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Work of cavity formation inside a fluid using free-energy perturbation theory
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A semiempirical approach, based on both the scaled particle theory of hard particle fluids and free-energy
perturbation methods, that predicts the work of formation of a cavity inside a model fluid is presented. The
method is tested using the pure component Lennard-Jones fluid. A good agreement between values obtained via
the theory and molecular simulation is observed even as the size of the cavity becomes larger than the effective
diameter of Lennard-Jones particles. The method also yields reasonably accurate estimates when the pressure
of the liquid is quite low, which is the case for liquids close to the coexistence line, or when the pressure is
negative, which is the case when the liquid is metastable.

DOI: 10.1103/PhysReVvE.69.036105 PACS nuni)er05.70.Ce, 05.20.Jj

I. INTRODUCTION umes. As shown later in the paper, the performance of SPT
with these modifications, however, suffers when the size of
Work of cavity formation inside a solvent is an important the cavity becomes larger than the particle diameter, espe-
term contributing to the solvation free energy of a solutecially when the fluid is near the liquid coexistence line where
particle. Hence, knowledge of the work of cavity formation the pressures are quite low or in the metastable liquid region
is essential when predicting the free energy of formation ofwhere one encounters negative pressures. This conclusion
various structures such as colloids, vapor bubbles, etc., inwas also noted by Henderspal.
side a solvent liquid. For example, the interaction between A recent theory proposed by Lum, Chandler, and Weeks
apolar solutes and water is characterized by the hydrophobijd] (LCW) was shown to be able to overcome some of these
effect. These apolar solutes are usually modeled as hadifficulties. The theory uses a mean-field integral equation
spheres[1], and so become equivalent to cavities placedalong with a linear response theory recently developed by
within the waterlike solvent. A proper understanding of theWeeks and co-workerl&7]. The LCW theory requires that a
hydrophobic effect requires accurate predictions of the solset of integrodifferential equations be solved by iteration to
vation free energies of these cavities in water. obtain the density profile around the cavity. Huang and
The most widely used theory for predicting the work of Chandler{4] applied the LCW theory to predict the work of
cavity formation in a fluid is the scaled particle thed8PT)  cavity formation in a Lennard-Jones liquid. They were able
developed by Reisst al. [2]. SPT, in the original develop- to obtain accurate values of the works of formation of cavi-
ments, predicts the work of cavity formation inside a fluid ties with sizes approaching nearly three times the effective
comprised of hard particles. Within SPT, an interpolationdiameter of a Lennard-Jones particle, even when the liquid
scheme is devised that connects the exact expressions faas close to the coexistence line. Later Katsov and Weeks
cavity formation in the small cavity limit and in the limit of (KW) [8] calculated the work of formation of the cavity for
cavities of macroscopic size. SPT is quite successful in prethe same conditions as those given by Huang and Chandler
dicting the work of cavity formation within hard particle [4] with fewer approximations as compared to the LCW
fluids, even for large cavities and over a wide range of bulkheory. Although good estimates are obtained, both these ap-
densities. This has motivated many researchers to use tloaches require a fair amount of computational effort, par-
formalism of SPT to develop expressions for the work ofticularly if large cavity sizes are to be studied.
cavity formation in fluids with attractive potentials and with-  In an attempt to lessen the computational effort needed to
out hard cores, such as the Lennard-Jones fluid. One of thgenerate works of cavity formation over a broad range of
earlier attempts to modify SPT was by Pierd®]. He de-  cavity sizes and fluid properties, we propose an alternative
veloped a semiempirical approach in which the value of thenethod that is based on an extension of the SPT equations
pressure used in the equations of SPT was replaced by owéa the application of the free-energy perturbation theory for
obtained either experimentally or by molecular simulation.liquids developed by Weeks, Chandler, and Andef€gnAs
The method was quite successful in predicting the work oimentioned earlier, SPT gives an expression for the work of
formation for small cavities. For the case of liquids close tocavity formation inside a hard sphere fluid. In the perturba-
the coexistence line, the method was able to predict a dryingon theory approach, the liquid is treated as a system of
transition[4] at large cavity sizes, which is a lowering of the particles governed mainly by the repulsive part of the inter-
local density near the cavity surface below that of the bulkmolecular potential with the attractive part of the potential
density. Later, Stillingef5] improved upon this approach to acting as a small perturbation. The fluid interacting only
include the variance of density fluctuations within small vol-through the repulsive potential is considered as the reference
system. For practical calculations, the reference fluid is then
mapped onto an equivalent hard sphere fluid. Hence, it seems
* Author to whom correspondence should be addressed. Electronigatural to consider an approach that combines elements of
address: dscorti@ecn.purdue.edu both SPT and the free-energy perturbation theory to predict
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the work of cavity formation inside a fluid with an attractive
potential. This is precisely the approach we develop and dis-
cuss in this paper.

