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Cooperation for volunteering and partially random partnerships
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Competition among cooperative, defective, and loner strategies is studied by considering an evolutionary
prisoner’s dilemma game for different partnerships. In this game each player can adopt one of its coplayer’s
strategy with a probability depending on the difference of payoffs coming from games with the corresponding
coplayers. Our attention is focused on the effects of annealed and quenched randomness in the partnership for
fixed number of coplayers. It is shown that only the loners survive if the four coplayers are chosen randomly
(mean-field limi}. On the contrary, on the square lattice all the three strategies are maintained by the cyclic
invasions resulting in a self-organizing spatial pattern. If the fixed partnership is described by a regular
small-world structure then a homogeneous oscillation occurs in the population dynamics when the measure of
guenched randomness exceeds a threshold value. Similar behavior with higher sensitivity to the randomness is
found if temporary partners are substituted for the standard ones with some probability at each step of iteration.
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[. INTRODUCTION presence of the “tit for tat” strategy could sustain the mutual
cooperation in systems where all the players interact with
The evolutionary prisoner’s dilemma gam@&DG) [1-5]  each other. The very simple tit for tat strategy cooperates first
are widely applied to study the maintenance of cooperativeand afterwards repeats his coplayer’s previous decision. De-
behavior among selfish individuals under different condi-spite its simplicity this is a costly strategy because it requires
tions. This approach provides quantitative predictions aboutontinuous inspection and the capability to distinguish the
the total income in a fictious society as well as about thecoplayers.
measure of exploitation or mutual cooperation when varying The two simplest strategies choose always defection and
the model parameters, e.g., payoffs, set of strategies, topaooperation, and the corresponding players are called defec-
logical structure of interaction, rules controlling the choice oftors (shortly D) and cooperatorsQ), respectively. Nowak
a new strategy, noise, and external constraints. and May[6] have introduced a two-dimensional cellular au-
The original PDG describes the interaction between twadomaton where the players are allowed to follow @er D
players whose incomes depend on their choice. In the knowktrategies. Their simulations demonstrated that the coopera-
edge of possible incomes the players decide simultaneoustprs invade the territory of defectors along straight line
whether they cooperate or defect. Henceforth we use redronts, while the defector’s invasion is preferred along the
caled payoff parameters without any loss of generality in theérregular boundaries. The competition between these inva-
evolutionary PDGg6]. Thus, for mutual cooperation the sion processes can maintain the coexistend2 afidC strat-
players receive unit income providing the highest total pay-egies with a population ratio depending on the model param-
off for them. Conversely, they receive zero payoff for mutualeters. Subsequent investigations have demonstrated that the
defection. If they choose different options then the defectonoisy effects make the boundaries irregular giving more
reaches the highest individual payoffi¥ 1), which charac- chance for defectiof7,8]. Furthermore, the cooperation is
terizes the temptation to defect; meanwhile, the cooperatdiavored when allowing empty sites on the latticg9]. In
receives the lowest one{0) called sucker’s payoff. In the this case the empty sites can be considered as “sterile defec-
PDG the cooperator’s loss exceeds the extra income of deers” (for c=0) blocking the spreading of defection. After
fector, i.e.,b+c<2. These payoffs yield an unresolvable all, the short range interactions between the localized players
dilemma for the intelligent players because defection bringsupport the maintenance of cooperation under some condi-
higher individual income when his coplayer chooses eithetions (e.g., for smalb values even if the players can follow
defection or cooperation. The intelligent players, howeverthe simplest C or D) strategieg6-8,10,11. Despite the
cannot choose defection because it provides only zero iradvantage of local interactions the defection prevails in these
come which is the second worst one. spatial models ib, the temptation to defect exceeds a thresh-
The situation is drastically modified in the evolutionary old value dependent on the evolutionary rules.
multiagent systems where the players’ income come from In the last few years the investigations of the spatial PDGs
iterated PDGs played with several coplayers. For the reare extended to different social networks that takes the
peated games the players’ decision are determined by thegiresent level of transportation and communication into ac-
strategy in the knowledge of the coplayers’ previous decicount[12—-15. The extensive research is generally focused
sions. The evolutionary games allow the players to adopt onen the exploration of those conditions providing the highest
of the more successful strategy of the coplayers they interat¢btal income for such players.
with. In general, the probability of the strategy adoption de- Very recently the introduction of londL) strategy is sug-
pends on the payoff difference. The early simulations pergested to prevent the uniform defection in the spatial evolu-
formed by Axelrod[5] gave numerical evidence that the tionary PDGs even for large values[16—18. The loner
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strategy represents those players who wish to avoid the risk
of exploitation. For this purpose they decline participating in
the PDGs and are satisfied by a lower income shared with the
coplayer. The coexistence of the three strategies is sustained ..
by the cyclic dominancel( invadesD invadesC invadesL)

