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Critical dynamics of stochastic models with energy conservation„model C…
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We calculate the field-theoretic functions of the generalized dynamical modelC* , in which a conserved
secondary density is coupled to a nonconserved complex order parameter, in two-loop order. We show that the
fixed points in this extended model are equal to the fixed points obtained in modelC with a real order
parameter, which has been introduced by Halperin, Hohenberg, and Ma. Our results correct long-standing
errors in the field-theoretic functions in modelC published by several authors leading also to different fixed
point valuesw* for the ratio of the two time scales involved. The stability regions of the fixed points, which
remained partially unclear, considered in a ‘‘phase diagram’’—whose axes are the spatial dimensiond and
number of order parameter componentsn—are now clarified. Especially an anomalous region found by pre-
vious authors, in which the scaling properties remained unsolved, does not exist. There are only two regions:
one with a finite fixed pointw* where the dynamical exponentz of the order parameter isz521a/n and
another region wherew* 50 andz is equal to the modelA value.

DOI: 10.1103/PhysRevE.69.036101 PACS number~s!: 05.70.Jk, 64.60.Ak, 64.60.Ht
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I. INTRODUCTION

The dynamical critical behavior of a nonconserved or
parameter~OP! may be described by the simple tim
dependent Ginzburg-Landau model@1# ~modelA!. However,
the critical dynamics is determined by the slow modes a
therefore conserved densities which couple to the OP hav
be taken into account. In 1974 Halperin, Hohenberg, and
introduced such a model@2# in which a conserved seconda
density ~usually the energy density itself! is coupled to the
nonconserved OP. The OP relaxes with the relaxation raG
and the conserved density diffuses with the diffusion ratel.

This model has a wide spectrum of physical applicatio
such as nonequilibrium relaxation@3#, finite-size effects in
the dynamics of the Ising model@4#, systems with quenche
impurities @5#, and aging at criticality@6#. Physical realiza-
tions can be found in such different systems as intermeta
alloys @7#, layers on solid substrates@8#, and supercooled
liquids @9#.

Moreover, features relevant for models with energy co
servation~model C! have been observed in another mod
describing the critical dynamics at a tricritical point@10#.
Another interesting application of modelC is found in the
field of quantum chromodynamics describing the dynam
of quarks and gluons when one takes into account
baryon-number conservation law@11,12#.

The theoretical analysis of modelC by Halperin, Hohen-
berg, and Ma to first order ine542d led to suggest various
‘‘phase diagrams’’ in the two-dimensional space whose a
are the spatial dimensiond and number of the OP compo
nents,n. The ‘‘phases’’ in this space were characterized
the values of the stable fixed point for the time scale ra
w5G/l of the kinetic coefficients of the two dynamical de
sities. Three regions were found: region I with the fixed po
w* 50 ~in one-loop order this is the regionn.4), region II
with 0,w* 5n/(22n),` ~in one-loop order this is the
1063-651X/2004/69~3!/036101~18!/$22.50 69 0361
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regionn,2), and the anomalous region III withw* 5` ~in
one-loop order this is the region 2.n.4). The one-loop
order borderline valuen54 also separates the region wi
largen wherea50 ~a being the static exponent of the sp
cific heat! from the region with smalln wherea.0. In the
first region the conserved density decouples from the OP
the asymptotics and need not to be taken into account
asymptoticcritical properties. This is quite different in regio
II where the conserved density influences the dynamics
the OP in such away that both variables scale with thesame
exponentz but differentfrom modelA. Quite independent of
the loop order in region II the valuez521a/n ~n being the
exponent of the correlation length! in the anomalousregion
the value ofz and the validity of dynamical scaling behavio
remained unclear. ModelC was subsequently treated withi
the field-theoretical version of renormalization group theo
up to two-loop order by Brezin and De Dominicis@13# and
Murata @14#.

The results of Brezin and De Dominicis in two-loop ord
corroborated a scenario where the anomalous region ex
They calculated the field-theoreticz and b functions which
allow one to calculate the fixed points and correspond
critical exponents. However, the analysis was restricted
thee-expansion technique. They obtained from their calcu
tions at small values ofe boundary curves within region I
separating region III from region II, although the extensi
of the anomalous region to the whole phase space could
be given. Further peculiarities—namely, a nonuniformity
appeared in the two-loop calculation when taking the lim
e→0 andw* →`, which was believed to be the fixed-poin
value. A further subtlety appeared in region I, since the b
derline fora changing sign and the fixed pointw* 50 being
stable became different. This led to a small region Ia where
the conserved density scales withzm521a/n whereas the
OP still scales with the dynamical critical exponent of mod
A. In the other region I, called Ib , the conserved density
©2004 The American Physical Society01-1



ic

t
th
th

th
e

e
th
o

op
t
b

r a
o
g

s

ne
is
r
ll

e
d
be
ty

-
ax

-
e

an
o

er

on
d-
e
ry
a
te

ary
to

etic

l-

a
nc-
nc-
he

e

lly
tem
to

R. FOLK AND G. MOSER PHYSICAL REVIEW E69, 036101 ~2004!
decouples from the OP and its asymptotic critical dynam
is described by modelA.

Subsequently Murata performed a second-ordere expan-
sion and gave explicit results for the time ratiow. The fixed-
point values contrary to exponents are dependent on
renormalization procedure and cannot be compared with
results of other methods. However, he recognized that in
anomalous region III, the fixed-point value ofw* showed an
essential singularity and that this property might, even in
anomalous region, restore scaling and make the critical
ponent take the valuez521a/n.

Halperin, Hohenberg, and Ma then compared th
second- and higher-order results with results known at
time @15# and found agreement with the boundary curves
@13#. On the other hand, the peculiarities in the two-lo
order and the results of@14# led them to the supposition tha
the anomalous region might not exist, but they were una
to draw a definite conclusion.

Recently we calculated the field-theoretic functions fo
much more complicated model—for the dynamics
He3-He4 mixtures at the superfluid transition—containin
the modelC functions forn52 as the limit of the properly
reduced more complicated model@16#. Reducing our result
for the field-theoretic functions to the simpler modelC it
turned out that our results differed from those of@13#. A
calculation of the critical dynamics of modelC for arbitrary
n @17# then showed that the two-loop calculation of@13# was
incorrect for all n. The correct result, however, allows u
now to perform a systematic analysis of modelC in two-loop
order ~a short account was given in@18#! by calculating the
complete phase diagram and performing the limit to the o
loop results. This shows that no anomalous region III ex
and that the standard systematice expansion breaks down fo
2,n,4. Previous results for the boundary curves at smae
were due to a mistaken application of thee expansion, which
cannot catch the essential singularity appearing in the fix
point functionw* (e,n). The boundary line previously foun
between regions I and II is correct. This was possible
cause the authors calculated the borderline by the equali
the dynamical critical exponents in the different regions.

In the following we reconsider modelC starting from a
generalization—modelC* —to a complex OP and in conse
quence from an OP dynamic equation with a complex rel
ation rateG. This generalization is then forn52 a limiting
case of modelF @19# without reversible terms. We then re
strict our further study of the fixed-point properties to mod
C and calculate the fixed points, the stability exponents,
the flow of the dynamic parameters. A detailed comparis
with the earlier field-theoretic results is then added. Sev
explicit calculations are collected in the Appendixes.

II. MODEL C* EQUATIONS

Let us consider a system including a complex unc
served order parametercW 0(x,t) and a real conserved secon
ary densitym0(x,t). The order parameter is assumed to b
vector withn/2(n52,4,...) components, while the seconda
density should be a scalar quantity. In the absence of
mode coupling the critical dynamics of the order parame
03610
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is purely relaxational while the dynamics of the second
density is determined by a diffusion process. This leads
the dynamic equations

]cW 0

]t
522G̊

dH

dcW 0
†

1uW c , ~1!

]cW 0
†

]t
522G̊†

dH

dcW 0

1uW c
† , ~2!

]m0

]t
5l̊m¹2

dH

dm0
1um , ~3!

which we will call modelC* in the following. In the case of
a real order parameter it reduces to modelC @2#. The super-
script † denotes complex-conjugated quantities. The kin

coefficient of the order parameterG̊5G̊81 i G̊9 is also a com-
plex quantity. The stochastic forcesua i

fulfill the relations

^uc i
~x,t !uc j

† ~x8,t8!&54G̊8d~x2x8!d~ t2t8!d i j , ~4!

^um~x,t !um~x8,t8!&522l̊m¹2d~x2x8!d~ t2t8!. ~5!