The remainder of the paper is structured as follows. In
Sec. I, we describe our method for predicting the work of
cavity formation in fluids with attractive potentials. In Sec.
I, we test the predictions of our approach against the results
obtained from Monte Carlo simulations of a Lennard-Jones
liquid. A comparison of our predictions with those generated
by other existing approaches is also made in this section.
Conclusions are presented in Sec. IV.

FIG. 1. Two-dimensional view of a cavity of radids and a
Il. THEORY sphere of radiug located at a distanaefrom the cavity center. The
thick solid line is the surface area of the sphere of raditisat is
Consider a system & particles in a macroscopic volume outside the cavity. The functiof(x,r,\), as defined in Eq(6), is
V and at a temperatur€ containing a spherical cavity of the ratio of this surface area that falls outside the cavity to the total
radius\. A cavity is defined as a spherical region inside thesurface area of the sphere. Note thatepresents the distance to
fluid that is devoid of any centers of the particles comprisingparticle 1 from the center of the cavity anddenotes the distance
the fluid. Let p, denote the bulk fluid density ang the  between particles 1 and 2.
pressure of the fluid. Without loss of generality, the voluvhe
is assumed to be spherical in shape having a rdeliwith its ~ form reference fluid. EquatiofB) is simply a definition of
center matching the center of the caviigs\). TheN par- g§,2>(rl,r2,>\). The three terms on the right-hand side of Eq.
ticles interact with each other through a pairwise additive(3) are still unknown and in order to evaluate them we use
potential given byu. The pair potential is divided into two the following approximations. We use the mean-field ap-
parts, namelyy, which is comprised of the steep repulsive proximation forp§M(F;,\) andp§(F,,\), i.e.,
part andu; which comprises the remaining weak attractive

part. LetA be the Helmholtz free energy of the fluid contain- 0 if|f|<x

ing the cavity. With the potential decomposed into two parts, pgl)(r,)\): ) (4)

we have[10] pp otherwise,
A=RAotA;+0(B), 1

andg{?(F;,F»,\) is replaced by the pair correlation function

whereA, is the Helmholtz free energy of the reference sys-for @ uniform reference fluidg®(ry.r2). The net effect of

tem that consists of particles interacting with a potential ofthese approximations is that correlations inside the fluid due
Up only, A, is the first-order contribution to the free energy 0 the presence of the cavity are completely ignored except
due to the attractive potential, and 8= 1/(kT) with k be- for the fact that the density inside the cavity is zero. Despite
ing the Boltzmann’s constant. It should be noted that gth these simplifications, the approa_ch_, developed further beI(_)W,
andA, are functions oh. Following what is known from the yields reasonably accurate predictions of the work of cavity

perturbation theory of uniform fluidkL0], we expresg, in  formation(see Sec. Il o _
an analogous manner: With our chosen approximations, all terms in E8) are

functions ofr;—r, only. Hence, we can integrate over, say,
1 the position of particle 1 and the vector defining the orienta-
Al()\)zif f uy(IF1=F2) (71,72, M)dP1dP2, (20 tion between particles 1 and 2. LE{={r,0;,é,} andf,

