PHYSICAL REVIEW E 69, 036102 (2004

Traffic on complex networks: Towards understanding global statistical properties
from microscopic density fluctuations
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We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense
traffic of particles on scale-free cyclic graphs. For a wide range of driving Raths traffic is stationary and
the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two
hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high
traffic density and at the jamming threshold. The degree of correlations systematically decreases with increas-
ing traffic density and eventually disappears when approaching a jamming dBgsidready before jam-
ming we observe qualitative changes in the global network-load distributions and the particle queuing times.
These changes are related to the occurrence of temporary crises in which the network-load increases dramati-
cally, and then slowly falls back to a value characterizing free flow.
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[. INTRODUCTION tions of particle transit times exhibit power-law dependences
with the exponents depending on the network structure.
Microscopic dynamic processes and emergent statisticdPther theoretical studies capture the essential properties of
properties are two facets of complex dynamic systems thadhe jamming transition and self-tuned driving on simpler to-
are closely connected, and for many systems understandiiplogies, such as hierarchical trefds3] and square lattice
their interdependence is important for both prediction and“0d9|3[14115- _ - .
strategic planning. Usually detailed information is available ~Due to finite processing capacities of nodes traffic queues
about either the microscopic dynamics or the statistical prop@ccur especially at hub nodes, depending on the intensity of
erties, but seldom both. Prominent examples include traffid@ffic. This means that the transit time for particles depends
noise on communication networ{d,2], noisy signals in not just on the distance between the sendmg. and receiving
driven disordered and self-organized systei8k and the node t_)ut.alsg on the geometry a'."d _Iocal traffic denkly
time series of price fluctuations in financial markpté On Th_e.dlstnbuuon of t_ransllt tlmes.|s important for network
- - efficiency and for estimating the risk of transport delay. For a
the other hand, emergent behavior in a statistical system on

: . - gj’}ven graph and a search algorithm, a fundamental quantity
macroscopic 59?"? can be described (Bablg statistical ._that contributes to the emergent transit time is the waiting
laws, their sensitivity to relevant parameters of the dynamic$; .« that a particle spends in queues along its path

can be studied and the type of global behavior may be pre- |, Ref [5] we considered different network topologies
dicted. In this work we use a recently proposed md8¢to 504 showed how the dilute, sparse topology of the network
study both the microscopic fluctuations of traffic time seriesiyflyences the transport on it. Different search algorithms
on complex networks and the statistical properties of transpere employed with low density traffic to quantify the net-
port of individual particles. These particles can be thoughtyork’s performance. We have found thatlow density traf-
of, e.g., as information packets in the Internet or organizafic is stationary;(ii) away from the jamming transition the
tions, or proteins transported on the cytoskeleton of a celldistribution of transit times is power law due to the topology;
We study how the statistical properties, both at a microscopidiii) the waiting times are small for low traffic densitgiy)
and macroscopic levels, vary with the particle creation ratehe Web-graph topology of a scale-free directed network
R, i.e., traffic density. with closed loops and a next-nearest-neighbor search strat-
A new class of networks, called scale free, has been reagy results in efficient traffic with a large output rate which
ognized as the most commonly observed network structuraytilizes the hubs effectively. Consequently, compared to
which appears to be also the most statdee, e.g., Refs. many other topologies the Web graph can support a huge
[6,7]). In particular, communication networks such as thevolume of traffic before getting jammed.
Internet and the Web are scale-free networks with both in- In this paper we report on a complementary study. We
coming and outgoing link connectivity distribution obeying a consider the Web graph, and analyze the waiting time statis-
power law with significant clustering and link correlations tics and the time series of network load, which is defined as
[8—10. A model graph with these properties, which we callthe number of particles on the network at a given time, as the
“Web graph” was recently proposed1]. For study of par- traffic density is varied by increasing the creation or posting
ticle traffic on complex networks we recently introduced arateR. We also consider correlations in the time series of the
model of simultaneous random walks on scale-free cyclimetwork’s activity, i.e., the number of simultaneously active
and tree graph§5,12]. In low particle density the distribu- nodes in the network. The queuing of particles on different
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node as a measure of betweenness was found to have a
power-law decay21] and the degree of clustering and the
correlations between in and out connectiiB0] resemble

the properties measured in empirical studies of the Yedb

and the Internef10].