The critical behavior of the thermodynamic derivatives fo
lows from the static functional

H5E ddxH 1

2
t̊ucW 0u21

1

2 (
i 51

n/2

“c i0“c i0
† 1

ů̃

4!
ucW 0u4

1
1

2
amm0

21
1

2
g̊mm0ucW 0u22h̊mm0J , ~6!

with ucW 0u2[cW 0•cW 0
† . The centerdot denotes

(n/2)-dimensional scalar product. The above static fu
tional may be reduced to the Ginzburg-Landau-Wilson fu
tional with complex order parameter by integrating over t
secondary density:

Hc5E ddxH 1

2
r̊ ucW 0u21

1

2 (
i 51

n/2

“c i0“c i0
† 1

ů

4!
ucW 0u4J .

~7!

The parametersr and u in Eq. ~7! are related tot, ũ, am ,
gm , andhm in Eq. ~6! by

r̊ 5 t̊1
1

2

g̊mh̊m

am
, ů5 ů̃23

g̊m
2

am
. ~8!

The choice of an (n/2)-component order parameter in th
equations above guarantees that the static functionals~6! and
~7!, and also all static properties derived from them, are fu
equivalent to the corresponding static properties of a sys
with a real n-component order parameter. The ability
eliminate the secondary density in Eq.~6! also leads to a
1-2
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relation between the correlations of the secondary den
and order parameter correlations. For the first and sec
cumulants one obtains

^m0~x!&5
1

am
S h̊m2g̊mK 1

2
ucW 0~x!u2L D , ~9!

^m0~x!m0~0!&c5
1

am
S 11

g̊m
2

am
K 1

2
ucW 0~x!u2

1

2
ucW 0~0!u2L

c
D .

~10!

Note that the angular brackets in Eqs.~9! and~10! have to be
calculated with a probability density exp(2H)/N on the left-
hand side and with exp(2Hc)/N 8 on the right-hand side
whereN andN 8 are appropriate normalization factors. Th
static and dynamic vertex functions have to be calcula
within the usual Feynman graph expansion. Details conc
ing the dynamic perturbation theory are given in Appen
A.

III. RENORMALIZATION OF MODEL C*

Several renormalization schemes are available in the
erature, which can be separated into two main classes.
first one usese expansion and the second one calculates
functions directly atd53 where the theory is super reno
malizable@20#. The second class makes it necessary to id
tify and sum up the contributions of theTc shift and the
correlation length carefully in all functions in order to avo
singularities atd53, while in the first class it is necessary
collect singularities atd54 in renormalization factors. This
can be done in several ways like using normalization con
tions or performing a minimal subtraction in which the po
terms only are collected~for an overview see@21#!. Also a
renormalization scheme which uses methods of both cla
has been developed@22# where the renormalization factor
are determined by using thee expansion with the minima
subtraction scheme, while the finite amplitudes are ca
lated atd53.

Because renormalization of modelC is known in principle
@13#, we have shifted the explicit introduction ofZ factors
into Appendix B. There we have defined allZ factors in order
to clarify the notation we will use. We want to emphasi
that our introduction of renormalized parameters is not
stricted to a specific renormalization scheme.

A. z functions

The z functions following from the renormalization fac
tors introduced in Appendix B are not uniquely defined
that they are differently introduced in the literature depe
ing on the authors. We will use in statics and dynamics
definition @23#

zai
~$aj%!5

d ln Zai

21

d ln k
~11!

in the following, where$a j%5$u,g,G,G†,l% is the set of
static and dynamic model parameters.ai stands for any den
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sity c, m, c̃, m̃ or any model parametera i . The only excep-
tion in the definition of thez functions is the additive renor
malizationAc2 of the specific heat introduced in Eq.~B9!,
which leads to

Bc2~u!5keZc2
2 k

d

dk
~Zc2

22k2eAc2!. ~12!

The relations~B7! and~B9! between the staticZ factors men-
tioned in Appendix B lead also to relations between thez
functions, which are

zg~u,g!52zm~u,g!1zc~u!1zc2~u! ~13!

and

zm~u,g!5
1

2
g2Bc2~u!, ~14!

respectively. The second relation can be used to eliminatezm
in the first one. Thus we obtain

zg~u,l!5g2Bc2~u!1zc~u!1zc2~u!, ~15!

where all functions on the right-hand side are determined
the Ginzburg-Landau-Wilson model~7!. The z functions of
the kinetic coefficientsG, G†, andl follow from theZ-factor
relation ~B15! by inserting them into Eq.~11!. We obtain

zG~u,g,G,G†,g!52
1

2
zc̃†~u,g,G,G†,l!1

1

2
zc~u!,

~16!

zG†~u,g,G,G†,l!5zG
†~u,g,G,G†,l!, ~17!

zl~u,g!52zm~u,g!. ~18!

With Eq. ~14! we obtain for the third equation

zl~u,g!5g2Bc2~u!. ~19!

In order to obtain fixed points within dynamics the compl
time scale ratio

w5
G

l
~20!

is usually introduced. Inserting Eqs.~16!–~19! into zw5zG

2zl we see immediately that thez function of the time scale
ratio w is

zw~u,g,w,w†!5
1

2
zc~u!2

1

2
zc̃†~u,g,w,w†!2g2Bc2~u!.

~21!

The z function of w† is the complex conjugate of Eq.~21!.

B. b functions

The b functions for static or dynamic model paramete
a i are generally defined as

ba i
~$a j%!5a i@2ci1za i

~$a j%!#, ~22!
1-3
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whereci is the cutoff dimension of the corresponding para
eter. For the static couplingsu andg the cutoff dimensionsc
have the valuese and e/2, respectively. All kinetic coeffi-
cients G, G†, and l are dimensionless quantities regardi
the cutoff dimension, which meansc50. Equation ~B8!
leads to the staticb function

bg~u,g!5gS 2
e

2
2zc~u!2zm~u,g!1zg~u,g! D . ~23!

The b function of the time scale ratiow can be written as

bw~u,g,w,w†!5wzw~u,g,w,w†!, ~24!

which follows immediately from Eq.~22!. Since the cutoff
dimensionci of all kinetic coefficients is zero, it is zero als
for ratio w; see Eq.~20!. The flow equations of the thre
relevant model parameters are explicitly given by

l
du

dl
5bu~u!, ~25!

l
dg

dl
5bg~u,g!, ~26!

l
dw

dl
5bw~u,g,w,w†!. ~27!

The complex equation~27! includes two separate differentia
equations, one for the real partw8 and one for imaginary par
w9:

l
dw8

dl
5bw8 ~u,g,w,w†!, ~28!

l
dw9

dl
5bw9 ~u,g,w,w†!. ~29!

Each of theb functions above is expressed by certainz func-
tions according to its definition and the relations in Appen
B. Equation~B2! leads immediately to the expression

bu~u!5u@2e22zc~u!1zu~u!#. ~30!

Using the relations between thez functions given in Eqs.
~13!–~21! we obtain for modelC* the followingb functions
for g andw:

bg~u,g!5gS 2
e

2
1zc2~u!1

1

2
g2Bc2~u! D , ~31!

bw~u,g,w,w†!

5wS 1

2
zc~u!2

1

2
zc̃†~u,g,w,w†!2g2Bc2~u! D .

~32!

Only one complex dynamicz function—zc̃†—appears in the
above equations and has to be determined from dyna
03610
-

ic

perturbation expansion. All other functions are known fro
the Ginzburg-Landau-Wilson model~7!.

C. Two-loop results

The static z functions of the Ginzburg-Landau-Wilso
model ~7! are well known up to two-loop order and i
higher-loop order within several renormalization approach
We will restrict ourself to the minimal subtraction scheme
the following. The staticz functions in this approach in two
loop order are

zc~u!52
n12

72
u2, ~33!

zu~u!5
n18

6
u2

5n122

18
u2, ~34!

zc2~u!5
n12

6
uS 12

5

12
uD , ~35!

Bc2~u!5
n

2
. ~36!

Two-loop expressions for the dynamic functionzc̃† or zG ,
respectively, have been calculated by several authors so
only for the real modelC ~real order parameterc5c†[f
and real kinetic coefficientG5G†). Two results for the dy-
namic z functions have been published@13,19# ~the second
reference treats only the special casen52); a third calcula-
tion has remained unpublished@24#. All of them obtained
different results for thezG function. Although it remained
unclear which result is the correct one, some comme
could have been made.~i! The result forzG of @13# contains
some very strange properties even fore51 ~see Chap. VI!.
~ii ! The result of@19# did not reduce to modelA in the limit
where the ratio of the time scalesw goes to zero and the
static couplingg stays finite.

