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Crossover behavior in three-dimensional dilute spin systems
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We study the crossover behaviors that can be observed in the high-temperature phase of three-dimensional
dilute spin systems, using a field-theoretical approach. In particular, for randomly dilute Ising systems we
consider the Gaussian-to-random and the pure-Ising-to-random crossover, determining the corresponding
crossover functions for the magnetic susceptibility and the correlation length. Moreover, for the physically
interesting cases of dilute Ising,XY, and Heisenberg systems, we estimate several universal ratios of scaling-
correction amplitudes entering the high-temperature Wegner expansion of the magnetic susceptibility, of the
correlation length, and of the zero-momentum quartic couplings.
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I. INTRODUCTION

The critical behavior of randomly dilute magnetic mate
als is of considerable theoretical and experimental inte
@1–5#. A simple model describing these systems is provid
by the Hamiltonian

Hp5J(̂
i j &

r ir j si•sj , ~1.1!

where the sum is extended over all nearest-neighbor sitesi
are M-component spin variables, andr i are uncorrelated
quenched random variables, which are equal to one w
probabilityp ~the spin concentration! and zero with probabil-
ity 12p ~the impurity concentration!. For sufficiently low
dilution 12p, i.e., above the percolation threshold of t
spins, the system described by the HamiltonianHp under-
goes a second-order phase transition atTc(p),Tc(p51).

The nature of the transition is rather well established.
the case of the random Ising model~RIM! corresponding to
M51, the transition belongs to a new universality cla
which is distinct from the Ising universality class describi
the critical behavior of the pure system. This has been cle
observed in experiments@3# on dilute uniaxial antiferromag
nets, such as FexZn12xF2 and MnxZn12xF2, in the absence
of magnetic field@6# and in Monte Carlo simulations of th
RIM, see, e.g., Refs.@7–10#. The critical exponents are in
dependent of the impurity concentration and definitely diff
ent from those of the pure Ising universality class. Fie
theoretical~FT! studies@11–16# confirm these results. Th
fixed point~FP! related to the pure Ising universality class
unstable with respect to the addition of impurities and
renormalization-group~RG! flow is driven towards a new
stable random FP that controls the critical behavior.
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§Email address: vicari@df.unipi.it
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Unlike Ising systems, multicomponent O(M )-symmetric
spin systems do not change their asymptotic critical beha
in the presence of random impurities. Indeed, according
the Harris criterion@17#, the addition of impurities to a sys
tem which undergoes a continuous transition does not cha
the critical behavior if the specific-heat critical exponenta of
the pure system is negative, as is the case for anyM>2.
From the point of view of RG theory, the Wilson-Fisher F
of the pure O(M ) theory is stable under random dilution
The presence of impurities affects only the approach to
critical regime, giving rise to scaling corrections behaving
utuD1, wheret is the reduced temperature andD152a. The
exponentD1 is rather small for the physically relevant cas
M52 and M53—a520.0146(8) ~Ref. @18#! and
a520.1336~15! ~Ref. @19#!, respectively—giving rise to
very slowly decaying scaling corrections. Experiments
4He in porous materials@20,21# and on randomly dilute iso-
tropic magnetic materials, see, e.g., Refs.@22–24#, show that
the critical exponents ofXY and Heisenberg systems a
unchanged by disorder~see also the list of results reported
Ref. @4#!. But, in order to observe the correct exponents
magnetic systems in which the reduced temperature is
ally not smaller than 1023, it is important to keep into ac-
count the scaling corrections in the analysis of the exp
mental data@22#.

In this paper we study the crossover behaviors that can
observed in the high-temperature phase of three-dimensi
dilute spin systems. First, we consider the crossover from
Gaussian FP to the stable FP of the model, i.e., the ran
FP for M51 and the pure O(M )-symmetric FP forM>2.
Such a crossover can be observed at fixed impurity conc
tration by varying the temperature. IfuT2Tcu/Tc.G, where
G is an appropriate Ginzburg number@25#, fluctuations are
irrelevant and mean-field behavior is expected, while foruT
2Tcu/Tc,G the asymptotic critical behavior sets in. Th
crossover is not universal. Nonetheless, there are limi
situations in which the crossover functions become indep
dent of the microscopic details of the statistical system: T
is the case of the critical crossover limit of systems w
medium-range interactions, i.e., of systems in which the
teraction scale is larger than the typical microscopic sc
©2004 The American Physical Society20-1
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@26#. In this limit the crossover functions can be comput
by using FT methods: forO(M ) models precise results hav
been obtained in Ref.@27# by using the three-dimensiona
massive scheme and in Refs.@28,29# by using the minimal-
subtraction scheme withoute expansion.

In Ising systems there is also another interesting cross
associated with the RG flow from the pure Ising FP to
random FP. When the concentrationp is close to 1, by de-
creasing the temperature at fixedp, one first observes Ising
critical behavior, then a crossover sets in, ending with
expected random critical behavior. In a suitable limit
which p→1 this crossover is universal. The correspond
universal crossover functions can be computed by using
methods.

These crossover behaviors are investigated here by u
the fixed-dimension perturbative approach in powers of
propriate zero-momentum quartic couplings. We determ
the RG trajectories and the crossover functions of the m
netic susceptibilityx and of the second-moment correlatio
lengthj, defined from the two-point function

G~x![^r0 rx s0•sx&, ~1.2!

where the overline indicates the average over dilution an^ &
indicates the sample average at fixed disorder. This st
allows us to compute the corresponding effective expone
and to determine several universal ratios of scali
correction amplitudes entering their high-temperature W
ner expansions. Besidex and j, we also consider zero
momentum quartic correlations and appropriate comb
tions that have a universal high-temperature critical lim
such as

G4[2
3M

M12
lim

t→01

x4

j3x2 ,

G22[2 lim
t→01

x22

j3x2
, ~1.3!

where t is the reduced temperature,x4 is the zero-
momentum four-point connected correlation function av
aged over dilution, i.e., settingm[(xrxsx ,

Vx45^~m•m!2&2
M12

M
^m•m&2, ~1.4!

~V is the volume! andx22 is defined by

Vx225^m•m&22^m•m&
2
. ~1.5!

Their high-temperature Wegner expansion is given by

x5xtt
2g~11xt,1t

D11xt,2t
D21••• !, ~1.6!

j5jtt
2n~11jt,1t

D11jt,2t
D21••• !, ~1.7!

G#5G#* ~11G#,t,1t
D11G#,t,2t

D21••• !, ~1.8!
03612
er
e

e

g
T

ng
-
e
g-

dy
ts
-
-

-
,

-

where D1,2 are the exponents associated with the first t
independent scaling corrections. For dilute Ising system
recent Monte Carlo study@8# provided the estimateD1
50.25(3); a rough estimate ofD2 is D250.55(15), cf. Sec.
III B. For XY and Heisenberg systemsD152a, while D2
coincides with the leading correction-to-scaling exponent
the pure model,D250.53(1) forM52 andD250.56(2) for
M53, cf. Ref. @4#. The ratiosjt,i /xt,i and xt,i /G#,t,i for
i 51,2 are universal. Their determination may be useful
the analysis of experimental or Monte Carlo data. In E
~1.6!–~1.8! we only report the leading term for eac
correction-to-scaling exponent, but it should be noted t
there are also corrections proportional tot2D1, t3D1, etc.,
that may be more relevant—this is the case of systems w
M>2—than those with exponenttD2.

The crossover behavior in dilute models was already st
ied in Refs.@30,14# in the Ising-like case and in Ref.@31# for
multicomponent systems. However, Refs.@30,14,31# studied
the crossover and computed the related effective expon
with respect to the RG flow parameter, while we compu
effective exponents with respect to the reduced temperat
which have a direct physical interpretation.