-1 1={x,65,¢,}, giving us a total of six variables. Due to
where p{?)(f,F,,\)dFdF, is the conditional probability spherical symmetry we can immediatel_y i_ntegrate over vari-
that a particle is at positiofi; in a volumedf; and another ~ables6; and¢,. The lower and upper limits of the integral
particle is at position’, in a volumedF, inside a liquid ©Overr arex andR, respectively. Using Eq¢3) and(4) in Eq.
comprised of particles interacting with the reference poten(2), and replacingy§”(f1,72,\) by g§’(F1,F2)=go(x), the
tial u, and given a cavity of radius at the origin. Equation limits of the integral ovex are functions of and\. We can
(2) is formally exact. In its current form, however, E¢)  Now integrate over the variablés and ¢, for a givenx, but
cannot be evaluated singsf?)(f;,F,,\) is generally not We also need to account for E@). The integration ovep,

known. and ¢, is, however, equivalent to determining the area of a
To proceed, we first rewritﬁgz)(Fl,Fz,)\) as sphere of radiug that lies outside a cavity of radibswhen
the center of the two spheres are separated by a distance
pgz)(Fl,Fz,A)ngl)(Fl,h)ngl)(Fz,?\)Xgéz)(Fl,Fz,K), (see Fig. 1 In other words, because of E@), 6, and ¢,

®) must be chosen such that particle 2 does not lie inside the
cavity. Letf(x,r,\) represent the fraction of the total surface
where p{!(F,\) is the local fluid density of the reference area of the sphere of radiusthat is located outside the
fluid at positioni” given a cavity of radiua at the origin and  cavity when the two spheres are separated by a distance
ggz)(Fl,FZ,)\) is the pair correlation function of the nonuni- Therefore, Eq(2) can now be rewritten as
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p2 (R w Equation(7) is valid for a closed system, i.e., at constant
Ai(\)= > 477r2j 47rx2F(X,r,N)go(X)ug(x)dx dr, N,V, andT. Hence, when a cavity is grown inside such a
» 0 system, the bulk density of the surrounding fluid changes.

5) For a macroscopic system, the change in bulk density is in-
where significant and hence, the work of cavity formation is well
defined for a given state point characterizedTbgndpy,. In
1 if X<r—A other wordsW,W,, andW; are intensive variable§n that
1 x2+4r2—)\2 for large enough systems these variables are independent of
f(x,r,\)= 3 + —a if r=A<x<r+\., (6) the size of the system as long @gis constanteven though
A,Aq, andA; are extensive variabldglependent on the sys-
1 if r+HN<Xx tem size. In using Eq.(7), the value of the volum¥ has to

) ~ be very large so that the same bulk density is obtained for
It should be noted tha®>\ in Eq. (5). Also, the upper limit  each value of. SinceA, is extensive, the second line of Eq.
of the inner integraloverx) is formally a function ofr and  (7) requires that the difference of two very large quantities
R. The error involved in replacing this upper limit with A ()\) andA,(0) must be calculated. To avoid the numerical

(done for conveniengeshould be inconsequential since We grrors that result in calculating/;(\) via A;(\)—A;(0),
eventually consider differences A&y. Hence, the properties e instead rewritaV; as follows:

of the boundarywhereR>\) should be irrelevant.
Now, the work of formationW, of a cavity of radiush
inside a fluid is the difference between the Helmholtz free
energy of a fluid with the cavityA(A), and that without a Wi (N) = JO
cavity,A(0). Using Eq.(1) we can expres#/(\) as follows:

A ( A,
dX. (8

2 )N,V,T

WA =AR) = A(0)=Ag(X) = Ag(0) +As(N) —A1(0) In this equation, ¢A;/J\)y.v 1 iS an intensive variabléor
=Wpo(N)+W;(\). 7) large enoughV), ensuring that the calculated value\f is
well behaved a¥ approaches a large value.
Wy(N\) in Eq.(7) is the work of forming of a cavity of radius Substitutingp,=N/(V—uv.) into Eq. (5), whereN is the
\ inside the reference fluidV; (\) is the contribution to the number of particlesy(=4mR%3) is the total volume of the
work of cavity formation due to the attractive part of the system, and(=47\3/3) is the volume of the cavity, we
potential. obtain upon differentiating\; with respect ta\ that

64m°p°\* (R =
=LJ drrZJ dx 2f(X,r,N)go(X)uy(X) + 872p?
0

(aAl
V-ve /iy

28 )N,V,T

R ® of ®
X L dr rzfo dx xz(ﬁ) go(x)ul(x)—8w2p2)\2fo dx 2 (X, N, N)go(X)Uq(X). 9)