An important feature of the graph topology is the occur-
rence of two types of hub nodélsnown as hub and authority
nodes in the real WebThese are nodes with large incoming
link connectivity and nodes with large outgoing link connec-
tivity. These two hubs have many links between them and
impose what we call a superstructure which has a strong
influence on the transport processes on the gf&ph

We grow the graph to a given siz& &L =1000 nodes
and linkg and fix the connectivity matrix after growing. We
then model the traffic of particles on that gra#h12. Par-
ticles are created with a given rae(particles per time in-
terva) at randomly selected nodes and each is given a ran-
domly selected destination node where it should be
delivered. We select these pairs of nodes within the giant
component of the graph. Particles move through the graph
simultaneously searching for their respective destination ad-

FIG. 1. (Color onling Web graph consisting oN=L=1000 dresses. To navigate particles, each node performs a local
nodes and links. search in its next-nearest neighborhood, and if the particle’s

destination is found within the searched area, it is delivered
nodes is a consequence of a self-regulatory traffic of mututo the node’s neighbor linked to the destination node. Alter-
ally interacting random walks sent to different specified desnatively, the particle moves to a randomly selected neighbor.
tinations on the graph. Throughout the paper we use the terfhis search algorithm was showB] to perform especially
load in a functional sense, as defined above. It should not bwvell on the Web graph, where it can effectively make use of
confused with a topological meaning which is sometimeghe hub nodes. In particular, it was shown that it performs 40
used for the number of minimal paths through a ngg or  times better than a random diffusion on the same graph and 8
betweennesgl7]. times better than the same algorithm on a scale-free tree

The paper is arranged as follows. In the following sectiongraph with the same in-link connectivity.
we describe the model in detail, in Sec. Il we consider the Additional rules are necessary to regulate the traffic. We
correlation in the load time series, and in Sec. IV the distri-assign a buffer Kl=1000) to each node in the network.
butions of waiting times and network loads are presented. INVhen the buffer at a selected node is full the node cannot
Sec. V the work is summarized. accept more particles and the particle waits for the next op-

portunity to be delivered. Due to the simultaneous movement
of particles queues can be formed, especially at nodes with
Il. GRAPH STRUCTURE AND TRAFFIC RULES large connectivity. Here we apply the LIF@st-in-first-ouj
queuing discipline at each queue. When a particle arrives at
its destination it is removed from the network. For simplicity,

originally intended to model the evolution of the World Wide N this work we allow particles to move along outgoing links
Web. It belongs to a class of models with preferential attach&1d against incoming links with equal probability. Details of
ment of node$6,7]. In addition to preferential attachment of (€ implementation of the numerical code are given in Ref.
newly added nodes, the rules of Web-graph evolution includézo]'
rewiring of preexisting links while the graph grows, which IIl. CORRELATIONS IN NETWORK-LOAD TIME SERIES
results in an emergent structure with inhomogeneous scale-"
free ordering in both incoming and outgoing links and a Each particle follows its owiirandom path from the ori-
number of closed cycles. An example of such an emergerin to its destination. The total time spent along the path, the
structure of a Web graph is shown in Fig. 1. transit time depends on both the topology and the time the
A detailed characterization of the topology of this Web particle spends waiting in queues along that path. Statistics
graph, both on a local and a global level, together with aof transit times on different topologies with different search
discussion of the origin of scaling laws in this system, can bealgorithms were studied in Rgf5]. With an efficient search,
found in Refs[11,18—-2]. The observed power-law increase transit times can be short, however, some particles get into
of local connectivity in timg19] can be linked to the power- remote areas of the graph, from which it takes a long time to
law distributions for ingoing and outgoing links, each with escape; this results in a power-law distribution of transit
their own scaling exponen{d1]. Other topological proper- times.
ties which are relevant for traffic on the graph were also With increasing posting rates the interaction between par-
studied, in particular the number of paths through a giverticles, i.e., queueing in hubs, becomes more important and

The Web graph is a directed graph grown with micro-
scopic dynamic rules proposed in R¢fll], which were
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FIG. 3. (Color online Power spectrum of network’s activity
Frequency (number of simultaneously active node®r different values of
posting ratesR. Data are log-binned and the upper two curves
shifted vertically for clarity of the plot. Full lines have slopes
—1.2, dashed-dotted line 1.1, and two dotted lines are indicating
two slopes of—0.36 and 1.36.