The paper is organized as follows. In Sec. II we discu
the FT approach. We first introduce the effective Landa
Ginzburg-Wilsonf4 Hamiltonian and some general defin
tions. Then, we generalize the approach of Ref.@27# by
showing how to compute the crossover functions of the m
netic susceptibility and of the correlation length in terms
an effective temperature. These exact expressions allow u
determine the temperature dependence of several quan
near the critical point and, as a consequence, to com
some universal ratios of scaling-correction amplitudes en
ing the high-temperature Wegner expansion ofx, j, G4, and
G22 for dilute Ising, XY, and Heisenberg systems. The
results are presented in Sec. III. Finally, in Sec. IV we exte
the computation to the whole crossover regime, determin
RG trajectories and effective exponents for Ising,XY, and
Heisenberg systems with random dilution. In the case
Ising systems, we also discuss the Ising-to-RIM crosso
give analytic expressions for the crossover scal
functions—details are reported in Appendix B—and expl
itly compute the crossover function associated with the m
netic susceptibility. In Appendix A we prove some usef
identities among the RG functions introduced in the FT a
proach.

II. RG TRAJECTORIES AND CROSSOVER FUNCTIONS

A. Definitions

The FT approach is based on an effective Land
Ginzburg-Wilson Hamiltonian that can be obtained by us
the replica method@32–35#, i.e.,

HMN5E ddxH(
ia

1

2
@~]mfai!

21rfai
2 #

1(
i jab

1

4!
~u01v0d i j !fai

2 fb j
2 J , ~2.1!
0-2



CROSSOVER BEHAVIOR IN THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 69, 036120 ~2004!
FIG. 1. Sketch of the RG
flow in the coupling plane (u,v)
for ~a! Ising (M51) and ~b!
M-component (M.1) randomly
dilute systems.
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where a,b51, . . . ,M and i , j 51, . . . ,N. In the limit N
→0 the HamiltonianHMN with u0,0 andv0.0 is expected
to describe the critical properties of diluteM-component spin
systems. Thus, their critical behavior can be investigated
studying the RG flow ofHMN in the limit N→0. For generic
values of M and N, the HamiltonianHMN describesM
coupledN-vector models and it is usually calledMN model
@1#. HMN is bounded from below forNu01v0.0 and u0
1v0.0. But, as discussed in Ref.@36#, in the limit N→0
the only stability condition isv0.0. Figure 1 sketches th
expected flow diagram in the quartic-coupling plane,
Ising (M51) and multicomponent (M>2) systems in the
limit N→0. The relevant region for dilute systems corr
sponds tou,0 and thus the relevant stable FP is the rand
FP ~RIM in Fig. 1! for M51 and the O(M ) FP for M>2.

The most precise FT results have been obtained in
framework of the fixed-dimension expansion in powers
zero-momentum quartic couplings. In this scheme the the
is renormalized by introducing a set of zero-momentum c
ditions for the one-particle irreducible two-point and fou
point correlation functions:

Gai,b j
(2) ~p!5dai,b jZf

21@m21p21O~p4!#, ~2.2!

wheredai,b j[dabd i j , and

Gai,b j ,ck,dl
(4) ~0!5Zf

22m~uSai,b j ,ck,dl1vCai,b j ,ck,dl!,
~2.3!

where

Sai,b j ,ck,dl5
1
3 ~dai,b jdck,dl1dai,ckdb j ,dl1dai,dldb j ,ck!,

Cai,b j ,ck,dl5
1
3 d i j d ikd i l ~dabdcd1dacdbd1daddbc!.

~2.4!

In addition one defines the functionZt through the relation

Gai,b j
(1,2)~0!5dai,b jZt

21 , ~2.5!

whereG (1,2) is the one-particle irreducible two-point functio
with an insertion of12 (aifai

2 .
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The critical behavior is determined by the stable FP of
theory, i.e., by the common zerou* , v* of the b functions

bu~u,v !5m
]u

]mU
u0 ,v0

, bv~u,v !5m
]v
]mU

u0 ,v0

, ~2.6!

whose stability matrix has positive eigenvalues~actually a
positive real part is sufficient!. The critical exponents are
obtained by evaluating the RG functions

hf~u,v !5
] ln Zf

] ln m
, h t~u,v !5

] ln Zt

] ln m
~2.7!

at u* ,v* :

h5hf~u* ,v* !,
1

n
522hf~u* ,v* !1h t~u* ,v* !.

~2.8!

The six-loop perturbative expansions of theb functions and
of the critical exponents are reported in Refs.@11,37#.

In the MN model, the RG functions satisfy a number
identities. Along theu50 axis we have

]bu

]u U
u50

2
]bv

]v U
u50

1
]bv

]u U
u50

50, ~2.9!

]hf

]u U
u50

2
]hf

]v U
u50

50, ~2.10!

while along thev50 axis we obtain

]bu

]u U
v50

2
]bv

]v U
v50

2
MN12

M12

]bu

]v U
v50

50, ~2.11!

]hf

]u U
v50

2
MN12

M12

]hf

]v U
v50

50, ~2.12!

]h t

]u U
v50

2
MN12

M12

]h t

]v U
v50

50. ~2.13!
0-3
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These identities can be proved order by order in the per
bative expansion; see Appendix A. The second set of r
tions was already reported in Ref.@38# for M51.

In the limit N→0, the perturbative expansions in powe
of u andv are not Borel summable at fixed ratiou/v ~Ref.
@39# shows it explicitly for the zero-dimensional theo
with M51, but the argument has general validity!, except
when u50 that corresponds to theO(M )-symmetric f4

theory. ForM>2, this is a minor problem since the releva
FP is the O(M )-symmetric one. On the other hand, this is
notable limitation of the perturbative approach for the RI
Nevertheless, rather reliable results for the critical expone
of the RIM universality class have been obtained fro
the analysis of properly resummed perturbative series. S
eral methods have been used: the Pade´-Borel method at fixed
u/v or the strictly related Chisholm-Borel method, the dire
conformal-mapping method, an expansion around the Is
FP @7#, and the double-Pade´-Borel and the conformal-Pade´-
Borel method@11#, which, at least in zero dimensions@40#,
are able to treat correctly the non-Borel summability of t
expansions at fixedu/v. The FT estimates of the critica
exponents obtained from the analysis of the six-loop exp
sions reported in Refs.@37,11# depend only slightly on the
resummation method. For instance, Ref.@11# reports
n50.673~8! and h50.029~3! from the direct conformal-
mapping method, andn50.678~10! and h50.030~3! from
an analysis that follows the ideas of Ref.@40#. A second
source of uncertainty is the position of the FP. Monte Ca
@7# simulations giveu* 5218.6(3) andv* 543.3(2), which
are significantly different from the FT estimates@11# u*
5213(2) andv* 538.0(1.5), obtained from the numeric
determination of the stable common zero of theb functions.
However, as discussed in Ref.@7#, the critical-exponent esti
mates show a relatively small dependence on the positio
the FP. By using the Monte Carlo results for the location
the FP in theu-v plane, one obtains@7# n50.686~4! and
h50.026~3!, which are close to the above-reported ones,
tained by using the field-theoretical estimates of the FP
any case, it is reassuring that the FT results are in satisfac
agreement with the Monte Carlo estimates of the critical
ponents, i.e.,@7# n50.683~3! andh50.035~2!. The compari-
son of the different analyses shows that all different resu
mation methods give results of similar accuracy.
particular, the more sophisticated analyses suggested in
@40# and employed in Ref.@11# apparently do not provide
more accurate results than those at fixedu/v. For this reason,
in the following we only use the Pade´-Borel and the
conformal-mapping method at fixedu/v. In the latter case
for the singularity of the Borel transform we use the na
analytic continuation forN→0 of the result for the cubic
model reported in Ref.@37#. The results of Ref.@39# suggest
that this should allow us to take into account the lead
divergent behavior of the series at least for sufficiently sm
uu/vu ~in zero dimensions for21/2,u/v,0).

B. Renormalization-group trajectories

The RG trajectories in the plane (u,v) are lines which
start from the Gaussian FP located atu5v50 and along
03612
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which the quartic Hamiltonian parametersu0 andv0 are kept
fixed. They are implicitly characterized by the equation

F~u,v ![
uZu~u,v !

vZv~u,v !
5

u0

v0
[s. ~2.14!