X,r

An important approximation used while deriving B§) is 37 39(2— 7)(1+ 7)
that gy is kept constant. In general, a changeNnwhile BWp(N)= - t+ t?

keepingN, V, andT constant alters the bulk density of the n 2(1-7)?

surrounding fluid, thereby affecting the value g@f. Also, (14 n+ 77— 0

while evaluating Eq(9), R has to be sufficiently large such + i N t3=In(1—7), (10
that the values calculated from the obtained integrals corre- (1-7)°

spond to cavity growth within a bulk fluid. In our calcula-

tions, the value oR chosen was equal to 100 wheret=2A/d— 1. For cavities with radii smaller than @r5

In order to calculat&Vy(\), we map the reference system the exact relation is usg@]:
to a hard sphere fluid of density, and use an expression for
the work of cavity formation within a hard sphere fluid ob- BWo(\)=—In[1—87(\/d)3]. (11
tained by Matyushov and Ladanyil]. Incorporating the
more accurate Carnahan-Starling equation of Sth# for In the above equations; [ =mpd®/6] is the packing frac-
hard spheres into the framework of SPT, the work of formingtion.

a cavity with radius\>0.5d within a hard sphere fluid, As the reference system is mapped onto a hard sphere, an
whered is the diameter of the hard sphere particle, is givenexpression for the effective hard sphere diameter of a particle
by [11] is required. The mapping scheme used for determining the

036105-3



S. PUNNATHANAM AND D. S. CORTI PHYSICAL REVIEW E69, 036105 (2004

hard sphere diameter is described below. The pressure of sity far away from the cavity surface equal pg with a
the fluid, P, with both repulsive and attractive interactions, assmaller number of particles that would have been required in
given by the van der Waals—type equation, is a constant volume simulation.

The work of cavity formation was determined from the
following relation[2,13]:

P=Po+27-rp2focrzgo(r)u1(r)dr, (12
0 W(\)=—kTIn[Pr(\)], (15)

wherePy is the pressure of the reference fluid. Normaly,
and g, are estimated to yield a prediction & Here, the

vglues ofP andg, are .aSS“”.‘ed to be knovenpriori, pos- directly calculated from a standard MC simulation, in which
sibly from molecular simulations. HencB,andg, are used 4 probability of successfully inserting a cavity of sizés

to evaluateP,. Then, an appropriate equation of state of agyetermined. At moderate to high fluid densities, however, the
hard sphere fluid is used and a valuedathosen so that the  .p4qce of inserting a cavity in whiot>c becomes low, and

pressure of the hard sphere fluid matctigs It should be  hq estimation of RN) becomes statistically poor. To over-
noted that Eq(12) is obtained from Eqgs(1) and (2) by  come this problem, an umbrella sampling schefd] is
differentiating A with respect toV after neglecting the gmpioyed that favors the formation of large cavities. A cavity
changes irg, due to the change in density. We use the act 5 given size is first introduced into the simulation cell and
curate Carnahan-Starlin2] equation of state for determin- e mains fixed at the center of the cell. In addition to the
ing Po. Finally, with d determined, aniiVo now known, the  giandard MC displacements of the particlsl particle
work of forming a cavity of radius\ is then obtained from  oyes that bring a particle center into the cavity are re-
Eqgs.(7)—(9). This method of determinind is different from jected, another MC trial move is implemented that attempts
the one given by the Dblip function expansion as used DY, change the radius of the cavity while particle positions are
Weeks, Chandler, and Andersg9]. This was necessary t0 he|q fixed(an attempted increase inis rejected if an exter-
get consistent thermodynamics in E@4) which is ex- | particle center is found within the cavity surfaca bi-
plained below. The difference between the valuesdds  4ging potentialy is added to the standard MC sampling
obtained from these two methods is, as shown in Sec.lllgcheme to ensure that large cavity sizes are obtained during
very small. _ _ the simulation. Since the resulting ensemble averages are
Equation(9) can be examined for self-consistency whengpiained within the biased simulation, the results must be
the cavity approaches macroscopic sizes. We know in thg,rected at the end in order to obtain the ensemble averages
limit of A—c2, i.e., the cavity becomes a hard wall, thal  for the original, unbiased system. Good statistics for the bi-
ased averages will be obtainedi#if\)=—W(\). Unfortu-

where Pr{\) is the probability of successfully inserting a
cavity of radius\ at a given point in the fluid. PK() can be