that yields a proper self-organizing pattern on the spatial
evolutionary games. Similar conclusions were already drawn
in a previous model where instead of the loner strategy the ““
players could choose the tit for tat strategy under some ex- I El F
ternal constraint favoring random conversion to the cheapest FIG. 1. Temporary coplayers on the square latitedt) and

cooperative strateg® [19]. The voluntary PDG with th®, guenched randomnessght) in the partnerships. On the left-hand

C, and L strategies, however, implies a more convenientige piot the dashed lines indicate the standard links among players
background for studying the effect of partially random part-jocated on a square lattice. The solid lines represent the current
nerships. ) ) _ coplayers of the player¥ and(its coplayey Y if randomly chosen
Henceforth we will study the emerging spatiotemporalcoplayers are substituted for the standard ones with a probaility
patterns of strategy populations as well as the average paghort edges pointing outside along the periphery refer to periodic
offs affected by different partial randomness in the partnerboundary conditions. Partnership with(@uencheii regular small-
ship. More precisely, we study two particular cases with re-world structure is shown on the right-hand side plot. The creation of
stricting the number of coplayers to be four. In the first casehis partnership starts with a square lattice structure where the play-
we construct a fixed network by substituting random linksers are located on the lattice sites and the four nearest-neighbor
for a portion of the nearest-neighbor links of a square latticelinks define the initial connectivity. First we remove the link be-
In the second case the standard coplayers are temporariyeen two randomly chosen nearest-neighbor players,feandB,
replaced by random ones with some probability for each stepnd a new coplaye€ is chosen randomly for the play@é: After-
of iteration. We make a comparison between the quencheWards one of the previous links @fis eliminated and a new partner
and the annealed randomness in the partnerships. This ap-S chosen for the dropped coplaybr This rewiring process is
proach excludes those effects coming from the fluctuation oféPeated until random links are substituted for @portion of the
the number of neighbors as it happens for diluted Iatticeé)“g'nal nearest-neighbor links. Finally, the last three-coordinated

[7,9] and different social network€.2—15. player(hereH) is connected to the starting sife
ability vanishes ifM y«—My>K, and goes to one in the op-
Il. VOLUNTARY PRISONER'’S DILEMMA GAMES posite limit. The width of the transient region is comparable
FOR DIFFERENT PARTNERSHIPS to 2K. Since the work by Nowak and Md¥], the analyses

are usually performed far=0 that may be a boundary sepa-
rating different behaviord20]. To avoid the difficulties
caused by the vicinity of such a boundary, now our analysis
is restricted to a typical regime of PDG; namely, henceforth
we choosee=—0.1, 0=0.3, andK=0.1.