An answer to this open problem can only be given by
independent calculation. Our calculation uses structure
the perturbative expressions@16# which allow a separation o
static and dynamic contributions before the renormalizat
is performed. Since the correlation length remains unren
malized, a perturbational resummation of the correlat
length leads to expressions which are easy to survey. Fi
only five independent integrals remain whose poles de
mine the renormalization factors. The structure of the per
bation theory also give rise to specific relations of vario
vertex functions and allows internal consistency checks
the expressions. Details are given in Appendix A 2. From
two-loop calculation we obtain the dynamicz function in the
complex modelC* :
1-4
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zc̃†~u,g,w,w†!522
wg2

11w
1

wg2

11w Fn12

3
u~12L02x1L1!

1
wg2

11w S n

2
2

w

11w
2

n12

2
~L01x1L1!

2
112w

11w
ln

~11w!2

112w D G
2

n12

18
u2S L01x1L12

1

4D , ~37!

where the following notation has been introduced:

x1521
w

w† , ~38!

L052 ln
2

11
w†

w

, L15 ln
S 11

w†

w D 2

112
w†

w

. ~39!

The z function zG in Eq. ~16!, which corresponds to the
kinetic coefficient, is given by

zG~u,g,w,w†!5
wg2

11w
2

1

2

wg2

11w Fn12

3
u~12L02x1L1!

1
wg2

11w S n

2
2

w

11w
2

n12

2
~L01x1L1!

2
112w

11w
ln

~11w!2

112w D G
1

n12

36
u2S L01x1L12

1

2D . ~40!

In the case of the real modelC (w5w†) the expressionL0
1x1L1 reduces toL53 ln 4/3 in Eqs.~40! and~37! andzG is
then in agreement with@24#.

IV. FIXED POINTS AND STABILITY

A. Fixed points

1. Static fixed points

The fixed points ofb functions which are based on stat
functionals of the type~6! or ~7! are well known. Hence it is
sufficient to give a short survey. The fixed pointsu* andg*
of the static couplings are determined by the conditions

bu~u* !50, bg~u* ,g* !50, ~41!

independent of the model type because both the com
model C* and the real modelC use the same static func
tional.

The fixed point values of the fourth-order couplingu are
well known from thef4 model. They are~i! the Gaussian
fixed point u* 50 and~ii ! the Heisenberg fixed-point valu
u* 5uH , which readse expanded in two-loop order
03610
ex

uH5
6e

n18 S 11
3~3n114!

~n18!2 e D . ~42!

Independent of the value for the fixed point ofu, g* 50 is a
fixed point for the couplingg as the second equation in Eq
~41! shows. There exist also nontrivial fixed pointsg* de-
pending on the fixed-point values ofu. From theb function
~31! one can see that the equationbg(u* ,g* )50 has the
following solutions

~i! In the caseu* 50 one obtains

g* 25gO
2 5

2e

n
. ~43!

~ii ! In the case ofu* 5uH one has

g* 25gC
2 5

a

nBc2~u* !
, ~44!

where use has been made of the identification of the spe
heat exponenta by thez function zc2. Both expressions are
valid in all orders of perturbation expansion. Thee-expanded
expression of Eq.~44! reads in two-loop order

gC
2 5

2e

n~n18! S 42n2
~n12!~13n144!

~n18!2 e D . ~45!

Considering thee-expanded expression forgC
2 in the whole

e-n plane it turns out that there is a region in whichgC
2 is

negative and therefore no real fixed-point value forg exists.
The boundary of existence,ea(n), of a real fixed-point value
for g is determined bygC

2 (e,n)50 ~corresponding toa50!
and is drawn as a dashed line in Fig. 1.

FIG. 1. Regions of existence of different fixed points:ea(n)
separates the region with nondiverging~g*[0, right side! from
those with diverging~g*Þ0, left side! specific heat~dashed curve!.
The solid curvee1(n) separates the region where the fixed po
r* (e,n)[0 is stable~right side! from those where it is unstable
~left side!.
1-5
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2. Dynamic fixed points

The dynamic fixed points are determined by the zeros
the b function of w, which leads to the two coupled cond
tions

bw8 ~u* ,g* ,w* ,w†* !50, bw9 ~u* ,g* ,w* ,w†* !50,
~46!

in the complex case, and to the single equation

bw~u* ,g* ,w* !50, ~47!

in the real case. The static fixed points determine the allow
dynamic fixed points when inserted into Eqs.~46! or ~47!.
An examination of the two equations in Eqs.~46! reveals that
no additional fixed points with nonvanishing imaginary p
appear in modelC* , which means that we have for all fixe
points

w9* 50. ~48!

Thus Eqs.~46! reduce to Eq.~47! at the fixed points and thei
discussion can be restricted to modelC in the following.

In order to simplify the following discussion of the fixe
points in the real modelC it is more appropriate to chang
from the time scale ratiow to the parameter

r5
w

11w
. ~49!

This transformation maps the infinite range 0 to` of w to the
finite region ranging from 0 to 1 (w5` corresponds tor
51). The functionzw(u,g,w) in Eq. ~40! can be rewritten as
a functionzw(u,g,r):

zw~u,g,r!5S r2
n

2Dg22
1

2
rg2Fn12

3
u~12L !

1rg2S n

2
2r2

n12

2
L1~11r!ln~12r2! D G

1
n12

36
u2S L2

1

2D . ~50!

The flow equation forr,

l
dr

dl
5br~u,g,r!, ~51!

follows from Eq.~22!. From the definition~49! and~27! we
obtain theb function

br~u,g,r!5r~12r!zw~u,g,r!, ~52!

with zw given in Eq.~50!. A survey over the fixed points in
model C* /C is given in Table I. For convenience we hav
listed not only the fixed-point values ofr, but also the cor-
responding values of the time scale ratiow ~last column! in
Table I.

At each static fixed point defined byu* andg* except the
Gaussian fixed point, theb function ~52! basically implies
03610
f

d

t three types of dynamic fixed points: namely,r* 50, r* 51,
and a fixed-point valuer* 5rC resulting from the equation
zw(u* ,g* ,rC)50.

At the Gaussian fixed point (u* 50,g* 50), zw vanishes
independent of the value ofr and thus each fixed-point valu
between 0 and 1 is allowed; see Table I. Becausezw is a
power series inu andg, this is true in all orders of perturba
tion expansion.

In the caseu* 5uH , g*50 a special situation occurs be
cause the possible values ofr* depend on the order of per
turbation theory. In two-loop orderzw in Eq. ~50! is always
different from zero due to theu2 contribution of modelA.
Thus only two corresponding fixed pointsr*50 andr*51
are allowed, which is also valid in all higher orders of pe
turbation expansion. The structure outlined in Table I is va
in two-loop order. In one-loop order these twor fixed points
degenerate to a line of fixed points ranging from 0 to 1. T
reason is thatzw is proportional tog2 and nou terms appear
in one-loop order. In the caseg*50 the one-loop function
zw(u* ,g* ,r* ) is zero, independent of the value ofr* .

In order to obtain the solutionsr* from the nonlinear
equationzw(u* ,g* ,r* )50 we have two ways to proceed
The first one is to use strictly thee expansion up to the
second order and the second one is to look numerically
solutionsr* of the nonlinear equation.

Inserting the static fixed-point values ofu andg from Eqs.
~42!–~45! up to ordere2 into zw(u* ,g* ,r* )50 ~note that
zw is then proportional toe! and performing thee expansion
consequently, we obtain thee-expanded fixed-point values o
r for two different values of theu* ~see Table I!. In the case
of u* 50,

rO5
n

2 H 11
e

2 F S 11
n

2D lnS 12
n2

4 D2
n12

2
LG J . ~53!

In the case of the Heisenberg fixed pointu* 5uH ,

rC5
n

2
$11bce%, ~54!

bc5
~n12!

~n18! F12
82n

4
L1

42n

4
lnS 12

n2

4 D
2

1

~42n! S L2
1

2D G . ~55!

TABLE I. Fixed points of modelC.

u* g* r* w*

0 0 0<r* <1 0<w* <`

gO 0 0
rO wO

1 `

uH 0 0 0
1 `

gC 0 0
rC wC

1 `
1-6
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One can see that obviously in any dimension the existe
borderline lies atn52. This is caused by the logarithmi
terms in two-loop order. The finite fixed point 0,rC,1
only exists forn,2; otherwise, the logarithms have negati
arguments. This type of logarithmic term is not restricted
the second order of perturbation expansion but also app
in higher-order contributions, restricting the existence of
e-expanded solution always to 0<n,2. Thus it seems to be
an artifact of thee expansion, indicating that it is a les
suitable method to treat fixed points of time scale ratios
modelC. In @13# the authors tried to overcome this borde
line by inserting thee expansion iteratively, in a nonsystem
atic way.