RG trajectories can also be determined by solving the dif
ential equations

2l
du

dl
5bu„u~l!,v~l!…,

2l
dv
dl

5bv„u~l!,v~l!…, ~2.15!

wherelP@0,̀ !, with the initial conditions

u~0!5v~0!50,

du

dl U
l50

5s,
dv
dlU

l50

51. ~2.16!

The solutionsu(l,s) andv(l,s) provide the RG trajectories
in the (u,v) plane as a function ofs. The RG trajectories
relevant for dilute spin systems are those withs,0. The
attraction domain of the stable FP is given by the values
u0 andv0 corresponding to trajectories ending at the sta
FP, i.e., trajectories for which

u~l5`,s!5u* , v~l5`,s!5v* . ~2.17!

The crossover functions from the Gaussian to the Wils
Fisher stable FP have been much studied in the case o
O(M )-symmetric theories, both in the field theory@27–29#
and in medium-range models@26#. In order to determine the
crossover functions along the RG trajectories, and in part
lar those related with the correlation lengthj, the magnetic
susceptibilityx, and the reduced temperaturet}r 2r c , we
extend the method of Ref.@27# to Hamiltonians with many
quartic parameters, such asHMN . Using the relations

j51/m, x̄[
1

M
x5Zfj2,

Gai,b j
(1,2)~0!5

]Gai,b j
(2) ~0!

]t
U

u0 ,v0

5dai,b j

]x̄21

]t U
u0 ,v0

5dai,b jZt
21 ,

~2.18!

and Eq.~2.7!, and defining

ĥf~l,s![hf„u~l,s!,v~l,s!…,

ĥ t~l,s![h t„u~l,s!,v~l,s!…2hf„u~l,s!,v~l,s!…,
~2.19!

we derive the following expressions:

j̃~l,s![jv05l, ~2.20!
0-4
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x̃~l,s![x̄v0
25l2expF2E

0

l

dx
ĥf~x,s!

x G , ~2.21!

t̃~l,s!5t/v0
25E

l

`

dx
22ĥf~x,s!

x3
expE

0

x

dy
ĥ t~y,s!

y
,

~2.22!

where j̃, x̃, and t̃ are dimensionless quantities. One c
easily verify that in the Gaussian limit, i.e., forl→01 or
t̃→`, we have u,v5O(l), ĥf(l,s)5O(l2), ĥ t(l,s)
5O(l); thereforet̃ j̃ 2→1 andx̃ j̃ 22→1, as expected.

Equations~2.20!–~2.22! allow us to computej̃ and x̃ as
functions oft̃ ands. We can then define effective exponen
by taking logarithmic derivatives ofj̃ and x̃ at fixeds:

neff~ t̃,s![2
] lnj̃

] ln t̃
U

s

, geff~ t̃,s![2
] ln x̃

] ln t̃
U

s

,

heff~ t̃,s![22
] ln x̃

] ln j̃
U

s

. ~2.23!

One can easily check thatheff522geff /neff5ĥf . On the
other hand,geffÞg(u,v) and neffÞn(u,v), where g(u,v)
and n(u,v) are the RG functions associated with the exp
nentsg andn.

III. UNIVERSAL RATIOS OF SCALING-CORRECTION
AMPLITUDES

A. General results

In order to determine the scaling-correction amplitud
we compute the crossover functions close to the crit
point, i.e., forl→` or t̃→01. For this purpose, we conside
the expansion of the RG functions around the stable
(u* ,v* ). We write

bu~u,v !'buu~u2u* !1buv~v2v* !,

bv~u,v !'bvu~u2u* !1bvv~v2v* !. ~3.1!

Then, using Eq.~2.15! we have the following behavior, in
the limit l→` and for values ofs in the attraction domain o
the stable FP,

u~l,s!'u* 1ul,1~s!l2v11ul,2~s!l2v21•••,

v~l,s!'v* 1vl,1~s!l2v11vl,2~s!l2v21•••, ~3.2!

wherev1 ,v2 are the eigenvalues of the matrix

S buu buv

bvu bvv
D , ~3.3!

and we are keeping only the leading terms in powers ofl2v1

and l2v2. In particular, we have neglected terms of ord
l22v1, l23v1, etc., which may be as important as those
orderl2v2. Moreover, we have
03612
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R1[
ul,1~s!

vl,1~s!
5

v12bvv

bvu
5

buv

v12buu
,

R2[
ul,2~s!

vl,2~s!
5

v22bvv

bvu
5

buv

v22buu
. ~3.4!

These ratios are independent ofs, as expected because the
are universal. Indeed, as we shall see, they can be relate
the universal ratiosG22,t,i /G4,t,i of the scaling-correction
amplitudes ofG4 andG22, cf. Eqs.~1.3! and ~1.8!.

We also expand the RG functions associated with
critical exponents,

n~u,v ![
1

21h t~u,v !2hf~u,v !

'n1nu~u2u* !1nv~v2v* !,

g~u,v ![@22hf~u,v !#n~u,v !

'g1gu~u2u* !1gv~v2v* !, ~3.5!

and define thes-independent quantities

gl,i[guRi1gv , nl,i[nuRi1nv , D i5v in,
~3.6!

for i 51,2. Then, using Eq.~3.2!, we find

x̃~l,s!5xl~s!l22hS 11(
i 51

2

xl,i~s!l2v i1••• D ,

xl~s!5expS 2E
0

1

dx
ĥf~x,s!

x
2E

1

`

dx
ĥf~x,s!2h

x D ,

xl,i~s!5
g

D i
S nl,i

n
2

gl,i

g D vl,i~s!, ~3.7!

and

t̃~l,s!5tl~s!l21/nS 11(
i 51

2

tl,i~s!l2v i1••• D ,

tl~s!5g expS 2E
0

1

dx
ĥ t~x,s!

x
2E

1

`

dx
ĥ t~x,s!1221/n

x D ,

tl,i~s!5S gl,i

~11D i !g
2

nl,i

D in
D vl,i~s!. ~3.8!

Using Eqs.~3.7! and~3.8!, we can derive the Wegner expan
sion of j, x, and of the zero-momentum quartic couplingsu
andv in terms of the reduced temperaturet̃. We obtain

j̃~ t̃,s!5jt~s!t̃2nS 11(
i 51

2

jt,i~s!t̃D i1••• D ,

jt~s!5tl~s!n, jt,i~s!5ntl,i~s!vl,i~s!tl~s!2D i,
~3.9!
0-5



pl

w
io

e-

at
W
iv
s.
d

th
an
ot

in

te

to
e

and

on-
ed

m-
f
ries

dif-
also
to

d-
he

of
x-

the

-

CALABRESE et al. PHYSICAL REVIEW E 69, 036120 ~2004!
and

x̃~ t̃,s!5xt~s!t̃2gS 11(
i 51

2

xt,i~s!t̃D i1••• D ,

xt~s!5xl~s!tl~s!g,

xt,i~s!52
gl,i

D i~11D i !
vl,i~s!tl~s!2D i, ~3.10!

and also

v~ t̃,s!5v* 1(
i 51

2

vt,i~s!t̃ D i1•••,

vt,i~s!5vl,i~s!tl~s!2D i, ~3.11!

u~ t̃,s!5u* 1(
i 51

2

ut,i~s!t̃D i1•••,

ut,i~s!5Rivl,i~s!tl~s!2D i. ~3.12!

The results of Ref.@41# allow us to identify

G4~ t̃,s!5v~ t̃,s!, G22~ t̃,s!5 1
3 u~ t̃,s!, ~3.13!

and to obtain the corresponding scaling-correction am
tudesG4,t,i andG22,t,i defined in Eq.~1.8!.

From the above-reported relations we derive the follo
ing expressions for the universal ratios of scaling-correct
amplitudes:

ut,i

vt,i
5Ri ,

jt,i

xt,i
5

nl,i~11D i !

gl,i
2

nD i

g
,

xt,i

vt,i
52

gl,i

D i~11D i !
. ~3.14!