FIG. 2. (Color online (a) Network-load time series in transport
on the Web graph for two different posting raRsepresenting the
stationary free flow R=0.1, bottom ling and flow with a tempo-
rary crisis R=0.3, top ling. (b) Power spectrum of the load time
series forR=0.005, 0.1, 0.2, 0.3, and O(#ottom to top. Data are  tence in the lowR regime may be attributed to the regulatory
log binned. Fit lines have slopes=1.18, 1.20, 1.30, 1.76, and role of the superstructure which is associated with the two
1.98. Errors are withint0.02. hub types in the network. When the particle density is high,

queues are formed at these nodes and the queuing patrticles,
results in longer queuing times. In effect, the number of paralthough still in transit, are not contributing to the random-
ticles on the network fluctuates in time in a way that is char€ss of the load. Moreover, when a particle queuing at a hub
acteristic of the network structure and the search algorithmr®tS its turn to move, it gets quickly to its destination, which
and depends on the posting rate and the buffer capacity. wg often found in the ne>.(t-nearest neighborhood surrounding
find that for a wide range of posting raté&sthe traffic is ©n€ Of the hubs, and is then removed from the network.
stationary with the average network outgatimber of par- ~Nother situation appears when the queue at a hub node is
ticles delivered per time stgpalancing the input ratg. The Ul Then the dynamics is reduced @me particle out, one
load fluctuates around an average value, which increasd@ticle in, which entirely destroys the correlations in the
with R. Eventually, for largeR>R, a permanent increase in t_ransp_ort. In the jammed flow regime the temporal correla-
the number of particles occurs, indicating that the network idions in the network load are entirely logeflected ¢~2
jammed. In Fig. 2a) we show an example of the network- within the error bars

load time series for two different posting rates. For low post- IThus thehm:;]lin propertir(]ag of the t'rafﬁand jamming arfe h
ing rates queuing effects are small and transit times are gefi¢/at€d 1o the hubs and their associated structure. To further

erally short. Consequently, the total number of particles Orinvestigate this effect, we have also studied how the activity

the network fluctuates around a small average value. For § distributed over the network. In Fig. 3 we show the power
much larger posting rate the flow is still stationary but theSPeCtrum of the number of active node®nempty nodgs

average number of particles is also much higher. In addition©" Varying posting rate®. In the free flow regime at low

the character of the fluctuations changes, with occasiond°Sting rate the time series of the network's activity is also
dramatic increases in the load, which then dissipate over gntipersistenwith a well defined slope in the power spec-

relatively long time period. We considered very long time rUm- For intermediate posting rates, where particle density
series in order to verify that the particle flow which contains!S Increased and temporary crises occur in the flow, a new

these temporary crises is in fact stationary. When the postin radient starts to _develop i_n the '°W. fr.equency range. Even-
rate is increased over a certain vallR<0.4 in this particu- tually, at high particle density, two distinct types of behavior

lar case the network load exhibits a systematic increase2CCUr for the low and for high frequencies, indicating that a
part of the network has entered the jammed regime.

signaling jamming in the network.
The power spectra of the network-load time series are
shown in Fig. 2Zb) for several values oR. When posting
rates are such that stationary flawith or without crise$
occurs, the work-load time series exhilgihtipersistence The dependence on posting rates of the temporal fluctua-
with the exponenip of the power spectrun$(f)~f~¢in-  tions in the network load and activity, as observed in the
creasing withR from ¢=1.2 towards¢p=2. This antipersis- preceding section, is also found in the averaged statistical

IV. WAITING-TIME AND NETWORK-LOAD
DISTRIBUTIONS
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e ‘ The distribution is taken from particles which move
10 - ®—@ R=0.01 E L . . .
H f\: . B 55 o within a total time window of up to 200000 time steps.
AA e . - . S

a A A4 02 When crises start to occur the waiting time distribution

100 p A A — 03 1 changes from simple power law to a generalized Cauchy-

- £ P = g&gk type distribution with a slope varying again with the posting
3 0 L \ e ] rate R. There is robustness in the system in the sense that
% , | Wiy minor changes to the queuing discipline or the buffer sizes
E— ““m Ny do not lead to a qualitative difference in these results. How-

107 ) ‘Aﬁ‘ & ever, if the queuing discipline is changed from LIFO to FIFO

b - (first in first ouy then the power dependence of the waiting-

i ‘ T ‘ o time distribution disappears. In particular, for the range of
10° 10’ - 10° 10° posting rates below jamming, for FIFO queuing a gap in the

w waiting-time distributions appears, separating the power-law-

FIG. 4. (Color onling Probability density function of the net- !Ike t.a" for Iong waiting times at hubs, from the short Wa't'

) X ! - .. ing times, which are found at most of the other nodes in the
work load in the stationary regime with free flow and flow with twork. In LIEO ina th iting ti taai dei
temporary crises. Data averaged over 100 network realizations al orx. In gueuing the waiting time at a given node 1s
are log binned. ynamically conditioned by incoming packet streams from

all neighboring nodeafter arrival of the packet. In contrast,

properties. The probability density function of the overall much weaker dependence on the local network structure is