Instead we calculate the fixed points ofr by solving Eq.
~47! directly @25#, avoiding the artificial existence bounda
at n52. This procedure is valid in our opinion sincer andw,
respectively, is not a coupling and appears in theb function
in a nonpolynomial way. In order to illustrate this we ha
plotted in Fig. 2 the fixed-point valuesrC as a function ofn
at different dimensionse51 (d53), e50.5, ande50.25. In
Fig. 2~a! the nonlinear solution is drawn while in Fig. 2~b!
the corresponding results of thee expansion~54! is given.

As can be seen from Fig. 2~a! a new borderline appears a
a function ofe where the nonzero solution, which has to
positive, goes to zero at finite nonzeron. This defines the
existenceborderlinee1(n) ~see Fig. 1! given by the equation

FIG. 2. Fixed point forr5w/(11w) as a function of the orde
parameter dimensionn for several space dimensionsd (e542d).
~a! Results of the nonlinear solution of Eq.~47! and ~b! results of
the e expansion. The one-loop order has not changed the regio
existence of the fixed point contrary to case~a!. The one-loop fixed
points are plotted as dashed lines in both figures.
03610
ce

o
ars
e

n

zw~uH ,gC ,r50!50. ~56!

This reads explicitly to all orders

ch2
a

n
50, ~57!

where we have used@zc(u)2zc̃†(u,0,r)#/25zG
(A)(uH)

[ch, Eqs.~19! and ~44!.
In Fig. 2~a! the nonlinear solution for the fixed point a

e50.25 appears to reach the value 1~equivalent tow* 5`)
but actually this is not the case. In contrast, the dashed o
loop solution does have the value 1 in the considered reg
The fixed-point value remains below 1 but stays so close t
that it cannot be resolved in the figure. This can be verifi
by examiningzr very close atr51. Expanding the fixed-
point valuer* about 1, the leading termsras* (e,n) read

ras* ~e,n!5120.5 exp@2a~e/n!/g* 2#[12x, ~58!

with

a~e,n!5
n

2
211

n12

6
u* ~12L !1

g* 2

2 S n

2
212

n12

2
L D

2
~n12!u* 2

36g* 2 S L2
1

2D ~59!

proving to be smaller than 1. Thus there is no anomal
region where the fixed-point value is 1. Therefore the d
namical critical exponent is in all orders of perturbatio
theoryz521a/n @this is easily derived from Eq.~21!; see
@13##.

One also sees in Fig. 2~a! that the nonlinear solution fo
the fixed point reaches in the limite→0 the one-loop solu-
tion in the region 0<n<4. Thee-expanded solution in Fig
2~b! reaches the one-loop fixed-point values only in the
gion 0<n,2.

B. Stability of the fixed points

A fixed point is considered stable when an arbitrary sm
deviation of the initial values of the flow equations from th
fixed point values leads to a flow which runs into the fix
point again. Linearizing the flow equations~25!–~27! around
the fixed-point value one can introduce the transient ex
nents as the eigenvalues of the matrix

F]b j

]a i
G5S ]bu

]u

]bg

]u

]bw

]u

]bw†

]u

0
]bg

]g

]bw

]g

]bw†

]g

0 0
]bw

]w

]bw†

]w

0 0
]bw

]w†

]bw†

]w†

D . ~60!

of
1-7
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From the structure of Eq.~60! we can see that the derivative
of the staticb functions decouple from the dynamic deriv
tives. Thus we obtain the static eigenvalues

lu5
]bu

]u
, lg5

]bg

]g
. ~61!

The complex time scale ratio and its complex conjuga
form a two-dimensional subspace with eigenvalues

l65
1

2 H ]bw

]w
1

]bw†

]w† 6AS ]bw

]w
2

]bw†

]w† D 2

14
]bw

]w†

]bw†

]w J .

~62!

In the case of the real modelC the above eigenvalues~62!
reduce to

l1[lw5
]bw

]w
, l250. ~63!

The transient exponents for a given fixed point are define
the eigenvalues taken at the corresponding fixed-point va
$a i* % of the parameters. Since for modelC, l2 is zero, in
any case this means that a nonzero initial value of the im
nary part ofw decays very slowly~in fact logarithmically;
see Sec. V!.

1. Stability of the static fixed points

The following considerations are valid for both the com
plex and real modes. The static transient exponents are

vu[
]bu

]u U
$a i %5$a i* %

, ~64!

vg[
]bg

]g U
$a i %5$a i* %

. ~65!

The two transient exponents define the stability of the st
fixed points. The conditions

vu.0, vg.0 ~66!

define a region in the space dimension and order param
component~e-n! plane in which the considered static fixe
point is stable. Of all static fixed points listed in Table 1 on
those which fulfill Eq.~66! are stable and therefore dete
mine the critical behavior for certain order parameter co
ponentsn and spatial dimensionsd. The static fixed points
are well known and will be briefly discussed. Within th
Ginzburg-Landau-Wilson model the transient exponents

u* 50⇒vu52e, ~67!

u* 5uH⇒vu5eS 12
3~3n114!

~n18!2 e D . ~68!

Thus ind53 the Heisenberg fixed pointuH is the stable one
becausevu in Eq. ~68! is positive for all values ofn. We only
need to consider theg andw fixed points which correspond
03610
d

as
es
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to uH . According to Fig. 1 twog fixed points exist. Calcu-
lating the transient exponents frombg we obtain

g* 50⇒vg5vc , ~69!

g* 5gC⇒vg52vc . ~70!

The e-expanded transient exponentvc reads in second orde

vc5
e

2~n18! S n241
~n12!~13n144!

~n18!2 e D . ~71!

The stability of the twog fixed points depends on the sign o
vc , which itself is dependent on the value ofn. The condi-
tion is now that the expression in the bracket in Eq.~71! has
to be positive.

Considering only the first order~one loop! in the pertur-
bation expansion we see that the boundary of stability wo
be n54. Forn.4 we would havevc.0 which means that
for this case the fixed pointg*50 would be stable and that in
the casen,4 the fixed pointg* 5gc would be the stable
one. The second-order~two-loop! perturbation expansion
adds a positive contribution~order-e terms! to the expression
in the brackets shifting the boundary to lower values ofn.
The boundary is now determined by the equationn3125n2

170n216850 ~at e51! from which we can immediately
see that the change in sign occurs betweenn51 andn52.
As a result we obtain that the fixed pointg* 5gC is stable in
the casen51 only and that for all other order paramet
component numbersn>2 the stable fixed point isg*50.
The stability properties of the fixed points strongly chan
with the step from one-loop to two-loop calculation, esp
cially for physically relevant systems withn52 andn53.
As long as only the static critical behavior is considered,
secondary couplingg is of less importance because the cri
cal behavior is completely determined by the fourth-ord
coupling u. The stable fixed point ine expansion is the
Heisenberg fixed pointu* 5uH for all n. With respect to the
critical dynamics of modelC the fixed-point value of the
stable static couplingg is most important since it governs th
interaction of the two modes. These considerations are
roborated by higher-loop order calculations@26#. The border-
line curve—wherevc(n,e)50—has been discussed in@27#
using resummation procedures.

For dynamical calculations a two-loop perturbation e
pansion is essential. Moreover, as far as the stability of
fixed points of the time scale ratiow ~or r! is concerned, it
shows a similar strong dependence on the order of pertu
tion expansion, as the fixed-point structure discussed in
previous subsection.

2. Stability of the dynamic fixed points

Within dynamics there are differences in the transient
ponent in modelC and modelC* ; however, insertingw9*
50 one obtains Eq.~63!. Therefore, the dynamic transien
exponent
1-8
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vw[
]bw

]w U
$a i %5$a i* %

~72!

defines by the conditionvw.0 the stability region of the
dynamic fixed pointw* for a given static fixed pointu* and
g* . In order to include the fixed pointw* 5` it is conve-
nient to consider the parameterr defined in Eq.~49! instead
of w, leading to a stability condition

vr[
]br

]r U
$a i %5$a i* %

.0. ~73!

The two transient exponents are related by

vr5vw22r* zw~u* ,g* ,r* ! ~74!

and therefore coincide for the fixed pointsr*Þ1 (w* finite!.
From Eq.~52! we obtain immediately

]br

]r
~u,g,r!5~122r!zw~u,g,r!1r~12r!