Their universality is explicitly verified since they are ind
pendent ofs[u0 /v0.

B. Results for dilute Ising systems

Using the results reported in Sec. III A, we can estim
several universal scaling-correction amplitude ratios.
analyze appropriate perturbative series that can be der
from those of theb functions and the critical exponent
Again, we use the conformal-mapping method and the Pa´-
Borel method at fixed ratiou/v. The errors we report take
into account the resummation error and the uncertainty in
location of the FP. We compute each quantity at the FT
at the Monte Carlo FP. The final error is such to include b
estimates.

As a first step in the analysis we computed the sublead
exponents and the ratiosR1 and R2. The exponentv1 was
already computed in Ref.@11#, obtainingv150.25(10) ~us-
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ing the double-Pade´-Borel and the conformal-Pade´-Borel
method! and v150.34(11) ~using the direct conformal-
mapping method!, in substantial agreement with the Mon
Carlo resultv150.37(5) of Ref.@8#. In those analyses the
field-theoretical estimate of the FP was used. We tried
computev1 by also using the Monte Carlo estimate of th
FP. However, all methods gave largely fluctuating results
no estimate could be obtained. Then, we determinedv2. In
this case, the conformal-mapping method provided reas
ably stable results up to the Monte Carlo FP. We obtain
@42# v250.8(2).

Similar analyses were done forR1 andR2. Our final re-
sults are

R1520.90~2!, R2520.7~3!. ~3.15!

Finally, we determined the ratios of scaling-correction a
plitudes using relations~3.14!. In order to have a check o
the results, for each quantity we considered several se
with the same FP value. We obtained

xt,1 /jt,151.99~4!,

xt,1 /G4,t,1521.0~3!,

G22,t,1 /G4,t,152.1~1!,

xt,2 /jt,251.7~2!,

xt,2 /G4,t,2520.4~2!,

G22,t,2 /G4,t,251.6~7!. ~3.16!

The errors take into account the results obtained from
ferent series and different resummation methods, and
the uncertainty on the location of the FP. It is interesting
note that the results for the ratiosxt,i /jt,i show that the
quantity x/j2 has much smaller scaling corrections thanx
and j. This fact was used in Ref.@7# in order to obtain a
precise Monte Carlo estimate ofh from the high-temperature
behavior ofx/j2. For comparison, we report the correspon
ing values for the pure Ising universality class. From t
analysis of high-temperature series one obtainsxt,1 /jt,1
51.11(12) ~Ref. @43#! and xt,1 /jt,151.32(10) ~Ref. @44#!,
while field theory gives @27# xt,1 /jt,151.47(4) and
xt,1 /G4,t,1520.30(4).

C. Results for dilute multicomponent systems

As in the Ising case, we determine the universal ratios
scaling-correction amplitudes by analyzing the six-loop e
pansions of theMN model@11#. Since the corresponding RG
functions must be evaluated at the O(M )-symmetric FP, i.e.,
along theu50 axis, the series are Borel summable and
standard conformal-mapping method works well.

Identity ~2.9! allows us to obtain the following exact re
sults for the universal quantitiesRi :

R1521, R250, ~3.17!

which hold independently ofM. We also obtain
0-6
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xt,1 /jt,151.97~2!,

xt,1 /G4,t,15217~2! ~3.18!

for dilute XY systems, and

xt,1 /jt,151.97~2!,

xt,1 /G4,t,1522.5~4! ~3.19!

for dilute Heisenberg systems. The ratiosxt,2 /jt,2 and
xt,2 /G4,t,2 are just the universal ratios of scaling-correcti
amplitudes of the O(M )-symmetric models. Reference@27#
reports xt,2 /jt,251.57(2) andxt,2 /jt,251.63(4), respec-
tively, for XY and Heisenberg systems. We add the res
xt,2 /G4,t,2520.47(5) andxt,2 /G4,t,2520.59(5) again for
XY and Heisenberg systems. We finally mention
e-expansion study of the universal ratios of scalin
correction amplitudes@45#, where the specific-heat and low
temperature quantities are considered. These results d
significantly from those determined in experiments@23# on
Ni802xFex(B,Si)20.

IV. CROSSOVERS IN RANDOMLY DILUTE SPIN
SYSTEMS

A. Crossover from Gaussian-to-random critical behavior
in Ising systems

In the case of the RIM, the FP’s have been determined
using FT and Monte Carlo methods. For the random FP,
mention again the estimatesu* 5218.6(3) and v*
543.3(2) obtained by Monte Carlo simulations@7# and the
FT results reported in Ref.@11#, u* 5213(2) and v*
538.0(1.5). The position of the unstable Ising FP isuI
50, v I523.56(2) ~Ref. @43#!. The RG trajectories fors
.0 are not interesting for dilute systems; we only ment
that they are attracted by another stable FP with O(N) sym-
metry (N→0), located at@4,46# u526.3(4), v50.

In Fig. 2 we show the RG trajectories for several values
s in the interval21&s,0, as obtained by numerically in

FIG. 2. Ising systems: RG trajectories in the (u,v) plane for
several values ofs in the interval21,s,0.
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tegrating the RG equations~2.15!, after resumming the
b-functions. The figure has been obtained by using a sin
approximant, but others give qualitatively similar resul
The resummation becomes less and less effective asusu in-
creases. This is expected since the singularities that make
perturbative series non-Borel summable play an increasin
important role asusu gets larger. In any case, for21&s
,0, the RG trajectories flow towards the random FP. Fos
&21, Pade´-Borel resummations~in this case we cannot us
the conformal-mapping method since the singularity we
is on the positive real axis! hint at runaway RG trajectories
If this is true and not simply an artifact of the perturbati
approach, this suggests the existence of a valuesmin'21
such that systems corresponding tos,smin do not undergo a
continuous transition. As a consequence, sinceu is directly
related to the variance of disorder, the continuous transi
is expected to disappear for sufficiently large disorder. T
prediction may be checked by considering a lattice version
the continuum Hamiltonian

E d3xF1

2
@]mw~x!#21

1

2
@ t1r ~x!#w~x!21

g

4!
w~x!4G ,

~4.1!

wherew is a scalar field andr (x) is a Gaussian uncorrelate
random variable. Such a model is the starting point of the
studies of dilute systems and, by using the replica trick,
be shown to be equivalent to the model with Hamiltoni
~2.1!. Our results suggest that there is a critical valuevc such
that, if the variance ofr (x) is larger thanvc , the continuous
transition disappears.

Besidess5smin , there is a second interesting value ofs,
the values* such that the RIM FP is approached from abo
for s* ,s,0 and from below forsmin,s,s* . One can easily
realize that for this particular value ofs the leading scaling
corrections proportional totD1—and more generally propor
tional to tnD1—are not present in the Wegner expansions
the thermodynamic quantities. Numerically, by using t
conformal-mapping method, we obtains* 520.25(5).

The behavior of the RG trajectories close to the RIM
can be determined by using the results presented in
III A. We find that v(l,s) can be expanded as

v~l,s!'v* 1
1

R1
~u2u* !

2ul,2~s!S 1

R1
2

1

R2
D S u2u*

ul,1~s! D
v2 /v1

, ~4.2!

where R1 and R2 are universal constants reported in Se
III A, cf. Eq. ~3.4!, and ul,1(s) and ul,2(s) are expansion
coefficients defined in Eq.~3.2!. Note the presence of th
nonanalytic correction which shows that, close to the
trajectories are only defined for (u2u* )/ul,1(s).0. This is
expected on the basis of general arguments@47–49#: along
any RG trajectory one expects nonanalytic corrections p
portional, for instance, tonv i /v11m, n,m being integers.

Using Eqs.~2.20!–~2.22!, one can compute the crossov
functionsj̃ and x̃ along the RG trajectories, i.e., for fixeds,
0-7
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and the corresponding effective exponentsneff and geff , cf.
Eq. ~2.23!. The effective exponentsgeff andneff are shown in
Fig. 3 for several values ofs,0 within the attraction domain
of the RIM FP. We note that they become nonmonotonic
s,s* '20.25, where the RG trajectories reach the RIM
from below; see Fig. 2.