For fixed partnerships the links are defined by the edges

We consider an evolutionary PDG with players who can
follow one of the above mentioned, C, andL strategies.
For this set of strategies the payoffs for two play@alled X
andY) are tabulated as

X\Y|D|C|L of a regular small-world network as explained in Fig. 1. In
this case the quenched randomness is characteriz€xl tine
D 0\0 b\c 0\0 rewired portion of nearest-neighbor links on the square lat-

tice with periodic boundary conditions. Evidently, this struc-

C |c\b|I\ljo\o ture reproduces the square lattice in the li@it>0. Con-

L lo\olo\olo\o versely, forQ=1 this structure is equivalent to a random
\ \ \ regular grapH21,22 with a uniform degree of four, mean-

while the spatial coordinates become meaningless. Previ-

wheres (0<o<1) denotes the payoff of both the loner and oysly we have compared the results obtainedJer0 and 1

his coplayer. In the present models each player’s incomeig]. Now our analysis is focused on the small-world struc-

comes from PDGs with his four coplayers. During the evo-tyres (0<Q<1) that can well describe the links in social
lutionary process the randomly chosen plag¥ris allowed  and economical systenig3].

to adopt one of théandomly chosencoplayer's(Y) strategy We also study a system where the standard links, defined
with a probability depending on the payoff differend®y  py the bonds between the nearest-neighboring players stay-
—My] as ing on the sites of a square lattice, are temporarily replaced

with a random one at each step of iteration as explained in
(1) Fig. 1. Although this annealed randomness can be introduced

in parallel with the above structural randomness for arbitrary

Q, our analysis is restricted to those cases wRe0 or Q
whereK characterizes the noi$8,17,18. This choice oW  =0. Here the number of coplayers is four as above and the
comprises different effect§luctuations in payoffs, errors in exchange probability? measures the strength of annealed
decision, individual trials, etg. Note that the adoption prob- randomness. FoP=Q=0 this system coincides with the

1
W T exd (My—My)/K]®
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traditional one on the square lattice. Evidently, mean-field D
type behavior is expected =1 (for arbitraryQ). At low P
values, the strategy adoption mechanism prefers the coopera-
tion to defection on the linke@nteracting sites as described
for the traditional spatial mode[$]. Namely, the defector is
punished(receiving reduced incomef one of its coplayer
adopts its strategy, meanwhile both the “ancient and off-
spring” cooperators benefit from the strategy adopfiéh

A straightforward consequence of the above strategy
adoption mechanism is the appearance of thfemmoge-
neous absorbing states where the system stays forever after
having reached it. For the homogenedlistate the players
have the maximal total payoffi{=4 per players This state
is unstable against the defector’s invasion and finally the
defectors dominate the whole territory despite they will re- L ¢
ceive the lowest average payoffnE&0) in the final state. FIG. 2. Trajectories on ternary diagram if the system is started
The homogeneouB state is also unstable because the off-from a random initial state fob=1.5. The solid line shows the
springs of a single loner will occupy all the sites sooner orsystem where all the coplayers are chosen randorRiy1 or
later. Against the loners the cooperators take the advantageean-field limi}. Evolution on the square latticeP&EQ=0) is
of cooperations and they will dominate the system after somdlustrated by the dotted line. For a weak anneal&i=(0.03) or
transient. Consequently, a rock-scissors-paper cyclic domiuenched Q=0.03) randomness the system tends toward a limit
nance will govern the system evolution in a wide range ofcycle indicated by the dashed and dash-dotted lines.
parameter$16—18§.

It is emphasized that the cyclic dominance is not buliltpe jllystrated by trajectories on the ternary phase diagram.
directly into the payoff matrix because the loners play a draw=igyre 2 shows several examples of what can happen when
with either defectors or cooperators. In fact the cyclic featurgarying only the partnership for fixed model parameters. All
of invasion appears at the boundaries separating the homenese trajectories are decorated by noise with an amplitude
geneous domains and the formation of domains is supporte;g:{)mparame to the line thickness fiur= 10P.
by the applied strategy adoption mechanism. In agreement with the expectation the MC simulations

In the stationary state the coexistence of eand C  reproduce the results of the classical mean-field approxima-
strategieswithoutL ) is possible in a small region of param- tjon for P=1. In this case the system tends towards the
eters. For example, the stationary frequency of loners vampiform loner state independently of the initial stfté,18).

ishes continuously when decreasing the valué @r c=0  Thijs means that such a system cannot utilize the advantage
[18]. This transition belongs to the directed percolation uni-of cooperation in the final state.