]zw

]r
~u,g,r!,

~75!

wherezw has been given in Eq.~50!. From the same equa
tion one gets

]zw

]r
~u,g,r!5g2H 12

n12

6
u~12L !

2rg2Fn

2
2r2

n12

2
L1~11r!ln~12r2!G

1
1

2
r2g2S 11r

12r
2 ln~12r2! D J . ~76!

According to the determination of the fixed points, the d
namic transient exponent can be calculated in Eq.~72! or
~73!, respectively, by using either thee-expanded fixed-poin
values or the fixed-point values found by direct solution
Eq. ~47!. From Table I it can be seen that in the caseu*
5uH we have to consider the transient exponents of fi
fixed points.

a. Stability of the fixed points in one-loop order. As al-
ready mentioned earlier the fixed points and also their sta
ity regions depend strongly on the order of the loop exp
sion. One-loop order represents a degenerated situatio
some sense because thez function ~21! and its derivative
~76! reduce to

zw5S r2
n

2Dg2,
]zw

]r
5g2, ~77!

lacking anyu contribution. In the caseg*50 both functions
vanish independent ofr or w, respectively. Thus all value
within the intervall@0, 1# are allowed fixed-point values fo
r, giving a line of fixed points, andvr50 for all of them,
making a statement to the stability impossible. In the c
g* 25gC

2 we have the three fixed pointsr*50 (w* 50),
r* 5rC (w* 5wC), and r*51 (w* 5`) with rC5n/2
03610
-

f

e

il-
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e

@wC5n/(22n)#. Inserting these values together with Eq
~77! into Eq. ~73! the one-loop transient exponents read

vr5052
n

2
gC

2 , vr5rC
5

n

2 S 12
n

2DgC
2 ,

vr5152S 12
n

2DgC
2 , ~78!

with the static one-loop fixed-point value

gC
2 5

2~42n!

n~n18!
e. ~79!

A survey over the stability regions obtained from Eqs.~78!,
which are valid for arbitrarye, is given in Table II.

b. Stability of the fixed points in two-loop order. The situ-
ation sketched in Table II changes drastically when the tw
loop expressions of thez andb functions are considered. Th
degeneration mentioned above is now resolved and the
bility regions change to a behavior which can also be
pected to be valid in higher-loop orders.

Let us consider at first the caseg*50 which has been
completely undetermined in one-loop order regarding
fixed-point values as well as the stability. According to t
previous subsection in two-loop order only the two fixe
point valuesr*50 andr*51 remain from the line of fixed
points. At vanishingg only the modelA contributions remain
in the dynamicz function which is independent of the valu
of r* . The z function ~21! reduces tozG

(A)(u), valid in all
orders of perturbation expansion. Thus we obtain from
~75! immediately

vr50
~0! 5zw~uH,0,0!5ch, vr51

~0! 52zw~uH,0,1!52ch.
~80!

In two-loop order we have@28,29#

ch5
n12

36
uH

2 S L2
1

2D , ~81!

where the e-expanded expression is obtained when
Heisenberg fixed-point valueuH from Eq. ~42! is inserted in
first order. The above quantity is always positive since it
an anomalous dimension in an unitary field theory@30#.
Therefore the fixed pointr*51 is always unstable. The sta
bility region of r*50 is determined byvc50; with Eq.~71!,
we obtain thestability boundary

TABLE II. Stability of the fixed points of modelC in one-loop
order.

u* g* r* Region

uH 0 0<r*<1 ?
gC 0 Unstable

rC n<2
1 2,n,4
1-9
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ea~n!5
~42n!~n18!2

~n12!~13n144!
~82!

in the e-n plane. From Eqs.~69! and ~70! it is evident that
the curve~82! separates the region with stable finite fixe
point valueg* 5gC from the region with stable fixed-poin
valueg* 50, or in other words the stability boundary is th
line where the specific heat exponents changes sign.

In the second case, wheng* 5gC , three dynamic fixed
points exist as shown in Table I. At vanishingr the z func-
tion ~21! reduces tozw(u,gC,0)51/2@zc(u)2zc̄†(u,g,0)#
2zl(u,g)5zG

(A)(u)2zl(u,g) which is also valid in all or-
ders of perturbation expansion. With Eq.~19! this leads to
the transient exponent

vr50
~C! 5zw~uH ,gC,0!5ch2gC

2 Bc2~uH!. ~83!

With the two-loop results~81! for ch andBc2(uH)5n/2 the
conditionvr50

(C) 50 leads to the stability boundary curve

est~n!5
~42n!~n18!

~n12!F13n144

n18
1S L2

1

2D G [e1~n!, ~84!

with the two-loop fixed-point valuesuH and gC inserted.
One sees that thestability border line between the fixed poin
r* Þ0 andr* 50 coincides with theexistenceborderline of
the nonzero fixed point to all orders of perturbation theo
since Eq.~83! is identical to Eq.~57!. Moreover, the stability
boundary condition is equivalent to the equality of the d
namical critical exponentsz of the adjoining regions~here
region II and region Ib). This condition was used in@15#.

Equation ~84! defines together with the boundary~82!
three different regions in thee-n plane in which different
fixed points (u* ,g* ,r* ) are stable~see Fig. 1!:

~i! region Ia : right to ea(n) with (uH,0,0) stable,
~ii ! region Ib : betweene1(n) andea(n) with (uH ,gC,0)

stable,
~iii ! region II: left to e1(n) with (uH ,gC ,rC) stable.

In region Ia the conserved densitydecouplesfrom the non-
conserved OP. In region Ib the densities are coupled but th
OP scales withz521ch @31# and the conserved densit
with zm521a/n. Thus one may call this region the wea
scaling region. In region II both densities scale with thesame
dynamical critical exponentz521a/n different from model
A.

At r* 51 (w* 5`) one obtains from Eq.~50!

vr51
~C! 52zw~uH ,gC,1!; lim

r→1
ln~12r2!→2`, ~85!

from which it is evident that this fixed point is always u
stable.

In order to obtain the transient exponent for the fin
fixed-point valuer* 5rC we have to calculate
03610
y

-
vr5rC

~C! 5~122rC!zw~uH ,gC ,rC!

1rC~12rC!
]zw

]r
~uH ,gC ,rC! ~86!

explicitly. This can be done either by using a stricte expan-
sion or by a nonlinear calculation using the fixed-point v
ues ofr found by direct solution of the equationbr50.

Inserting Eq.~54! into Eq. ~73! systematically in thee
expansion we obtain thee-expanded result for the transien
exponent:

vr5rC

~C! 5
e

2~n18! X~22n!~42n!1
n12

n18
eF ~2L21!

2
~22n!~13n144!

n18 G1~42n!eH 2~22n!bc

2
~42n!~n12!

n18 F ~42n!S 1

4
2L D

1F32n1
n~22n!

4~n12!G lnS 12
n2

4 D G J C. ~87!

It turns out that Eq.~87! is positive in the whole existenc
region of thee-expanded fixed pointr* 5rC @see Fig. 3~b!#.
This is also the case for the corresponding existence reg
whenvrC

is calculated from the nonlinear equation witho
e expansion, which is shown in Fig. 3~a! at severale. The

FIG. 3. Dynamic stability functionv(e,n) divided by e for
variouse ~a! for the nonlinear fixed point Eq.~73! and ~b! for the
e-expanded solution. The curves consist of the different parts
responding to the stable fixed points~see text!.
1-10
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transient exponent discussed so far is valid in the reg
where the fixed point (uH ,gC ,rC) is stable. However, in the
e expansion it turns out that within the stability region
r* 5rC there may be other stable fixed points present
pending on the dimension. From Fig. 1 one can see tha
constante the stable fixed point first changes to (uH ,gC,0) at
e1(n) and then to (uH,0,0) at ea(n). The corresponding
transient exponents of these two additional fixed points
also drawn in Fig. 3~b! in the corresponding region of stabi
ity. Such a situation does not appear when one solves
nonlinear equations@see Fig. 3~a!#. The existence region
and the stability regions of the different fixed points then jo
neatly.

In Fig. 3~a! one can see that the transient exponent dr
down to zero at the existence boundary, indicating the sta
ity boundary. For small values ofe in the region where the
fixed-point value is nearly 1@see Fig. 2~a!# the transient ex-
ponent also drops down to very small values. In this reg
we cannot calculate the transient exponent numerically
analytically. From the asymptotic solutionras in Eq. ~58! we
can calculate the asymptotic transient exponentvr

(as) as

vr
~as!~e,n!5g* 41xg* 2F12

n12

6
u* ~12L !