The crossover from the Gaussian FP to the RIM FP
also been investigated in Refs.@30,14# in the framework of
the minimal-subtraction scheme withoute expansion. The
effective exponents computed here differ from those defi
in Refs. @30,14#, since there the nontrivial relation betwee
temperature and RG flow parameter was neglected. In s
of the different definitions, the crossover curves obtained
Refs. @30,14# have the same qualitative features as th
shown in Fig. 3.

The above field-theoretical results may be related w
those obtained in a specific~lattice or experimental! system
by comparing the behavior in a neighborhood of the criti
point. Given a quantityO, we can write for the field-
theoretical model

^O&'C~s!t2s@11A1~s!tD11A2~s!tD2#, ~4.3!

while for the lattice or experimental system we write

^O&'Dts
2s~11B1ts

D11B2ts
D2!. ~4.4!

Then, we require these two expansions to agree apart fro
rescaling of the reduced temperaturests5ct, i.e.,

B15cD1A1~s!, B25cD2A2~s!, ~4.5!

which gives

A1~s!

B1
5S A2~s!

B2
D D1 /D2

. ~4.6!

Thus, in order to match the two expansions one should
determines by using Eq.~4.6! and then fixc by using Eq.
~4.5!. This provides a mapping between the field-theoreti
model and the considered system. This relation does no

FIG. 3. Ising systems: The effective exponentsgeff andneff for
several values ofs in the interval21,s,0.
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pend on the chosen quantityO because of the universality o
ratios of subleading corrections~the ratios of theB1’s and of
theB2’s of two different quantities are universal!. Note, how-
ever, that the existence of this mapping is not guaranteed
particular, Eq.~4.6! requiresA1(s)/B1 and A2(s)/B2 to be
both positive. SinceA1(s) changes sign fors5s* , it is al-
ways possible to haveA1(s)/B1.0. But there is no guaran
tee thatA2(s)/B2 can always be made positive. This is th
well-known sign problem that has been discussed at lengt
O(M ) models@50–52,48#. For instance, it prevents to matc
the crossover curves for the scalarf4 theory with the results
obtained for the three-dimensional Ising model. Refere
@52# suggested the use of the ‘‘strong-coupling’’ branchg
.g* , but this proposal fails in the massive zero-moment
renormalization scheme because of the nonanalyticity of
RG functions at the FP@47–49#. This phenomenon is eve
more evident in the RIM case, cf. Eq.~4.2!. It should also be
stressed that the mapping defined by Eqs.~4.5! and ~4.6!
does not imply that the field-theoretical crossover curves
actly match the corresponding ones for the considered
tem for all values oft. In particular, there is no relation
among the neglected coefficients in the Wegner expansio

Finally, let us discuss the RIM with nearest-neighbor
teractions on a cubic lattice with spin densityp. Numerical
simulations show the presence of a dilution-independent c
tinuous transition up top50.40@8#. It is usually conjectured
that the transition persists up to the percolation threshold
the spinsp5pc , pc50.311 608 1(13) on a cubic lattice@53#.
Below the percolation point the spins form finite domai
and are therefore unable to show a critical behavior. It sho
be remarked that the transition forp5pc is not described by
the field-theory model~2.1! and thus the RIM forp5pc does
not correspond tos5smin . For the same reasons, the fact th
the transition disappears forp,pc does not provide evidenc
in favor of a finitesmin . However, if the RIM can be related
with the field-theory model@for example if Eq.~4.6! can be
solved for any value ofp] and the RIM withp→pc corre-
sponds to the field-theory model withs→ s̄, then we can
concludeus̄u,usminu. Now we show that this condition is ap
proximately verified. For this purpose, we must determ
the relation between the RIM and the field-theory model.
use the results of Ref.@34# that map the RIM onto a transla
tionally invariant effective HamiltonianH p

RIM for a field f.
The expansion ofH p

RIM for f→0 has the same form, up t
order f4, of the Hamiltonian~2.1! with M51. The corre-
sponding quartic couplingsu0

RIM andv0
RIM appearing in this

expansion are related to the magnetic concentrationp ~note
that such result does not depend on the lattice type and
the spin-spin interaction as long as it is of short-range ty!
by

u0
RIM}p~p21!, v0

RIM}p, ~4.7!

and, in particular,

u0
RIM

v0
RIM

52
3

2
~12p!. ~4.8!
0-8
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It is tempting to assumes'u0
RIM/v0

RIM , which means that we
neglect the fact that inH p

RIM there are interactionsfn with
any n.4. The relations'23(12p)/2 follows. Using this
relation and the numerical results of Refs.@8,7#, we can get
an independent approximate estimate ofs* . Since in the
RIM on a cubic lattice one does not observe the lead
scaling correction forp* '0.8, we obtains* '20.3, which
is reasonably close to the FT estimates* 520.25(5). More-
over, the percolation thresholdpc—pc50.311 608 1(13) on
a cubic lattice @53#—apparently corresponds tos̄'21,
which is compatible with the predicted inequalityus̄u
,usminu.

B. Crossover from Ising-to-random critical behavior

The FT approach presented in Sec. II allows us to de
mine also the Ising-to-RIM crossover functions. Consider
in general a quantityO that behaves at the Ising FP, i.e.,
the absence of disorder, ast2r In I, standard RG argument
show that, in the limitp→1 andt[(T2TI)/TI→0, where
TI is the critical temperature of the pure Ising model,O can
be written in the scaling form

O5a0t2r In IBO~gt2f!5a1jr ICO~gjf/n I !, ~4.9!

whereg}12p is the scaling field associated with disorde
which is a relevant perturbation of the Ising FP, anda0 and
a1 are normalization constants. The crossover exponentf is
equal@1# to the Ising specific-heat exponenta I , f5a I . The
functionsBO andCO are universal, apart from trivial norma
izations. By properly choosinga0 and a1 we can require
BO(0)5CO(0)51. Another condition can be added b
properly fixing the normalization ofg.

Within the FT approach the limitg→0 corresponds tos
→02 andgjf/n I;slf/n I. Therefore, crossover functions a
obtained by taking the limits→02 and j̃5l→` of the
quantity Oj2r I, keepingsla I /n I fixed. In Fig. 4 we show
numerically that such a limit exists for the susceptibilityx.
We considerxj221h I5x̃(l,s)l221h I and plot this combi-

FIG. 4. Ising systems: The quantityx̃(l,s)l221h I as a function

of usu j̃a I /n I for several values ofs.
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nation as a function ofusu j̃a I /n I for several values ofs. The
curves, obtained by using Eq.~2.21! and the conformal-
mapping method, rapidly converge to a limiting function.

In order to compute the crossover functions, we must fi
study the limits→02 of the RG trajectories. As can be see
from Fig. 2, in this limit the trajectory will eventually be
formed by two parts connecting at the Ising FP the lineu
50 starting at the Gaussian FP and ending at the Ising
and a linev5g(u) connecting the Ising FP to the RIM FP
The linev5g(u) corresponds to a RG trajectory and ther
fore @u(l),v(l)#5@u(l),g„u(l)…# must satisfy Eq.~2.15!.
Therefore,g(u) is the solution of the differential equation

dg

du
5

bv„u,g~u!…

bu~u,g~u!!
~4.10!

with the initial conditiong(0)5v I . As discussed in Appen
dix B, g(u) is expected to be analytic foru→0 and thus it
can be expanded as

g~u!5v I1 (
n51

`

gnun. ~4.11!

In Appendix we compute the first coefficients:g1521, a
consequence of identity~2.9!, g250.0033(1), and g3
51(2)31025.

Sinceg(u) corresponds to a RG trajectory withs50, Eq.
~4.2! implies that, close to the RIM FP, we have

g~u!'v* 1
1

R1
~u2u* !

2ul,2~0!S 1

R1
2

1

R2
D S u2u*

ul,1~0! D
v2 /v1

. ~4.12!