3
WOn) = 4\ p+4w>\2yx<l—2—5 N (13) n_ately, P is not knowna priori. Thus,_a series of piaseq
3 A simulations is run for several successive windows in which

. . . the cavity radius is restricted to remain within some range,
whereys, is the bo_undary tension betwe_en _the_bulk fluu_j andm\_ The work of insertion is calculated during each window
a hard wall, ands is the Tolman length indicating the first- 4 than curve fitted to a polynomial i This current esti-
order correction to th_e bqundary tension due to curvature. IMate of the work of cavity formation is extrapolated and
other words, Eq(13) implies that used as an estimate for the biasing potential within the next

simulation window. The size of the window is then adjusted
1 ﬂvz (14) until a uniform distribution of the cavity radii was obtained,
A7N2 O\ ' thereby ensuring statistically good estimates of the biased
averages. The work curves of each window are finally
Substitution of Eqs(7)—(11) into Eq. (14) does in fact lead “linked” together by adjusting the value of the constant in
to Eq. (12), thus satisfying the self-consistency needed forthe curve fit to obtain the total versus\ profile.
the expression of the work of cavity formation inside a fluid The number of windows required to obtaill versusi

lim
A—o0

at a pressuré. increases ak increases. In addition, the rangeosampled
within each simulation windowA\, decreased with an in-
IIl. COMPARISON WITH MOLECULAR SIMULATIONS crease in\. ThUS, the number of simulation windows rapldly

increased as larger cavity sizes were studied. In conjunction

In order to evaluate the performance of our method, waith the relatively large system sizes used in this study, the
compared the predictions from EdZ) to (11) to the work of  rapid increase in the number of windows prohibited us from
cavity formation calculated directly from molecular simula- determining the work of forming cavities of radii greater
tions. The reversible work of forming a cavity was calculatedthan three particle diameters.
via Monte Carlo (MC) simulations within the isobaric-  Works of cavity formation were obtained for the Lennard-
isothermal ensemble. The center of the cavity was kept fixedones fluid, in which the Lennard-Jones potentig) be-
at the origin, or the center, of the simulation cell. The prestween two particles separated by a distanée given by
sure of the fluid was chosen such that the bulk density of a 1 .
uniform fluid at the given temperatur€ is equal topy,. z> _ Z)

r r

. . N u(r)y=4e
Constant pressure simulations allowed us to maintain a den- La(r)

: (16)
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FIG. 2. Pressure-temperature projection of the phase diagram of FIG. 3. Work of cavity formationW, plotted as a function of the
the Lennard-Jones fluid with the potential truncated and shifted at Bavity radiush at T*=0.8, P*=0.9. The bulk density}: of the
distance of 4.8. The solid line is the binodal and the dashed-dot;iq is 0.8473. The circles represent calculations from Monte Carlo
line is the liquid spinodal. The lines were calculated from the equagimylations, the solid line is the prediction from our method, the
tion of state given by Johnscet al. [15] The circles represent the dotted line is the prediction from Stillinger's methf], and the
points at which Monte Carlo simulations were performed to deteryashed-dot line is the prediction from Pierotti's mettiad
mine the work of cavity formation.

, . ) , largest cavity that can be inserted into the metastable liquid
whereo is the finite distance at which the potential goes 10js clled the critical cavity. Any cavity larger than the critical
zero ande is the value of the minima in the Lennard-Jones cayity when placed inside the superheated liquid, causes an
potential. The potential was also truncated and shifted at fhstability that leads to phase separati@e., the liquid be-
distance of .. The truncated and shifted potential eliminatedginS to phase separate towards the vapor phases insta-
the need to apply long-range corrections. Long-range corregs;jiy. which has been shown to be a true thermodynamic
tions may be applied only if the density of the fluid is uni- jhstapility [17], prevents us from calculating work profiles
form beyond the cutoff radius. Since our simulations containyg, cavities larger than the critical cavity. FoF =0.8 and at
a cavity, necessarily generating an inhomogeneity within th‘f:)ressuresP* —_02 andP*=—-0.3757. the radii of the
simulation cell, long-range corrections would not be approitical cavities are 6 and 2.1, respectively[16,17. At
priate. The resulting potentialused for simulation was then 1+ _ g andP* =0.0 the liquid is also superheatétie co-