versality clas§24,25. In fact, the survival of loners requires | the pure spatial versionP=Q=0) the evolution of

the presence of defectors with a sufficiently large frequencyrategy frequencies follows a shrinking spiral trajectory to-
(D feedsL). In the subsequent sections our attention is foyards a fixed point. Around this fixed point the frequencies

cused to those situations satisfying this condition. fluctuate with an amplitude vanishing in the limit— o.
Figure 3 shows a typical snapshot on the spatial distribution
IIl. EVOLUTION OF STRATEGY POPULATION of strategies. This domain structure evolves very fast because

of the motion of invasion fronts, meanwhile its mdstatis-

The Monte Carlo(MC) simulations are performed by tical) properties remain unchanged in a sufficiently large sys-
varying the value ob, Q, or P for fixed ¢, o, andK value as  tem. Unfortunately, our knowledge about this type of states
mentioned above. In this system one of the homogeneous very poor although its geometrical features are already
absorbing states is reached within a short time for small sysnvestigated in some simple models having cyclic symme-
tem sizes(due to the fluctuations To avoid this undesired tries[26—28§.
effect our simulations are carried out on such a large system This self-organizing spatiotemporal pattern is maintained
(consisting ofN=10° player$ where the amplitude of popu- by the cyclic invasion processes. Disregarding the noisy ef-
lation fluctuation is significantly less than the minimum of fects, theD, C, andL strategies follow cyclically each other
the corresponding average value. at each site. These locétyclic) alternations, however, are

The MC simulations are started from a random initial dis-not synchronized in thénoisy) spatial models controlled by
tribution of strategies where the average frequency of eacbnly short range interactions. Similar patterns can be ob-
strategy is 1/3. Sometimes we have checked that the statiogerved for sufficiently low values d® andQ.
ary states and limit cycles are independent of the initial com- Dramatically different behavior occurs when the fraction
positions. During the simulations we have recorded the curef long range interactiongandom links exceeds a threshold
rent frequencieq pp(t), pc(t), and p (t)] and payoffs value. In this case the system evolg@dong expanding or
[mp(t), me(t), andm, (t)] for each strategy. shrinking spiral trajectorigstowards a limit cycle indicated

In this model the sum of the strategy frequencies is fixedn Fig. 2. The visualization of this behavior shows clearly the
[pc(t) + pp(t) +p (t)=1] therefore the time evolution can emergence of globalsynchronized oscillation as demon-
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FIG. 3. A typical snapshot on the distribution of the three strat- 1.0 L5 20
egies on a square lattice fte=1.5. The different gray scales of b

strategies are defined at the top. FIG. 5. Monte Carlo data of strategy frequencies as a function

strated by subsequent snapshots in Fig. 4 of temptation to defect. The solid, dashed, and dotted lines illustrate
S o . the frequency of defectors, cooperators, and loners on a square lat-
_Along t_he limit _cycles f{he_ S‘Tategy frequencies vary PeM-tice. For guenchedtop) and annealedbottom randomness in the
pdlcally W'th a t_yplcal periodic time=50 MCS' Where dur- partnership the closed squares represent the average frequency of
ing the time unit MCSMC steps per particlg®ach site has  jefectors and the open squares show their maximal and minimal
a chance once on average to adopt one of the neighboringyes due to either fluctuation or homogeneous oscillation. Closed
strategies. The periodic time increases monotonously WitRjamonds and triangles indicate the average frequency of coopera-
the amplitude. tors and loners.
The emergence of global oscillatiqas a Hopf bifurca-
tion) is already well studied in thémean-field typgLotka-  (cyclic) three-state epidemiological model on the traditional
Volterra models(for a recent survey see the book by Hof- small-world structures suggested by Watts and Stro@sk
bauer and SigmunfdL]). Furthermore, similar transition was  |n general, the amplitude of global oscillation increases
reported by Kuperman and Abrams{@9] who considered a  with P (or Q). For some region of parameters, however, the
increasing spiral trajectories reach the edges of triafgge
Fig. 2 and the evolution ends in one of the homogeneous
state as will be discussed later on.