Equation~4.12! shows thatg(u) is not analytic at the RIM
FP. Of course, one should check thatul,2(0) does not vanish.
We are not able to verify numerically this condition, but w
believe that it is unlikely thatul,2(0)50. Indeed, the curve
g(u) is a special curve only at the Ising FP, but it has
special status at the RIM FP and thus it should be nona
lytic as any generic RG trajectory@54#.

The curveg(u) can be computed@55# by resumming the
perturbative series for theb functions and then by explicitly
solving Eq.~4.10! with the initial conditiong(0)5v I . The
result turns out to be very well approximated by the sim
expression

g~u!'v I2u1g2u2, ~4.13!

where v I523.56(2) is the coordinate of the Ising FP@43#
andg2'0.0033. Such an approximation is effective, with
the resummation errors, up to the RIM FP. A graph is
ported in Fig. 5. The results obtained by using@3,1#, @4,1#,
and@5,1# Padé-Borel approximants would not be distinguish
able from the curve~4.13! shown in Fig. 5. For instance
g(213)'37.1 andg(218.6)'43.3, so that Eq.~4.13! is
perfectly compatible with the Monte Carlo estimate of t
FP, u* 5218.6(3), v* 543.3(2), and with the FT result,
0-9
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u* 5213(2), v* 538.0(1.5), see Fig. 5. The fact that bo
estimates lie on the limiting curvev5g(u) shows that the
FT approach is effective in determining the Ising-to-RI
trajectory, although it is apparently unable to determine p
cisely the position of the FP on this curve. As a final che
we computeg8(u* ). Using Eq.~4.12! and the estimate ofR1
reported in Sec. III B,R1520.90(2), we obtain g8(u* )5
21.11(2), while Eq. ~4.13! givesg8(u* )521.12 (21.09)
at the Monte Carlo~field-theoretical! estimate of the FP. The
agreement is satisfactory.

Once we have determinedg(u), we can computeu(l,s)
in the crossover limit. In Appendix B1, we show that, in th
crossover limits→02 keepingusula I /n I fixed, u(l,s) con-
verges toU(s) which is implicitly defined by

s5U~s!expH 2
a I

n I
E

0

U(s)

dxF 1

bu„x,g~x!…
1

n I

a Ix
G J ,

~4.14!

where

s[sS1S l

S2
D a I /n I

, ~4.15!

andS1 andS2 are normalization constants such thatU(s)
's for s→0. Their explicit expressions are reported in A
pendix B1. Of course,v(l,s)5g„U(s)… in the scaling limit
s→02. The curveg(u) and Eq.~4.14! completely fix the
relevant RG trajectory in the crossover limit.

The computation of the crossover functions is then co
pletely straightforward. We consider the RG functionO(l,s)
associated withO and assume that it satisfies the RG eq
tion

l
dO
dl

5r~u,v !O, ~4.16!

FIG. 5. Plot of the curvev5g(u). The full line represents the
quadratic curve given in Eq.~4.13!, while the dotted line shows the
linear approximationg(u)5v I2u. We also show the position o
the RIM FP as obtained by Monte Carlo~MC! simulations of the
RIM ~circle! and by FT calculations~triangle!.
03612
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where r(u,v) is the corresponding RG function such th
r(0,v I)5r I . The crossover limit is studied in detail in Ap
pendix B2. We find that the crossover functionCO(y) can be
written as

CO~y!5expF2E
0

U(s)

dx
r„x,g~x!…2r I

bu„x,g~x!… G , ~4.17!

where the relation betweeny ands should be fixed by choos
ing an additional normalization condition.

We wish now to specialize the previous discussion to
magnetic susceptibility. In this caser(u,v)522hf(u,v).
In order to completely specify the functionCx(y) appearing
in Eq. ~4.9! we must fix the normalization ofg. We use the
small-y expansion ofCx(y). SinceCx8(0)50, see Appendix
B 2, we require

Cx~y!511y21 (
n53

cnyn ~4.18!

for y→0 andCx(y) to be defined fory.0. With these nor-
malizations we have

Cx~y!5expE
0

U(s)

dx
hf„x,g~x!…2h I

bu„x,g~x!…
, ~4.19!

where y52y0s. The constanty0 is positive and is com-
puted numerically in Appendix B 3:y050.072(8). Thescal-
ing functionCx(y) is shown in Fig. 6.

We study the small-y and large-y behavior ofCx(y). A
rough estimate of the coefficientc3 is c3524(2); see Ap-
pendix B3. For large values ofy, we have

Cx~y!'c`yn I (h I2h)/a I, ~4.20!

where h is the RIM exponent. The best estimates of t
exponentsh I andh of the Ising and RIM universality classe
areh I50.036 39(15)~Ref. @43#!, h I50.0368(2)~Ref. @56#!,

FIG. 6. The crossover functionCx(y) normalized according to
Eq. ~4.18!. The dashed line represents the asymptotic beha
~4.20!. The inset shows the small-y behavior: the expansion to orde
y2 corresponds to the dotted line while the expansion to ordery3

corresponds to the dashed line.
0-10



FT
d

s,

.
th
n

P

ue

n-

t at

ef-
ms

e
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and h50.035~2! ~Ref. @7#!. These results suggesth I.h.
This is confirmed by the analysis of the fixed-dimension
series: all analyses findh I.h. In particular, analyses base
on an expansion around the Ising FP@7# find h I2h
50.002(2). This suggests thatCx(y) diverges for largey
with a very small exponent,n I(h I2h)/a I50.01(1). We
also estimated the coefficientc` appearing in the large-y
behavior ofCx(y), obtainingc`51.05(5). Weproceeded as
follows. First, for given approximants of the RG function
we computed the exponentsh I , n I , andh, and the function
Cx(y). Then, we calculatedCx(y)y2n I (h I2h)/a I and deter-
mined the constantc` from its large-y behavior. This proce-
dure gave an estimate ofc` for a given set of approximants
The final result was obtained as usual, by comparing
results of different approximants and of series of differe
order.

C. Crossover in randomly dilute multicomponent spin systems

In the case of multicomponent systems, the stable F
the O(M )-symmetric FP (0,v* ). Precise estimates ofv*
have been obtained by employing FT and lattice techniq

FIG. 7. RG trajectories in the diluteXY model for
21,s<0.

FIG. 8. RG trajectories in the dilute Heisenberg model for21
,s<0.
03612
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@4,18,19,46,57#: v* 521.16(5) ~FT! andv* 521.14(6) ~lat-
tice! for the XY universality class, andv* 519.06(5) ~FT!
and v* 519.13(10)~lattice! for the Heisenberg universality
class.

In Figs. 7 and 8 we show, respectively, forXY and
Heisenberg systems, the RG trajectories in theu,v plane for
several values ofs in the range21,s<0. Figures 9 and 10
report the corresponding effective exponentsheff and neff ,
respectively, forXY and Heisenberg systems. They are no
monotonic. In particular, fors close to21, heff becomes
negative for intermediate values oft̃. As in the Ising case,
the resummations become less reliable—and again hin
runaway trajectories—fors&21.

Finally, we mention that the RG trajectories and the
fective crossover exponents of dilute Heisenberg syste
have been recently investigated in Ref.@31#, using a two-
loop approximation within the minimal-subtraction schem

FIG. 9. The effective exponentsheff and neff of the dilute
XY model for 21,s<0. In the Gaussian limitn51/2 andh50,
while in the Wilson-Fisher limitn50.671 55~27! andh50.0380~4!
~Ref. @18#!.

FIG. 10. The effective exponentsheff and neff of the dilute
Heisenberg model for21,s<0. In the Gaussian limitn51/2 and
h50, while in the Wilson-Fisher limit n50.7112~5! and
h50.0375~5! ~Ref. @19#!.
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without e expansion and neglecting the nontrivial relati
between temperature and RG flow parameter. In spite o
simplifying assumptions, the results are in qualitative agr
ment with ours. Moreover, Ref.@31# discusses crossover ph
nomena observed in experiments on isotropic magn
showing several results for the effective exponents that ar
qualitative agreement with the curves shown in Fig. 10.
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APPENDIX A: SOME RELATIONS AMONG
THE RG FUNCTIONS

In this section we prove identities~2.9! and~2.10! holding
along theu50 axis, and identities~2.11!–~2.13! holding
along thev50 axis.