equal to existence pressure B .= 6.174x 10" 2 [15]), but the value
U(F) —uLo(ro) if r<r of the critipal cayity is expeedingly Iarg[d(lizlﬂ.. _
u(r)= L Liel ¢ 17) Each simulation consisted of an equilibration period of
0 if r>re. 10000 MC cyclegtrial moves per particlefollowed by a

production run of 100000 MC cycles. The system size of

Figure 2 displays th®-T projection of the phase diagram each simulation was at least 3000 particles. The number of
of the Lennard-Jones fluid with the potential given by Eq.particles within the simulation cell for each window was
(17). The cutoff distance . is equal to 4. Figure 2 also constantly adjusted to ensure that the density profile far from
includes the superheated liquid spinodal. The binodal and thghe cavity surface approached the bulk density at least near
spinodal were obtained from the equation of state of Johnsothe edge of the simulation cell. Also, since the interparticle
et al.[15]. The critical parameters of this fluid are estimatedpotential was truncated at 4rDan initial simulation box size
to be TX =kT/e=1.246p* =po>=0.308, andP} =Pco%/e  of twice the sum of the cavity radius and &.5vas used.
=0.118. Comparisons between the values of the work oBulk densities were estimated from the equation of state of
cavity formation as predicted by our method and by molecudJohnsonet al. [15]. An evaluation of the density profile
lar simulations were done at a temperatlife= 0.8, close to  around the cavity for various cavity sizes revealed that our
the triple point temperature, and at four separate pressureshoice of system size within each window was appropriate.
namely,P* =0.9 (stable liquid away from the binodalP* Figures 3—6 show a comparison of the predictions from
=0.0 (liquid close to coexistengeP* = —0.2 (slightly su-  our method with those obtained from Monte Carlo simula-
perheated liqui andP* = —0.3747(superheated liquid ap- tions. The figures also include the predictions of the suitably
proaching the spinodalThese state points are also shown inmodified SPT relations of Peiroft8] and Stillinger{5]. Both
Fig. 2. Pierotti's and Stillinger’'s methods require the specification of

In the case of superheated liquids, previous studiesn effective hard sphere diameter. We chose this quantity as
[16,17] have shown that there exists an upper limit to theequal to the maximum distance for which the radial distribu-
size of a cavity that can be inserted into the liquid. Thetion function of the Lenanrd-Jones fluid is essentially equal
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W(A)e

FIG. 4. Work of cavity formationW, plotted as a function of the FIG. 6. Work of cavity formationyV, plotted as a function of the
cavity radiusx at T*=0.8, P*=0.0. The bulk densityp} , of the cavity radiusk at T* =0.8, P* = —0.3757. The bulk density; of

fluid is 0.7803. For an explanation of the symbols and lines see Figy, f,id is 0.74. For an explanation of the symbols and lines see

3. Fig. 3.
to zero. For the range of densities at which the calculations o it <ol
were performed, this quantity remained almost constant and e~ uy(re) hr=evo
was chosen to be equal to 0.88F his criterion was used by uy(r)=1{ u(r —uu(re) if 2%<r<r. (19
Stillinger in his paper when predicting the work of cavity 0 it r.<r
<r.

formation inside water. Also, Stillinger's method requires the

;/;;léeTogisthvealizn;iﬁhtee?;gne?;t}glilﬁ/I'iuédévi%%rsénr:er'The radial distribution function of the uniform reference
after. interpolation from thepdata given irE1 Hdlc;onm al fluid, go(x), needed to evaluate E¢Y) and determine an
[18], was taken to be 0o, effective hard sphere diameter via E#j2) was calculated by

In order to use Eq(9), we divided the potential using the Monte Carlo simulations of a uniform fluid interacting \ig

" only. The values of the effective hard sphere diameter, at the
prescription of Weeks, Chandler, and Ander$8hwhereby various state points for which calculations were performed in

this paper, are shown in Table I. The values vary from
_ (18 0.992r to 1.005s. The values ofl given by the blip function
0 if 2Y8o<r, expansiori9] vary from 1.02r to 1.02%, which are not very

different from our values.