2g* 2S n

2
212

n12

2
L1

5

2
ln 2xD G , ~88!

showing that the transient exponent always remains posi
The detailed behavior within this region has been shown
Fig. 3~b! of Ref. @18#.

A numerical calculation of the dynamic transient exp
nents at some points in thee-n space where real experimen
can be expected, which aree51 at n51, n52, andn53,
reveals that in the case ofn52 andn53 its value is very
small—namely, 0.0145 (n52) and 0.015 (n53). For n
51 we obtain 0.045. Thus the fixed-point valuew* 50 will
be only reached very slowly, but this is true even forw*
5wC as shown in the next section.

V. FLOW OF THE MODEL C PARAMETERS

The behavior of the flow at different order parame
component numbersn is demonstrated in Fig. 4. The flows o
the static parameterg2 and the time scale ratiow are plotted
at e51 at severaln. In all cases the same initial valuesg2( l 0)
andw( l 0) have been chosen. Forn51 the flow tends to the
stable finite fixed-point valuesg* 25gC

2 and w* 5wC . The
other two cases (n52 andn53) have to reach the fixed
point valuesg*50 andw* 50. While g2( l ) decreases rela
tively fast to its fixed-point value, the time scale ratiow( l )
has not reached it even at a flow parameter valuel 510240.
Thus the nonasymptotic behavior ofw extends over the
whole region plotted in Fig. 4 and cannot be neglec
therein. Recalling that experiments can been performed
03610
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temperature distances which correspond to flow param
values ofl 510210 at best, it is obvious that their results a
far away of any asymptotic behavior.

The casen51 is considered in more detail in Fig. 5. Th
flow for g2 is plotted @Fig. 5~a!# for three different initial
conditions, one where the parameter starts at its fixed-p
value ~the result has clearly to be a constant! and two with
deviating values. To each of theg2 flows three flows of the
dynamic scale ratio with different initial conditionsw( l 0) are
drawn in Fig. 5~b!. Analogous to the static parameterg one
initial value ofw is the fixed-point value. The remaining tw
initial values arew( l 0)5w* /10 andw( l 0)52w* . Wheng2

andw start at their fixed-point values the resultingw flow is
a constant, which is a test for the correctness of the fl
equations. At deviating initial conditionsg2( l 0)Þg* the
flow of w drifts away from its fixed-point value at first eve
when it starts precisely on it. This is because the nonasy
totic behavior ofg2 couples into the flow equation ofw.

In Fig. 6 the influence of the imaginary part ofw in the
complex modelC* on the flow of the real part ofw is ex-
amined. There we have compared the flow ofw calculated
from the flow equation~27! using thez function from the
real modelC with the flow ofw8 calculated within the com-
plex modelC* . The initial valuesw( l 0) andw8( l 0) are the
same; thus, the corresponding curves start from the s
point in Fig. 6. In the complex modelC* the imaginary part
couples into the flow equation for the real part ofw, resulting
in a considerable deviation inw8( l ) compared tow( l ) in the

FIG. 4. Flow of~a! the static parameterg2 and~b! the time scale
ratio w at e51 (d53) at three physically relevant order parame
component numbersn51, 2, 3. The initial valuesg2( l 0)50.8 and
w( l 0)50.246 are the same in all three cases.@ log(l)5log10( l )#.
1-11
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real case. Due to the appearance of a zero eigenvalue@see
Eq. ~63!#, the decay is logarithmically slow and leads to lar
differences between the flows ofw andw8.

The general result for all casesn51,2,3 is that applying
modelC to a physical system one has to expect nonasy
totic behavior. This is also seen from the small transient
ponents~which are equal to the stability exponents! in two-
loop order.

VI. COMPARISON WITH THE RESULTS
OF OTHER AUTHORS

The z functionszG , andzw , respectively, have been ca
culated so far by several authors within the field-theore
renormalization group theory. Actually two results ex
which have been published in the literature. The first res
was published by Brezin and De Dominicis@13# in 1975 for
arbitraryn and the second one was published by Dohm@19#
within his calculation of modelF ~critical dynamics of4He)
in 1991 for the special casen52. The results obtained b
these authors are different from each other and also diffe
from our result.

A. Results of Brezin and De Dominicis

Rewriting the result of Brezin and De Dominicis@13# by
the use of our definitions to our notation, the dynamicz
function obtained by these authors reads@32#

FIG. 5. Flow of~a! the static parameterg2 and~b! the time scale
ratio w at e51 (d53), n51 for different initial valuesg2( l 0) and
w( l 0). @ log(l)5log10( l )#.
03610
p-
-

c
t
lt

nt

zw
~BD!~u,g,r!5S r2

n

2Dg22
1

2
rg2F2

n12

3
u~11L1 ln r!

1rg2S n

2

122r

r
2r2

n12

2
L~11r!

3 ln~12r2!2
n

2
ln r D G1

n12

36
u2S L2

1

2D .

~89!

A comparison with Eq.~50! reveals several difference
between the two expressions ranging from different sig
over differentr terms to additional lnr terms, which lead to
a completely different behavior in the fixed-point functio
r* 5rC(e,n) and also in the derivative ofzw and therefore
in the transient exponents. At smalle and largen Eq. ~89! has
fixed-point solutions which are qualitatively similar to ou
solutions. But at largere or small n their fixed-point solu-

FIG. 6. w flow of the real modelC compared to the flow ofw8
andw9 of the complex modelC* at e51, n52. The initial values
are chosen asw( l 0)5w8( l 0)50.246 and w9( l 0)50.3. @ log(l)
5log10( l )#.

FIG. 7. Comparison of the solution for the fixed-point valu
following from our z function ~solid lines! and from thez function
obtained by Brezin and De Dominicis~dashed and dotted lines! at
two different values fore.
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tions differ considerably from ours, leading to discontinuo
functions which also have a region where two finite fixe
point values exist simultaneously. This is demonstrated
Fig. 7 where we have compared our fixed-point solution
e51 ande50.25 with the solutions obtained from Eq.~89!.
At larger e values thez function ~89! of Brezin and De Do-
minicis produces fixed-point solutions in regions where
do not have any solutions. In Fig. 7 one can see that ate51
two fixed points exist simultaneously~dashed and dotted
lines! in the region 1.5,n,3, while our solution~solid line!
does not exceedn51.5. Nearn50 the fixed-point values
show a strong increase instead of going to zero. Thus
two-loop results of@13# do not converge in the limite→0 to
the one-loop result in a simple manner. The resulting diff
ences in the transient exponent are plotted in Fig. 8.

The differentz functions lead to a flow, calculated from
Eq. ~27! with Eq. ~89!, which deviates considerably from th
flow calculated with ourz function. As an example we hav
plotted in Fig. 9 both flows fore51, n51 starting at the
same initial values.

B. Results of Dohm

The difference between our result and the result of Do
is considerably weaker in the explicit expression of thez
function ~no additional lnr contributions! on one side, but
also in the behavior of the flow or the fixed-point values. T
latter is due to the fact that hisz function has been calculate

FIG. 8. ~a! Comparison of the solution for the transient expone
following from our z function ~solid lines! and from thez function
obtained by Brezin and De Dominicis~BD! ~dashed and dotted
lines! at two different values fore. The two fixed-point solutions of
BD at e51 lead to two transient exponents~compare Fig. 7!. ~b!
The region marked in~a! enlarged fore50.25.
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only at n52 where the stable fixed point isw* 50 anyway.
Rewriting Dohm’sz functionzw

(Dohm)(u,g,r) @19# to our no-
tation we get

zw
~Dohm!~u,g,r!5zw~u,g,r!1

1

12
~3r22!~12r!g4L.

~90!

zw(u,g,r) is in this case~50! taken atn52. Qualitatively
the main difference between our’s and Dohm’s result is t
our result~50! turns into thez function of modelA in the
limit r→0 ~corresponding to the limitw→0) even wheng is
not zero, while Dohm’s result does not have this prope
because of the additional term in Eq.~90!. Thus forn52 in
the asymptotic limit the models coincide but not in the no
asymptotic region. This is seen in the differences in the fl
of the time scale ratiow at e51 in Fig. 10. For comparison
we have also plotted the flow obtained with thez function of
Brezin and De Dominicis.

t

FIG. 9. Comparison of the flow ofw following from our z
function~solid line! and from thez function obtained by Brezin and
De Dominicis~dashed line! at e51, n51. @ log(l)5log10( l )#.