B defector

|:| cooperator

IV. AVERAGE STRATEGY FREQUENCIES AND PAYOFFS

For quantitative analysis we have determined the average
values of strategy frequencigg (s=D, C, andL) and pay-
offs mg by averaging the recorded data over a long sampling
time. Besides it we have evaluated the total payoff per play-
ers defined as=ppmp+ pcmc+p M, . During the global
oscillations these quantities are averaged over several hun-
dred cycles. At the same time both the maximum and mini-
mum frequencies of strategies are determined to characterize
the amplitude of global oscillation.

First we consider quantitatively the effect of the tempta-
tion to defect(b) on the strategy frequencies for three differ-
ent partnerships. As mentioned above, in the pure spatial
model (P=Q=0) the three strategies coexist with stationary
frequencies. The corresponding MC data are denoted by

FIG. 4. Typical subsequent patterns occurring along the |imit|ineS in Flg 5 where these results are contrasted with those
cycles shown in Fig. 2. These snapshots are small parts 480 We obtained for a weak quenche@+£0.03P=0) and an-
siteg of a larger “homogeneous” phase. nealed P=0.03Q=0) randomness.
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Note that, in contrary to the naiv expectation, the defector 1.0t} ooAdds
frequency decreases whénis increased although such an g nun"n poooo
external manipulation favors the defectors directly. In the 2 el po”
traditional rock-scissors-paper games the external support o% unu
one of the strategie®r speciesinitiates a(similar) complex & 0.5} Sarassnsansdaia
procesg30,31]. Namely, during the cyclic invasions the sup- 2 ““::::: Aidbbbannn
ported strategy will feed its “predator” and decrease the fre- £ e L MAAAAAA SRR
quency of its “prey” involving a reducedindirect attack 3 o o
against the predator. As a result of all these processes th ¢ LR "Soooomeonng

predator of the favored strategy benefits from this external 0 0.05 010 0.05 0.10 0.15

support. In the present case it means that the loner's fre. 4 -
guency increases monotonously wibh This tendency re-
mains valid even in the oscillating phases.

Figure 5 shows clearly the striking enhancement of the
difference between the maximum and minimum value of
pp(t) whenb>b;. The threshold values are estimated as
b;(P=0.03=1.20(3) and b;(Q=0.03)=1.383). In
agreement with the expectation, similar behavior can be ob-
served when considering the maximum and minimum values
of pc(t) andp, (t) (the illustration is omitted to avoid con- 0 0;,)5 01 0 0.05 010 0I5
fusion in Fig. 5. Evidently, such a characterization of the Q

global oscillation involves some uncertainties and size ef- kG, 6. Effect of random partnership on the strategy frequencies
fects. For sufficiently large sizes, however, the maximumupper plot and average payofidower ploty. The MC results are
(and minimum frequencies become practically independentpjotted as a function o (left) andQ (right) for b=1.5. The sym-
of the system size during the global oscillation. Converselyhols as shown in Fig. 5, while the closed circles shows the total
in the stationary region the maximum and minimum valuespayoff per players. The dotted line indicates the maximum value of
tend towards the corresponding average values when incregsayoff for mutual cooperation, while the dashed line shows the
ing N. loner’s fixed payoff.

At first glance(see Fig. 5 the effects of a weak annealed
and quenched randomness in the partnership seem to IBevalues only the loners can survi¢gee a typical mean-field
similar. In both cases the global oscillation occurs as a Hopfesult in Fig. 2. Evidently, the threshold value®( andP,)
bifurcation wherb is increased. The comparison of these twodepend on the model parameters.
systems indicates thdt;(P)<b,(Q) and the amplitude of On the other hand, when increasing the measure of
global oscillation is larger for the annealed randomness itjuenched randomne$®) the global oscillation appears at
P=Q>0. This means that the variation of the strategyQ>Q;=0.020(2) and it remains stable even on the random
populations is more sensitive to the annealed randomnesgegular graph(limit Q—1). For higherb values, however,
Here it is worth mentioning that similar features were de-the evolution can terminate at one of the absorbing states as
scribed by Zanett¢32] who considered a propagation pro- described above Q> Q,(b,c,o,K).
cess on both annealed and quenctiednregulay small- The rigorous numerical analysis of the second transitions
world networks. is prevented by the finite-size effects and the slow relaxation

