). (B1) % ex _ﬂf”(”’s’dx oy
viJo BuX,9(x))  ax
SinceB,(u,v,)=—ua, /v, for u—0, we can write the solu- (B10)

tion as

u(\,s) 1 v
N=A(s)u(x,s)"/ exp[—fo dx(—+—) :

Bu(X,9(x)) ~ aX
(B2) The computation of the crossover function is similar to
that presented in the preceding section. We first consider the
whereA(s) is a(at this stage unknowrfunction ofs. RG equation(4.16) on the linev =g(u). Using the flow
Now let us consider the second case, i.e., the trajectorgquation foru(\,s) we can write
near theu=0 axis. Foru—0, we can write 8,(u,v)
=uf(v)+0(u?), with f(0)=—1, f(v))=—a,/v,. As for do _ p(u,g(u)
B,(u,v) we simply setu=0. Note thatg,(0p)=-v du  By(u,g(u))

This ends the proof of Eq$4.14) and (4.15).

2. Crossover functions

(B11)
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The solution can be written as
O=B(s)u(\,s)1" !«
p(X,9(x))

X x;{—fU(m)dx<—
© 0 Bu06,9(x))

whereB(s) is an unknown function.
Foru—0, we can use the flow equation fof\,s) and
write

M) | (B12

a X

do  p(0)
8,00

do
We assume(0,0)=pg (pg is the naive Gaussian dimension
of ©) and O~ \Po at the Gaussian FRYj is a normal-
ization constant Then, the previous equation gives

v 0x
[Fa 220 e
0 ,BU(O,X) X
Now, we must compute the behavior fer-v,. Defining

S I P(O*X)+@+L)
T1=0oy ex’:{ jo dx(ﬁv(O,X) X T ow—%
we obtain forv—uv,

(B13)

(B14)

0= OovPOexp{ -

(B15)

u )VIPI/“I

)\ Pl
O=Ty(v,—v)™ " /M|~Tl(2_2) “Tl(gl

(B16)

where we have used E(B7). On the other hand, E4B12)
gives in the limitu—0,

O~B(s)u"n =, (B17)

Therefore,
C_u et uns) [ p(x,g(x)) plvl)
O‘“(E) ex‘{_fo dx(ﬂu(x,g<x>>+a_.x'
(B19)

Finally, by using Eq(B10) to eliminateu”*!’®, we obtain

U(o)
d
0

The crossover functiorC,(y) normalized so thatC,(0)
=1 is then given by
p(X,9(x)) = p,

_ U(o)
Coly)=ex _jo X x.a(0)

To fully specify the functionC,(y) we must also relaty

XP(X.Q(X))—m
ﬁu(xvg(x))

(B19)

O=T122_p'7xplexr{—

. (B20)
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quartic couplingss,, andG,. Since they are related toand
v, Gyy=u/3 andG,=v (see Ref[41]), andu~U(0o), v
~g(u) in the crossover limit, we obtain

U(o)
Cop (Y)=— (B21)
1
Ce,(¥)= v—lg(U(a)). (B22)

Note thatCGzz(y) is not simplyU (o) since the crossover
function is defined byu~)\“"”'CGZZ(y). These equations

can also be derived from EqB20) by using p(u,v)
=—Bu(u,v)/u and p(u,v)=—B,(u,v)/v for uandv, re-
spectively.

Finally, let us consider the magnetic susceptibility In
this casep(u,v)=2—7,4(u,v). Thus, by using Eq(B20)
we obtain Eq(4.19. Let us now show that)’((O):O. First,
note that, because of identit2.10, near the Ising FP we
have

7=A(U+v—v))[1+0O(Uu)+O(v—u,)],
(B23

whereA is a constant. Then, singgu)=v,—u+0(u?), we
obtain »,(u,g(u))— » =0(u?). Substituting in Eq(4.19,
this gives immediatelyC ' (0)=0.

Finally, we argue that the crossover functiGp(y) and
g(u) (that can be related to the crossover functionvof
=G,) are analytic fory—0 andu—0, respectively. This is
not obvious since fou=0 RG functions are nonanalytic at
the Ising FH47,49. We will now show that such a problem
does not arise for the RG functions defined along the cross-
over linev=g(u). The reason is that such a line has a very
special status at the Ising FP: It is the line that is tangent to
the relevant direction associated with disorder and that is
orthogonalto all irrelevant directions.

To clarify the issue, let us, for instance, consider the sin-
gular part of the free energy. In a neighborhood of the Ising
FP it can be written ag58|

7]¢(U,U)_

Fang=fr "F(fof ? {fif0), (B24)
wheref,, f,, and{f;} are the nonlinear scaling fields asso-
ciated with the temperature, the dilution, and the irrelevant
RG operators. Fot=(T—T,)/T,—0 andp—1, f;~t and
fo~(1—p)~g. The exponents); are associated with the
irrelevant operators and are positive. A basic result of RG
theory is that the nonlinear scaling fields are analyticand

p and the functiorF is analytic in all its arguments. In the
crossover limit,f; approaches a constant afidjoes to zero,

so thatfiffieo. It follows

Fsing%td/VIF(gt7¢’{o})a (B25)

with o by adding an additional normalization condition. For which shows that the crossover function associated Fth

the magnetic susceptibility this is done in detail in Sec. IV B.is analytic ingt™®. The argument can be trivially general-
We can specialize these results to the observables we haized to any zero-momentum quantity; we conjecture that it

considered in the paper. First, we consider the four-pointlso applies to quantities involving the correlation length.
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3. Some numerical results wherev=3v/(167). By resumming these series we get

In this section we report some details on the numerical

computation ofg(u) and C,(y). Let us first focus on the .

determination of the coefficients, defined in Eq.(4.1). 9,=0.00331), g3=1(2)x10". (B31)

They have been obtained by resumming perturbative series

gn(v) such thatg,=g,(v,). For the purpose of determining

gn(v), we write We computed the functiog(u) by using Eq.(4.10, i.e.,

without relying on an expansion around the Ising FP, and by

resumming thes functions usindg3/1], [4/1], and[5/1] Pade

Borel approximants constrained to have a zerovatv,

=23.56. The results up o~ — 20 would not be distinguish-

able from the quadratic approximation shown in Fig. 5.

ﬁv(U,v)=§ by n(v)u™. (B27) Let us now consideC,(y). This function can be com-

puted directly by using Eq$4.14) and(4.19. They provide

Then, by using Eq(4.10), we obtain C, as a function of the variable. In order to compute the
relation betweenr andy, we need to determine the small-

v.0(v)—=2b, J(v)—2by (v) behavior ofC, . We write

Bu(U,v)=2 by (v)u", (B26)

92~ 2[alv+b, 4(v)] _ (B28)
v=v,
and similar, but more complex, expressions dar, g, etc. C,=1+ > Co", (B32)
The seriesg,(v) can be obtained by expanding the right- X n=2
hand side in powers af. Forg, andg; we obtain
g2(v)=0.006 631 46-0.006 931 65+ 0.011 688 7~ and, as fog(u), we compute perturbative serieg(v) such

—0.022597 T3+ 0.045 596 2% — 0.095 401 T° thatc,=c,(v,). By resumming these expansions we obtain

+0(v?), (B29)
©,=0.005212), c3=CsC, ?=—4(2). (B33
05(v)=0.000029 317 6-0.000 081 345%

+0. 72— 0. _ . o o
0.00 0206 937* - 0.000 485 545” The variabley defined by the normalization conditida.18)

+0.001101 05*+0O(v?), (B30) s related too by y=—¢5%c=—0.072(8).
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