FIG. 10. Comparison of the solution of the flow equation~27!
using our ~solid line!, Dohm’s ~dotted line!, and Brezin and De
Dominicis’ ~dashed line! z function at e51, n52 with the same
initial values.@ log(l)5log10( l )#.
1-13
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VII. CONCLUSION

For applications of modelC as discussed in the Introduc
tion, it is important to get consistent results for the fix
points and their stability regions, because the fixed po
characterize the critical behavior. We have shown that mo
C has no anomalous properties apart from the fact that du
an essential singularity ine thee expansion of the fixed poin
of the time scale ratiowC breaks down. This can be repaire
by solving the fixed-point equation without expansion. Th
the results for the stability regions and the fixed points its
show a consistent and continuous picture in the sense th
the borderlines the exponents and fixed points are cont
ous.

Model C* /C is also a limiting case of more complicate
models, like modelF, describing the critical dynamics at th
superfluid transition of4He and the planar antiferromagne
and modelF8, describing the critical dynamics at the supe
fluid transition in 3He-4He mixtures. Therefore, the explic
results for the renormalization group functions are import
test functions for the more complicated models. The modeC
functions agree with this limit when the recent results@16#
for the more complicated models are used.

The flow of the dynamical parameters to their fixed-po
values turns out to be slow because of the small values o
transient exponents found in two-loop order. This has to
taken into account when using these parameters for calc
ing physical quantities even in systems with OP compone
n52, 3 ~in d53) for which the conserved density decoupl
asymptotically.

The small values of the dynamical transient expone
may be important even forn51 and should be considered
the interpretation of computer simulations@38#. It might hap-
pen that one has not reached asymptotics and finds effe
exponents in the analysis of the data. More work in t
direction would be desirable.
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APPENDIX A: PERTURBATION EXPANSION

1. Dynamic functional

Following @33# the dynamic equations~1! and~3! together
with Eq. ~6! lead to a dynamic functional of the formJ
5J01Jint with the Gaussian partJ0 given by

J05E dtE dxH 24G̊8c̃W 0•c̃W 0
†1l̊mm̃0¹2m̃0

1c̃W 0
†
•S ]

]t
1G̊~ t̊2¹2! DcW 01c̃W 0S ]

]t
1G̊†~ t̊2¹2! DcW 0

†

1m̃0S ]

]t
2aml̊m¹2Dm0J ~A1!

and an interaction part which is
03610
ts
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lf
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H.

Jint5E dtE dxH G̊
ů̃

3!
~ c̃W 0

†
•cW 0!~cW 0

†
•cW 0!1G̊†

ů̃

3!
~ c̃W 0•cW 0

†!

3~cW 0•cW 0
†!1G̊g̊mm0~ c̃W 0

†
•cW 0!1G̊†g̊mm0~ c̃W 0•cW 0

†!

2
1

2
l̊mg̊mm̃0¹2~cW 0•cW 0

†!J . ~A2!

The centerdot denotes an (n/2)-dimensional scalar produc

c̃W 0 andm̃0 represent auxiliary densities.

2. Dynamic order parameter vertex functions

Within the dynamic approach of Bausch, Janssen,
Wagner@33#, two dynamic vertex functions exist, which co
respond to the order parameter.

The first oneG̊cc̃†(j,k,v) is related to the response func
tion. Calculating the perturbation expansion up to two-lo
order the vertex function mentioned is obtained from t
dynamic functionals~A1! and ~A2!. It turns out that it has
the structure

G̊cc̃†~j,k,v!52 ivV̊cc̃†~j,k,v!1G̊cc†~j,k!2G̊, ~A3!

where G̊cc†(j,k) is the static two-point vertex function. In
the above expression the correlation lengthj( r̊ ,ů), which is
defined as

j22~ r̊ ,ů!5
] ln G̊cc†~ r̊ ,ů,k!

]k2 U
k50

, ~A4!

already has been introduced by collecting the proper per
bational contributions ofj. The static vertex function

G̊cc†( r̊ ,ů,k) is calculated from the Ginzburg-Landau-Wilso
model~7! with complex order parameter. The dynamic fun

tion V̊cc̃† reads in two-loop order

V̊cc̃†~j,k,v!511G̊g̊2I C~j,k,v!1V̊
cc̃†
~2L !

~j,k,v!, ~A5!

with the rescaled couplingg̊5g̊m /Aam. The two-loop con-
tributions have the structure

V̊
cc̃†
~2L !

~j,k,v!5
n12

18
G̊ů2W̊

cc̃†
~A!

~j,k,v!

2
n12

3
G̊ůg̊2C̊

cc̃†
~T3!

~j,k,v!

1G̊g̊4S̊cc̃†~j,k,v!, ~A6!

with
1-14
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S̊cc̃†~j,k,v!5C̊
cc̃†
~T4!

~j,k,v!1
n

2
@C̊

cc̃†
~T5!

~j,k,v!

2C̊
cc̃†
~T3!

~j,k,v!#1C̊
cc̃†
~T6!

~j,k,v!

2C̊
cc̃†
~T3!

~j,k,v!. ~A7!

The one-loop integralI C in Eq. ~A5! reads
re

le
ge

03610
I C~j,k,v!5E
k8

1

@j221~k1k8!2#~2 iv1a8!
, ~A8!

with a8 defined by

a85G̊@j221~k1k8!2#1l̊k82. ~A9!

The first two-loop contribution in Eq.~A6! comes from the
well-known modelA. W̊

cc̃†
(A)

is given by
W̊
cc̃†
~A!

~j,k,v!5E
k8
E

k9

1

~j221k82!~j221k92!@j221~k1k81k9!2#~2 iv1A!
, ~A10!
with

A5G̊~j221k82!1G̊†~j221k92!1G̊@j221~k1k81k9!2#.
~A11!

The remaining two-loop contributions in Eqs.~A6! and~A7!
are marked with superscripts~Ti!, which indicate the final
expressions of different graphical topologies after all the
arrangements have been done. They are

C̊
cc̃†
~T3!

~j,k,v!

5E
k8
E

k9

1

@j221~k1k8!2#~2 iv1a8!~2 iv1A!

3S G̊

j221k92 1
G̊†

j221~k81k9!2D , ~A12!
-

C̊
cc̃†
~T4!

~j,k,v!

5E
k8
E

k9

G̊2

@j221~k1k81k9!2#~2 iv1a8!2~2 iv1b!
,

~A13!

C̊
cc̃†
~T5!

~j,k,v!

5E
k8
E

k9

l̊k82

@j221~k1k8!2#~2 iv1a8!2~2 iv1A!

3S G̊

j221k92 1
G̊†

j221~k81k9!2D , ~A14!
C̊
cc̃†
~T6!

~j,k,v!5E
k8
E

k9

l̊k92

@j221~k1k8!2#~2 iv1a8!~2 iv1a9!~2 iv1A8!
S G̊

j221~k1k81k9!2 1
G̊†

j221~k1k9!2D
1E

k8
E

k9

G̊

@j221~k1k8!2#~2 iv1a9!~2 iv1b!
F G̊

2 iv1a8
1

1

j221~k1k81k9!2 S 11
l̊k92

2 iv1a8
D G ,

~A15!
ion

e

where we have introduced

b5G̊@j221~k1k81k9!2#1l̊~k821k92!, ~A16!

A85G̊@j221~k1k8!2#1G̊†@j221~k1k81k9!2#

1G̊@j221~k1k9!2#, ~A17!

which are both invariant under an interchange ofk8 andk9.
Note that Eqs.~A7!–~A17! are obtained after a considerab
rearrangement of the graphical contributions in order to
 t

the structure of the OP vertex function, Eq.~A3!, explicitly
and identify the functionVcc̃†.

The second dynamic vertex functionG̊ c̃c̃†(j,k,v) is
necessary for the calculation of the dynamic correlat
function

C̊cc†~j,k,v!52
G̊ c̃c̃†~j,k,v!

uG̊cc̃†~j,k,v!u2
. ~A18!

The correlation function is a real function; thus, from th
1-15
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above relation it follows thatG̊ c̃c̃†(j,k,v) also has to be
real. A calculation up to two-loop order reveals that th
function fulfills the relation

G̊ c̃c̃†~j,k,v!524 Re@G̊V̊cc̃†~j,k,v!#. ~A19!

From this relation it turns out that the second dynamic ver
function is completely determined by the first one. In a c
culation of the correlation function~A18! one only has to

know the functionV̊cc̃†(j,k,v) and the static vertex func

tion G̊cc†(j,k).
At least we want to remark that in the case of the r

model C, where the complex order parameter turns into
real n-component vectorfW 0 , Eq. ~A3! reads

G̊ff̃~j,k,v!52 ivV̊ff̃~j,k,v!1G̊ff~j,k!G̊,
~A20!

where the kinetic coefficientG̊ is now a real quantity. In Eq
~A20! the relation
al
n
o

o

r

03610
x
-

l
a

G̊cc†~j,k!5
1

2
G̊ff~j,k! ~A21!

between the static vertex functions has been used. Co
spondingly relation~A19! turns into

G̊f̃f̃~j,k,v!522G̊ Re@V̊ff̃~j,k,v!#. ~A22!