To have a better contrast between the two types of rantowards the limit cycle. Another difficulty comes from the
domness now we compare tifeand Q dependence of the absence of a well-defined order parameter characterizing the
strategy frequencies and payoffs for the same system parartimit cycle. We think that furthe(time-consuminy simula-
eters, i.e.b=1.5, c=-0.1, 0=0.3, andK=0.1. For an- tions are required to clarify the main features of these tran-
nealed randomness Fig. 6 indicates the absence of globsitions as well as the derivation of phase diagrams which
oscillation if P<P;=0.011%1), global oscillation occurs if show how the threshold values depend on the model param-
P,<P<P,=0.02%2), and themaximum and minimum eters.
values of defector’s frequency reach 1 and 0 R P,. Previously we have demonstrated that this system on the
More precisely, ifP> P, then the trajectories on the ternary random regular graph can be very well described by a simple
diagram(see Fig. 2 reaches the edges of triangle and thepair approximation[18]. This calculation shows that the
evolution ends in one of the homogeneous absorbing statesiinimum value ofpp (along the limit cyclg vanishes lin-
The ratio of the different terminations depends on the initialearly withb [18]. An extended version of this technique con-
state and the model parameters including the system size. fitms that the introduction of an additional annealed random-
is found that the defectors do not die out first. The defectorsiess P>0 for Q=1) reduces the threshold valsge and
will dominate the system if their predatotnerg die out  shifts the evolution towards the mean-field type behavior.
first (due to the fluctuationswhen the trajectory goes past  The highest average payoff is always received by the co-
the CD edge in the ternary phase diagrésee Fig. 2 Pre-  operators despite their territories are invaded by the exploit-
liminary results on finite systems indicate that the survivaling defectors. One step behind the invasion front, however,
probability of loners increases withand at sufficiently high  the defector’'s income drops to zero decreasing their average

0000000000
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strategy payoffs
o
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payoff. In the present cases the average defector's incomg&here the pairwise interaction between the members is ap-
becomes comparable to the loner's fixed inconmma, ( proximated by an evolutionary PDG. It is found that the
=4¢). The average strategy payoffs are weakly affected byappearance of cyclic invasion between the domains of the
the value ofP or Q (as well as byb). This weak effect can available strategies plays a crucial role in the maintenance of
be considered as a consequence of the mentioned compensaoperation at some level in the evolutionary PDG. In the
tion mechanism of the cyclic invasions. The quantitativevoluntary PDG strikingly different behaviors occur when
analysis indicates the loss of cooperat@rs., m: decreases comparing the spatial model with those satisfying the condi-
monotonously when increasing eitheP or Q. At the same tions of a mean-field approximation. The mean-field model
time the defectors benefit in both cases. The increase of dgredicts that only loners will survive after a transient process.
fector’s income, however, is less than the loss of cooperator§onversely, on the square lattice the coexistence of the three
Consequently, the total income decreases if random links argtrategies D, C, andL) is maintained by the cyclic inva-
applied at the expense of local links. sions resulting in a self-organizing pattern.

Evidently, the strategy payoffs oscillate together with the We have studied the crossover between these two particu-
frequencies during the global oscillations. The increasingar behaviors. For this purpose two types of partially random
amplitude of the global oscillation can cause dramatic conpartnerships are investigated systematically. In the first case
sequences only if the evolution terminates in one of the hotemporary partneréfrom arbitrary distandeare substituted
mogeneous absorbing states. Plots on the left-hand side @fith a probabilityP) for the standard ones defined by the
Fig. 6 exemplify that the loners will prevail the system if hoarest neighbors on the square lattice. Tuning the valie of
P>P;=0.08§3). Inthis situation the total payoff per play- this structure of partnership provides a continuous variation

ers fails to the loner’s incomen, . from the spatial evolutionary PGD to the suitable “mean-