Let us first prove the identities along theu50 axis in the
caseM51; the extension to other values ofM is straightfor-
ward. We consider a generic theory with fieldsfA and
Hamiltonian density

H5
1

2 (
m,A

~]mfA!21
1

2
r(

A
~fA!21

g

4! (
A

~fA!4

1
1

4! (
ABCD

CABCDfAfBfCfD. ~A1!

For CABCD50 the model is simply a collection of decouple
Ising f4 theories. In order to compute the corrections to fi
order in CABCD , we consider the one-particle irreducib
correlation functions of the fields expressed in terms of
bare couplingsg andCABCD and of the inverse susceptibilit
x21 as effective mass~the results also hold for the massle
theory in dimensional regularization!:

GA1 , . . . ,An
5^fA1, . . . ,fAn&. ~A2!

Then, we prove that, if all indices are equal,

GA,A, . . . ,A5 f ~g!1CAAAA

] f ~g!

]g
1O~C2!

5 f ~g1CAAAA!1O~C2!. ~A3!

Using this relation, one can derive identities~2.9! and~2.10!.
Indeed, Eq.~A3! implies that ~setting ū0[u0 /m and v̄0
[v0 /m)

Zf5 f f~ ū01 v̄0!1O~ v̄0
2!, ~A4!

u1v5 f u1v~ ū01 v̄0!1O~ v̄0
2!, ~A5!

bu1bv5 f b~ ū01 v̄0!1O~ v̄0
2!. ~A6!

To prove Eq.~A3!, consider a generic diagramD contribut-
ing to the correlation function. Ifx21 is used as effective
mass or the mass vanishes and dimensional regularizati
03612
ll
-

ts,
in

t

e

is

used, the diagram has the following properties: it does
contain tadpole subgraphs; given a vertexV, the subdiagram
D/V obtained by deleting the lines going out ofV may be
disconnected, but each piece contains at least one exte
line. The contribution of the diagramD is the product of
three factors: the first is the integral over the internal m
menta, the second the symmetry factor, and the th
one—we call itI (D)A,A, . . . ,A—takes into account the inter
action vertex

VABCD52gdABCD2CABCD . ~A7!

Clearly, we are only interested in the last term which can
written in the form

I ~D !A,A, . . . ,A

5 I ~D !A,A, . . . ,AU
C50

2 (
VPD

I ~D/V!A,A, . . . ,A;I ,J,K,LU
C50

3CIJKL5~2g!n2n~2g!n21CAAAA, ~A8!

wheren is the number of vertices ofD. In the last step, we
have used the two properties we have mentioned above:
guarantee that I (D/V)A,A, . . . ,A;I ,J,K,L5(2g)n21dAIJKL ,
since forC50 a connected diagram does not vanish only
the indices on the external legs are all equal. Equation~A8!
gives immediately Eq.~A3!.

Identities~2.11!–~2.13! along thev50 axis can be proved
in a similar fashion. Let us again restrict ourselves to the c
M51, the extension to generic values ofM being straight-
forward. Consider the Hamiltonian density

H5
1

2 (
m,A

~]mfA!21
1

2
r(

A
~fA!21

g

4! (
AB

~fA!2~fB!2

1
1

4! (
ABCD

CABCDfAfBfCfD, ~A9!

whereCABCD is symmetric in all indices. ForCABCD50 the
model is simply anN-vector f4 theory, whereN is the di-
mension of the field. In order to compute the corrections
first order in CABCD , we consider here a different set o
correlation functions: O(N)-invariant~therefore there are no
external indices! one-particle irreducible correlation func
tions of the fields and of any O(N)-invariant operator. Con-
sider again a diagramD, a vertexV, and the interaction con
tribution I (D/V) I ,J,K,L for C50. Because of the O(N)
invariance, its symmetrized part is given by

I ~D/V!$I ,J,K,L%uC505 Î ~D/V!~d IJdKL1d IKdJL1d ILdJK!.

~A10!

Then, repeating the argument leading to Eq.~A8!, we obtain

I ~D !5I ~D !uC5023(
V

Î ~D/V!(
IJ

CIIJJ . ~A11!

The constant(VÎ (D/V) is determined by computing the de
rivative of I (D) with respect tog at C50.
0-12
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]I ~D !

]g U
C50

5 (
VPD

(
IJKL

I ~D/V! I ,J,K,LU
C50

3S 2
1

3D ~d IJdKL1d IKdJL1d ILdJK!

52 (
VPD

Î ~D/V!N~N12!. ~A12!

It follows

I ~D !5 f S g1

3(
IJ

CIIJJ

N~N12!
D 1O~C2!, ~A13!

where f (g)5I (D)uC50. This relation is valid only for
O(N)-invariant quantities, but it can also be applied to t
correlation functions of the elementary fields by simply co
tracting the external indices. It allows us to derive a num
of relations involving theb functions and the RG function
associated with the exponents. For example, considering
MN model ~2.1! for M51, relation ~A13! implies Eqs.
~2.11!–~2.13! with M51.

APPENDIX B: THE ISING-TO-RIM CROSSOVER

In this appendix we compute the limits→02 of the RG
trajectories and the Ising-to-RIM crossover functionCO(y),
cf. Eq. ~4.9!.

1. The limit s\0À of the RG trajectories

Here, we wish to prove Eqs.~4.14! and ~4.15! that give
u(l,s) in the crossover limits→02 keepingusula I /n I fixed.
As discussed in Sec. IV B, in the crossover limit the R
trajectory is formed by two parts connecting at the Ising F
the line u50 starting at the Gaussian FP and ending at
Ising FP and the linev5g(u) connecting the Ising FP to th
RIM FP. Now, we will solve the flow equations~2.15! in the
two cases and we will match the two solutions in the nei
borhood of the Ising FP. Let us consider first the behav
nearv5g(u). The flow equation foru(l,s) can be written
as

2l
du

dl
5bu„u,g~u!…. ~B1!

Sincebu(u,v I)52ua I /n I for u→0, we can write the solu-
tion as

l5A~s!u~l,s!n I /a I expF2E
0

u(l,s)

dxS 1

bu~x,g~x!!
1

n I

a Ix
D G ,

~B2!

whereA(s) is a ~at this stage unknown! function of s.
Now let us consider the second case, i.e., the trajec

near the u50 axis. For u→0, we can write bu(u,v)
5u f(v)1O(u2), with f (0)521, f (v I)52a I /n I . As for
bv(u,v) we simply set u50. Note that bv(0,v)52v
03612
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1O(v2) for v→0 andbv(0,v)52v I(v I2v) for v→v I . In
the limit we are interested in, the RG equations~2.15! be-
come

2l
dv
dl

5bv~0,v !, 2l
du

dl
5u f~v !. ~B3!

Keeping into account the initial conditions~2.16!, we obtain

l5vexpF2E
0

v
dxS 1

bv~0,x!
1

1

xD G , ~B4!

u5svexpE
0

v
dxS f ~x!

bv~0,x!
2

1

xD . ~B5!

Equations~B4! and ~B5! implicitly define u(l,s). We must
now match the two solutions near the Ising FP, determin
the unknown constantA(s). If we define

S1[v IexpE
0

v I
dxS f ~x!

bv~0,x!
2

1

x
2

a I

n Iv I~v I2x! D ,

S2[v IexpF2E
0

v I
dxS 1

bv~0,x!
1

1

x
1

1

v I~v I2x! D G
~B6!

for v→v I , Eqs.~B4! and ~B5! can be written as

l'S2~v I2v !21/v I,

u'sS1~v I2v !2a I /n Iv I. ~B7!

Therefore, forv→v I we have

u~l,s!'sS1S l

S2
D a I /n I

. ~B8!