90 T T T T T As can be seen from Figs. 3—6, the three methods, on
comparison with the simulation results, perform quite well
when predicting works of cavity formation for radii less than
o. The predictions of the three methods begin to differ, how-
ever, when cavities exceed two to three times the size of the
Lennard-Jones patrticle diameter. On comparison with simu-
lation results, our method consistently outperforms both the
Pierotti's and Stillinger’'s methods. Figure 3 shows the work
profile for a cavity inside a stable liquidP¢ =0.9) as a

u(r)+e if r<2¥o
Uo(r)=

80F

70F

60F

W(h)e
3

40
30 TABLE . Effective hard sphere diametdrof the reference fluid
as calculated from Ed12) for the various state points discussed in

20f the paper.

T p* Py relo dlo

0 0.5 1 1.5 2 25 3 0.8 0.9 0.8473 4.0 1.005
Mo 0.8 0.0 0.7803 4.0 1.001

FIG. 5. Work of cavity formationyV, plotted as a function of the 0.8 -0.2 0.7628 4.0 0.998
cavity radiusk at T* =0.8, P* = —0.2. The bulk density} ofthe 0.8 -0.3757 0.74 4.0 0.996
fluid is 0.7628. For an explanation of the symbols and lines see Fig).85 0.022 0.7 25 0.992
3.
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function of the cavity radius. Although the predictions of the 70
three methods are in a good agreement with values calcu
lated from Monte Carlo simulations, our method provides the 6o}
closest agreement. When we consider a liquid close to the
coexistence line, large differences between the methods be sof
gin to develop. FoiT* =0.8 andP* =0.0 (Fig. 4), the work
of cavity formation for a cavity of radius®@ as calculated a0k
from simulations is~134T. Pierotti’'s and Stillinger’s $
methods underpredict this value bykdlDand 2&T, respec- ol
tively. Our method predicts a value of 1B which only
differs from the simulation result by 4%. Similar trends are
observed for the results shown in Fig. 5, which contains the
work profiles for a negative pressure liquidP{=—0.2).
This negatively pressured liquid lies in the two-phase region
of the liquid-vapor phase diagram and is metastable.

In the case of Fig. 6, which also includes results for a ® 05 y 5 > 25 3
metastable liquid under negative pressulRg € —0.3757), Mo
the predictions from our method match the simulation results