Irlldcotmp?rlson tﬁ the s?#are I?;nce thﬁ quetEch_ed smallie|4 model.” This system exhibits two transition pointsHf
Worlg structure ennances me suriges Wet as e Iegu- i increased. Below the first threshold value<(P,) the

larity) of the domains containing the same strategy inside. e o i
This variation in the geometrical features modifies the inva_self-organlzmg pattern is disturbed only slightly by the rare
{emporary links. Within an intermediate regiorP(<P

sion rates. For example, the enhanced irregularity provide lobal ilati h litude i
an extra support for the defectors against the cooperators zi_PZ) global oscillation occurs whose amplitude Increases

the corresponding boundaries as mentioned above. Appafith P and reaches the saturation valueRgt Above the
ently this effect is similar to the increase laf However, the second threshold value this system tends towards a homoge-
topological variations will affect the invasion rates for other N€ous state providing loner dominance for laRje
boundaries separating and L, or D and L domains. As a Similar scenario is found in the second case when the
result of all these processes, the average frequency and ifilenched random partnership is created before starting the
come of defectors increase monotonously wWii(see Fig. ~evolutionary process. In this case the structure of partially
6). random partnership is constructed on the analogy of small-
For quenched partnership®£0) the strategy adoptions world network[23] conserving the degree of four for each
take place only at the boundaries separating two domaingite. The quenched partnership is able to sustain some advan-
For the annealed randomnesB>0), however, the new tages of the local interaction as discussed above. As a result,
strategy can occur inside the homogeneous domains via the effect of this type of randomness is reduced in compari-
temporary link from arbitrary distance. This possibility can Son to those of annealed randomness. This means that the
be utilized by defectorgoners when invading the domains transitions between the mentioned phases appear at higher
of cooperators(defectorg, meanwhile the spreading of a measure of rar_ldomness. Accordingly, the second transition
single cooperator inside a loner domain is not supported bgan disappear in some region of parametse® an example
the payoff differences. Furthermore, the mutual punishment Fig. 6). In such situations the prevalence of loner strategy
between the parent and offspring defectors vanishes if thi prevented even for the lim@—1.
adoption is mediated by a temporary link. At Idvalues, From the point of view of sociology and economy, our
there is an additional event that provides an extra income folnvestigations give some evidence that the exploiting strat-
those defectors residing inside their domain. Namely, via th€9y (defectoy benefits from the increase of randomness in
temporary links the cooperators may be easily substituted fdihe partnership for the voluntary PDG. Collaterally, the total
those defectors surrounded only by defectors and this solincome decreases due to the enhanced loss of cooperators.
tary cooperator will feed the neighboring defectors until its The undesired effects are moderated significantly by the in-
death. These events together yield that the average defectgpduction of loner strategiand by the mechanism of cyclic
income increases faster withthan withQ. In the multiagent  invasiong. The advantage of “local interactions” in the
PDG the increase ahy, is always accompanied by a higher maintenance of cooperation is destroyed more efficiently by

loss inme andm (compare the lower plots in Fig)6 the annealed partnership rather than by the quenched struc-
ture. The simulations indicate that the efforts for cooperation

and exploitation(defection disappear after an increasing
global oscillation in the strategy frequencies if the measure
of annealed randomness exceeds a surprisingly low threshold
This work is devoted to study the effect of partially ran- value depending on payoffs, noise, etc. Figure 6 shows an
dom partnership on the measure of cooperation in a societgxample where the stationary mean-field behavior is reached

V. SUMMARY
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(only loners surviveif 10% of local neighbors are replaced ferent extensions of the methods developed originally for the
by random temporary partners. nonequilibrium statistical physics.

The above investigations raise many questions, demand
further systematic researches, and encourage us to look for
different mechanisms and conditions that can improve the
cooperation in such types of communities. On the other This work was supported by the Hungarian National Re-
hand, the deeper insight into these phenomena requires dearch Fund under Grant No. T-33098.
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