I : . : incorporated in the FIFO-queuing mechanism, where the
network load, shown in Fig. 4, is obtained from a histogram .. . . .
from time series like those in Fig. 2 and averaging over awaltlng time is exactly given by the queue length of that
number of network confi urationsg. 9ing hodeat arrival of the packet, independently of how long it
. 9t : . took the network to build the que(iB]. However, the transit-
At very low traffic density queuing occurs rarely. For in-

termediate densities queuing becomes more important ar;[Hne distribution, which integrates waiting times over many

consequently the load distribution gets a tail. The large overEIOdes along the packet trajectory on the network, remains a

all load appears—although with smaller probability—to beg;)evv;ESIaiNz]for both queuing mechanisms at low and moder-
related to the volatile fluctuations discussed above. In addi- T
tion, the dominant part of the distribution becomes of log-
normal type with the mean shifted towards higher values V. CONCLUSIONS
with increasedr. On approaching the jamming limit the tail
of the distribution becomes more pronounced, suggesting We have performed an extensive study of both the micro-
that queues and thus waiting times increase in a large part &€opic dynamicgtime series and macroscopic probability
the network. The distribution of waiting times of individual density functions of network load and waiting times of par-
particles shows substantial changes when temporary janticles in a model of transport on Web graphs. Particles move
ming in the network starts occurring more frequently. In Fig.using a local search algorithm with next-nearest-neighbor
5 we show the distribution of waiting times when the postingsignaling, which uses the underlying network topology effi-
rate is varied from low to intermediaf where the flow is ciently. We have demonstrated how network function
still stationary. changes when posting rates are altered.
Statistical properties of both the microscopic dynamics
10° and the probability density functions suggest that there occur
three flow regimes, depending on the overall traffic density:
stationary free flow at low posting rates; stationary flow with
temporary jams which are subsequently slowly dissipated by
the system, and jammed flow at high posting rates. Our
analysis applies to the stationary free flow and flow with
temporary crisis, whereas we can recognize the approach to
jamming transition from the low-density side. In particular,
we find that the jamming threshold is marked by the loss of
temporal correlations in the work-load time series and by
permanent increase of the overall network load. The waiting
times of packets diverge on approaching the jammed flow,
LV therefore the statistical analysis of waiting times cannot be
10 10 102 10° 10  carried out in the vicinity of the transition.
t The superstructure associated with the two types of hubs
in the network plays an essential role in determining the
FIG. 5. (Color online Distribution of waiting times of indi- properties of the traffic. In the low particle density regime it
vidual particles for varying posting rat&sin the free flow and flow  contributes to efficient free flow and the clearance of tempo-
with temporary crisis. Data collected from a particle which movesrary jamming through self-regulating mechanisms which

within a computation time-window of 200 000 time-steps and aremay be directly measured by the degree of antipersistence in
log binned.
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the work-load time series. However, at high particle densitynearest-neighbor search. Thus highly organized scale-free
the hubs are the first nodes to jam, forcing a crucial part ohetworks, containing these superstructures, operate more ef-
the network structure to enter a slow-traffifammed re-  ficiently than conventional networks for a wide range of
gime, whereas the rest of the network, which carries mucldriving conditions. However, their advantage may become a
less traffic, may continue to function normally. The hub with weak point when the conditions change, i.e., when the traffic
higher connectivity is likely to jam first. Then the network density increases over a certain limit. This property of traffic
continues to function with the other hub until it also jams, may also be important to prevent dynamical attacks which
eventually causing the congestion to spread over the assodarget hubs, such as denial of service attacks to highly con-
ate structure. In principle, the relative distance between hubsected servers. Our overall conclusion is that although the
plays the role in spreading of the congestion, e.g., when hulgzarticular topology of the Web graph is essential for its effi-
are far apart the jamming in two parts of the network will cient operation under normal conditions, the same topology
occur almost independently. In our model the two-hub strucmay also be a weakness under different conditions, reflected
ture is an emergent feature and the distance between hubyg vanishing anticorrelations in network-load time series. It
cannot be controlled by the network growth rules in ourseems clear that to assess the vulnerability of a network to
present setting. However, due to strong clustering propertyifferent types of attack, one cannot just consider the topol-
the relative distance between the hubs is rather short and—iogy of a network, one must consider how that topology in-
most network realizations—within the reach of the next-fluences particle transport on it.
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