q_u'te well up toa CaY'ty of rad|u§ 201 Undgr these condi- formation, W, from our approaclfsolid line), the LCW [4] theory
tions, 2.1r is the radius of the critical cawt[@ﬁ,lﬂ. (The (dashed ling and the KW approaclidotted ling with the those
current methods are not capable of determining the size qfy|cyjated from Monte Carlo simulatiotsircles. The data for the
the critical cavity, and so yield predictions beyond the critical| c\y theory prediction are taken from Fig. 2 of RE4] and that for
to 1.60 and is certainly more accurate than that of Pierotti.a temperature™ =0.85 and at a pressufe* =0.022. The bulk
Stillinger’s method, however, yields values that are compadensity of the fluid igj =0.7. The Lennard-Jones potential for this
rable to our method, though this is most likely a fortuitouscalculation has been truncated and shifted at a distance of 2.5
occurrence(at other negative pressures not far frdi=
—0.3757, Stillinger's approach does not match the simulaperforms better at intermediate cavity rathietweeno and
tion results as well 20). The KW approach which is more rigorous than the
An important point to be noted is that the predictions of LCW approach also performs better at intermediate cavity
Pierotti and Stillinger can be improved by choosing a differ-radii but it starts deviating from the simulation results at a
ent value of the effective hard sphere diameter. Neverthelessmaller radiug1.50) as compared to our approach. Although
the optimized value of the effective hard sphere diametewe have not extensively compared the performance of these
varies according to the temperature and pressure, and we dlgee approaches, Fig.(@long with Figs. 3—pdoes indicate
unaware of any method to determine this optimized diametethat our approach provides a reasonable alternative method
a priori. to estimating works of cavity formation, even though the
The eventual appearance of a drying transition about amount of rigor incorporated is less than the LCW and the
large enough cavity within a superheated liquid causes th&W approach. In addition, the possibility of improving our
work profile to exhibit a change in curvature as the radius ofmethod does exist through the incorporation of the higher-
the cavity approaches the critical size. Each of the threerder terms of the perturbation expansion in E).
methods presented yields a change in curvature at low and We conclude this section by considering the relative mag-
negative pressures, but this is a consequence of the limitingitudes ofW,, the contribution from the reference system,
form of W, where the leading order term in EQ.3) is pro-  andW,, the contribution from the perturbation. Both of these
portional to the pressure. Each approach is unaware of thierms contribute to the work of cavity formatiow [see Eq.
limit of stability that appears at the critical cavity. Hence, the(7)]. Figure 8 shows a comparison @, and —W, (W; is
changes in curvature exhibited by such methods do not neciegative since it is the contribution from the attractive po-
essarily coincide with the simulation results. Despite thistentia). Surprisingly the two terms are of equal order in
our method still yields reasonably good estimates of thenmagnitude, thoughV, is always greater than W;. In other
work profiles at negative pressures. words, the right-hand side of E¢7) is the difference of two
We also compared the predictions of our method withlarge positive numbers. This makes the close agreement be-
those from the LCW theory and the method of KW. Thesetween our method and simulation all the more striking, given
results are shown in Fig. 7 fdP* =0.022 andT*=0.85. that in deriving Eq.(9), we have completely ignored the
The data for the LCW predictions were obtained from Fig. 2contributions to the free energy due to density correlations
of Ref. [4] and for the KW predictions were obtained from arising from the presence of the cavity inside the fluid. In
Fig. 7 of Ref.[8], where the Lennard-Jones potential wasaddition, the fluid structure of the reference fldlrely re-
truncated and shifted at a distance of®.%5he performance pulsive potentiglin the presence of a cavity is very different
of our approach is comparable to both of these approachefom (especially at low and negative pressyrdee profiles
The LCW predictions are closer to the simulation results athat develop around a cavity within the Lennard-Jones fluid
large cavity radii &20). On the other hand, our approach [7] (comprised of both repulsive and attractive fopcest

10p

FIG. 7. Comparison of the predictions of the work of cavity
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700 T T T T T develop around cavities appears to play a minimal role in the
predicted values of the work of cavity formation generated
by Egs.(7) and(9), at least up to cavity radii that are three
times the diameter of the fluid particles.
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IV. CONCLUSIONS

We have presented a semi-empirical method for calculat-
ing the work of cavity formation inside a fluid, specifically
for fluids that contain an attractive term in their intermolecu-
lar potential. The expressions were derived by combining
SPT and the free-energy perturbation theory of Weeks, Chan-
dler, and Andersefi9]. For the reference system, we used
expressions obtained from SPT. In calculating the perturba-
tion term, we invoked the mean-field approximation, ignor-
ing the density correlations generated inside the fluid due to
the presence of the cavity. The predictions of our method
matched simulation results quite well, yielding better predic-

FIG. 8. Comparison of the relative magnitudes of the referencgjons than the methods of Pierof8] and Stillinger[5]. Our
term W, and the perturbation terW, that both contribute to the  method is also comparable to the LCW and the KW methods
total work of cavity formation af’* =0.8 andP* =0.9. The bulk (gt |east for the state point considered heam approach that
density of the fluid ipj =0.8473. The solid line represe, and  jncorporates more rigor by taking into account the structure
the dotted line representsw. of the surrounding fluid. Overall, our method appears to be

) .. valid over a broad range of conditions, even performing well
low pressures, for example, the Lennard-Jones fluid exhibitg e the fluid is metastable. Moreover, although the pres-
a drying transition when the cavity radii exceed abouvl.0 g e of the fluid and the radial distribution function for the
The reference fluid, which is similar to a hard sphere fluid in,yitorm reference fluid are needed as input, these quantities

that it consists of steeply repulsive intermolecular forcesye siraightforward to obtain from molecular simulations.
only, does not produce a drying transition at any cavity size

(the local density at the cavity surface always exceeds the ACKNOWLEDGMENT
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