On the other hand, Eq.~B2! gives foru→0,

u~l,s!'@l/A~s!#a I /n I. ~B9!

By comparing Eqs.~B8! and ~B9! we obtainA(s). Finally,
Eq. ~B2! can be written as

sS1S l

S2
D a I /n I

5u~l,s!

3expF2
a I

n I
E

0

u(l,s)

dxS 1

bu„x,g~x!…
1

n I

a Ix
D G .

~B10!

This ends the proof of Eqs.~4.14! and ~4.15!.

2. Crossover functions

The computation of the crossover function is similar
that presented in the preceding section. We first consider
RG equation~4.16! on the line v5g(u). Using the flow
equation foru(l,s) we can write

dO
du

52
r„u,g~u!…

bu„u,g~u!…
O. ~B11!
0-13
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The solution can be written as

O5B~s!u~l,s!r In I /a I

3expF2E
0

u(l,s)

dxS r„x,g~x!…

bu„x,g~x!…
1

r In I

a Ix
D G , ~B12!

whereB(s) is an unknown function.
For u→0, we can use the flow equation forv(l,s) and

write

dO
dv

52
r~0,v !

bv~0,v !
O. ~B13!

We assumer(0,0)5r0 (r0 is the naive Gaussian dimensio
of O! and O'O 0lr0 at the Gaussian FP (O0 is a normal-
ization constant!. Then, the previous equation gives

O5O 0vr0expF2E
0

v
dxS r~0,x!

bv~0,x!
1

r0

x D G . ~B14!

Now, we must compute the behavior forv→v I . Defining

T1[O 0v I
r0expF2E

0

v I
dxS r~0,x!

bv~0,x!
1

r0

x
1

r I

v I~v I2x! D G ,
~B15!

we obtain forv→v I ,

O'T1~v I2v !2r I /v I'T1S l

S2
D r I

'T1S u

sS1
D n Ir I /a I

,

~B16!

where we have used Eq.~B7!. On the other hand, Eq.~B12!
gives in the limitu→0,

O'B~s!un Ir I /a I. ~B17!

Therefore,

O5T1S u

sS1
D n Ir I /a I

expF2E
0

u(l,s)

dxS r„x,g~x!…

bu„x,g~x!…
1

r In I

a Ix
D G .

~B18!

Finally, by using Eq.~B10! to eliminateun Ir I /a I, we obtain

O5T1S2
2r Ilr IexpF2E

0

U(s)

dx
r„x,g~x!…2r I

bu„x,g~x!… G .
~B19!

The crossover functionCO(y) normalized so thatCO(0)
51 is then given by

CO~y!5expF2E
0

U(s)

dx
r„x,g~x!…2r I

bu„x,g~x!… G . ~B20!

To fully specify the functionCO(y) we must also relatey
with s by adding an additional normalization condition. F
the magnetic susceptibility this is done in detail in Sec. IV

We can specialize these results to the observables we
considered in the paper. First, we consider the four-po
03612
.
ve
t

quartic couplingsG22 andG4. Since they are related tou and
v, G225u/3 and G45v ~see Ref.@41#!, and u'U(s), v
'g(u) in the crossover limit, we obtain

CG22
~y!5

U~s!

s
, ~B21!

CG4
~y!5

1

v I
g„U~s!…. ~B22!

Note thatCG22
(y) is not simply U(s) since the crossove

function is defined byu;la I /n ICG22
(y). These equations

can also be derived from Eq.~B20! by using r(u,v)
52bu(u,v)/u and r(u,v)52bv(u,v)/v for u and v, re-
spectively.

Finally, let us consider the magnetic susceptibilityx. In
this caser(u,v)522hf(u,v). Thus, by using Eq.~B20!
we obtain Eq.~4.19!. Let us now show thatCx8(0)50. First,
note that, because of identity~2.10!, near the Ising FP we
have

hf~u,v !2h I5A~u1v2v I !@11O~u!1O~v2v I !#,

~B23!

whereA is a constant. Then, sinceg(u)5v I2u1O(u2), we
obtain hf„u,g(u)…2h I5O(u2). Substituting in Eq.~4.19!,
this gives immediatelyCx8(0)50.

Finally, we argue that the crossover functionCO(y) and
g(u) ~that can be related to the crossover function ofv
5G4) are analytic fory→0 andu→0, respectively. This is
not obvious since foru50 RG functions are nonanalytic a
the Ising FP@47,49#. We will now show that such a problem
does not arise for the RG functions defined along the cro
over linev5g(u). The reason is that such a line has a ve
special status at the Ising FP: It is the line that is tangen
the relevant direction associated with disorder and tha
orthogonalto all irrelevant directions.

To clarify the issue, let us, for instance, consider the s
gular part of the free energy. In a neighborhood of the Is
FP it can be written as@58#

Fsing5 f t
d/n IF~ f pf t

2f ,$ f i f t
D i%!, ~B24!

where f t , f p , and$ f i% are the nonlinear scaling fields ass
ciated with the temperature, the dilution, and the irrelev
RG operators. Fort[(T2TI)/TI→0 and p→1, f t;t and
f p;(12p);g. The exponentsD i are associated with the
irrelevant operators and are positive. A basic result of R
theory is that the nonlinear scaling fields are analytic int and
p and the functionF is analytic in all its arguments. In the
crossover limit,f i approaches a constant andf t goes to zero,
so thatf i f t

D i→0. It follows

Fsing'td/n IF~gt2f,$0%!, ~B25!

which shows that the crossover function associated withFsing
is analytic ingt2f. The argument can be trivially genera
ized to any zero-momentum quantity; we conjecture tha
also applies to quantities involving the correlation length.
0-14
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3. Some numerical results

In this section we report some details on the numer
computation ofg(u) and Cx(y). Let us first focus on the
determination of the coefficientsgn defined in Eq.~4.11!.
They have been obtained by resumming perturbative se
gn(v) such thatgn5gn(v I). For the purpose of determinin
gn(v), we write

bu~u,v !5(
n

bu,n~v !un, ~B26!

bv~u,v !5(
n

bv,n~v !un. ~B27!

Then, by using Eq.~4.10!, we obtain

g25
bv,09 ~v !22bv,2~v !22bu,2~v !

2@a I /n I1bv,1~v !#
U

v5v I

, ~B28!

and similar, but more complex, expressions forg3 , g4, etc.
The seriesgn(v) can be obtained by expanding the righ
hand side in powers ofv. For g2 andg3 we obtain

g2~ v̄ !50.006 631 4620.006 931 65v̄10.011 688 7v̄2

20.022 597 1v̄310.045 596 2v̄420.095 401 1v̄5

1O~ v̄6!, ~B29!

g3~ v̄ !50.000 029 317 620.000 081 345 4v̄

10.00 0206 937v̄220.000 485 549v̄3

10.001 101 05v̄41O~ v̄5!, ~B30!
a

-

s.

u
th
, J

th

03612
l

es

wherev̄[3v/(16p). By resumming these series we get

g250.0033~1!, g351~2!31025. ~B31!

We computed the functiong(u) by using Eq.~4.10!, i.e.,
without relying on an expansion around the Ising FP, and
resumming theb functions using@3/1#, @4/1#, and@5/1# Padè-
Borel approximants constrained to have a zero atv5v I
523.56. The results up tou'220 would not be distinguish-
able from the quadratic approximation shown in Fig. 5.

Let us now considerCx(y). This function can be com-
puted directly by using Eqs.~4.14! and~4.19!. They provide
Cx as a function of the variables. In order to compute the
relation betweens andy, we need to determine the small-s
behavior ofCx . We write

Cx511 (
n52

c̄nsn, ~B32!

and, as forg(u), we compute perturbative seriesc̄n(v) such
that c̄n5 c̄n(v I). By resumming these expansions we obta

c̄250.0052~12!, c35 c̄3c̄2
23/2524~2!. ~B33!

The variabley defined by the normalization condition~4.18!
is related tos by y52 c̄2

1/2s520.072(8)s.
y
of
,

,
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