3. e poles of the integrals

In order to obtain the pole terms̄ s we consider the
integrals at vanishing frequencyv and wave vectork in a
generalized form. The one-loop integral~A8! has the struc-
ture

I C5E
k8

1

~a1k82!~b1k82!
. ~A23!

The two-loop contributions~A10!–~A15! contain five inde-
pendent two-loop integrals of the following structure:
I C1
5E

k8
E

k9

1

~a1k82!~A1k92!@B1~k81k9!2#@e1mk821nk921~k81k9!2#
, ~A24!

I C2
5E

k8
E

k9

1

~a1k82!~b1k82!~A1k92!@e1mk821nk921~k81k9!2#
, ~A25!

I C3
5E

k8
E

k9

k82

~a1k82!~b1k82!2~A1k92!@e1mk821nk921~k81k9!2#
, ~A26!

I C4
5E

k8
E

k9

k92

~a1k82!~b1k82!~A1k92!~B1k92!@e1mk821nk921~k81k9!2#
, ~A27!

I C5
5E

k8
E

k9

k92

~a1k82!~b1k82!~A1k92!@B1~k81k9!2#@e1mk821nk921~k81k9!2#
. ~A28!
the
e

-

In order to obtain the dimensional pole terms, all integr
have to be calculated in thee expansion. For the calculatio
of the Z factors only it is necessary to expand the one-lo
integrals up to ordere0 and the two-loop integrals up t
order 1/e. The one-loop integral~A23! reads

I C5
Ad

e H 12
e

2

a ln a2b ln b

a2b J 1O~e!. ~A29!

For convenience we have introduced the geometry facto

Ad5GS 12
e

2DGS 11
e

2D Vd

~2p!d , ~A30!

with d the space dimension,Vd the surface of the
d-dimensional unit sphere, andG(x) the EulerG function.

For the first two-loop integralI C1
we obtain
s

p
@ I C1

#S5
Ad

2

4e H 1

m
ln

~11m!~m1n!

m1n1mn
1

1

n
ln

~11n!~m1n!

m1n1mn

1 ln
~11m!~11n!

m1n1mn J . ~A31!

Note that in the casem5n51 and a5A5B5e5j22/k2

the above integral reduces to the integral appearing in
well-known modelA ~pure relaxation model without mod
coupling terms and without secondary densities!. Inserting
this into the above result we obtainI C1

(m5n51)

5(3Ad
2/4e)ln 4/3, which is consistent with previous calcula

tions.
The pole terms of the second integralI C2

, Eq. ~A25!, and
the fourth integral, Eq.~A27!, are equal. They read
1-16
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@ I C2
#S5@ I C4

#S5
Ad

2

2e2~11n! H 11
e

2 F11 ln
11n

11m

2s ln
11s

s G2e
a ln a2b ln b

a2b J , ~A32!

where we have introduceds5m1n1mn. The above results
for Eqs.~A31! and~A32! are also consistent with the resul
given by Dohm in his modelF calculation. The pole terms o
Eqs.~A26! and ~A28! read

@ I C3
#S5

Ad
2

2e2~11n! H 11
e

2 F11 ln
11n

11m
2s ln

11s

s G
1e

b

a2b
2e

a2 ln a1b2 ln b22ab ln b

~a2b!2 J ,

~A33!

@ I C5
#S5

Ad
2

2e2~11n! H 11
e

2 F11 ln
11n

m1n

1
s

n2 ln
s

~11n!~m1n!G2e
a ln a2b ln b

a2b J .

~A34!

APPENDIX B: DEFINITION OF THE RENORMALIZATION
FACTORS

The renormalization of the Ginzburg-Landau-Wilso
functional~7! is well known within different renormalization
schemes@20,22,34,35#. The extended static functional dete
mined by Eq.~6! has been considered in detail in@13# using
the normalization condition approach and in@36# within the
minimal subtraction procedure. The justification of seve
relations between the staticZ factors mentioned below ca
be found in@36,37#.

For the order parametercW we introduce the renormaliza
tion factor

cW 05Zc
1/2cW , cW 0

†5Zc
1/2cW †, ~B1!

where Zc is a real quantity. The renormalization of th
fourth-order couplingu appearing in Eq.~7! is defined as
usual:

ů5kZc
22ZuuAd

21. ~B2!

k represents a free wave number scale. To complete
renormalization of Eq.~7! a Z factor

1

2
uc0u25Zc2

1

2
ucu2 ~B3!

is necessary to renormalize correlation functions contain
1/2ucu2 insertions. At least the correlation functio
^1/2uc0u21/2uc0u2&c ~the subscriptc denotes the cumulant!,
which represents the specific heat within the model, need
additive renormalizationAc2.
03610
l

he

g

an

Concerning the Ginzburg-Landau-Wilson model we wa
to remark that the usage of the minimal subtraction appro
as a renormalization scheme makes it necessary to intro
a renormalization for the parameterr in the form of

r̊ 5Zc
21Zrr . ~B4!

This renormalization is connected to the renormalization
the 1/2ucu2 insertions by the relationZc25Zc

21Zr . As a con-
sequence no necessity is given to consider correlation fu
tions containing 1/2ucu2 insertions explicitly within the mini-
mal subtraction approach apart from̂1/2uc0u21/2uc0u2&c
itself.

The additional quantities in the extended static functio
~6! require the introduction of further renormalization fa
tors. The secondary densitym and the coupling parameterg
between order parameter and secondary density, which g
antees a nontrivial static critical behavior of the thermod
namic derivatives, will be renormalized analogously to E
~B2! by

am
1/2m05Zmm, ~B5!

am
21/2g̊m5ke/2Zc

21Zm
21ZggAd

21/2. ~B6!

Note that we have introduced theZ factorZm instead ofZm
1/2

contrary to most of the definitions in the literature. Our de
nition is more convenient when one wants to maintain c
sistency with the definitions necessary in modelF8 ~describ-
ing the critical dynamics at the superfluid transition
3He-4He mixtures@16#! where a matrixZm had to be intro-
duced.

Since the static functional of modelC* is a Gaussian
extension of the Ginzburg-Landau-Wilson model, no new
dependent renormalization factors are necessary. Thus
tions between theZ factors of the Ginzburg-Landau-Wilso
model and the modelC* parameters arise. First the reno
malization factor of the couplingg is determined by

Zg5Zm
2 ZcZc2, ~B7!

leading with Eq.~B6! to

am
21/2g̊m5ke/2Zc2ZmgAd

21/2. ~B8!

Second, the renormalization factorZm of the secondary den
sity is determined by the additive renormalizationAc2(u) of
the specific heat in the Ginzburg-Landau-Wilson model. T
gives

Zm
22~u,g!511g2Ac2~u!. ~B9!

In the dynamic functional auxiliary fieldsc̃W 0 and m̃0 are
introduced, which renormalize like

c̃W 05Z
c̃

1/2
c̃W , c̃W 0

†5Z
c̃†
1/2

c̃W †. ~B10!

The renormalized auxiliary densityc̃W † is complex conju-

gated toc̃W quite analogous to the corresponding unrenorm
1-17
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ized densities; thus, we haveZc̃†5Zc̃
† . The secondary den

sity is conserved and therefore no new renormalization fa
is needed for the corresponding auxiliary density. It sim
renormalizes:

am
21/2m̃05Zm

21m̃. ~B11!

At least the kinetic coefficients renormalize as

G̊5ZGG, aml̊m5Zll. ~B12!

The Z factors in the above equations contain static contri
tions which may be separated:

ZG5Zc
1/2Z

c̃†
21/2

ZG
~d! , Zl5Zm

2 Zl
~d! . ~B13!
y

y

e

B

y

i-

-

V.

03610
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y

-

The absence of any mode coupling in modelC* leads to
trivial renormalization factors of the dynamic parts of th
kinetic coefficients:

ZG
~d!51, Zl

~d!51. ~B14!

Thus Eq.~B13! reduces in modelC* to

ZG5Zc
1/2Z

c̃†
21/2

, Zl5Zm
2 . ~B15!

Only the renormalization factorZ
c̃†
21/2

has to be determined
from dynamic perturbation theory.
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