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We calculate the field-theoretic functions of the generalized dynamical n@tein which a conserved
secondary density is coupled to a nonconserved complex order parameter, in two-loop order. We show that the
fixed points in this extended model are equal to the fixed points obtained in nbdeth a real order
parameter, which has been introduced by Halperin, Hohenberg, and Ma. Our results correct long-standing
errors in the field-theoretic functions in modélpublished by several authors leading also to different fixed
point valuesw* for the ratio of the two time scales involved. The stability regions of the fixed points, which
remained partially unclear, considered in a “phase diagram”—whose axes are the spatial dinteasidn
number of order parameter componentsare now clarified. Especially an anomalous region found by pre-
vious authors, in which the scaling properties remained unsolved, does not exist. There are only two regions:
one with a finite fixed poinv* where the dynamical exponentof the order parameter =2+ a/v and
another region where* =0 andz is equal to the modeA value.
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I. INTRODUCTION regionn<2), and the anomalous region Il with* =« (in
one-loop order this is the region>n>4). The one-loop
The dynamical critical behavior of a nonconserved ordeforder borderline valum=4 also separates the region with
parameter(OP) may be described by the simple time- largen wherea=0 (a being the static exponent of the spe-
dependent Ginzburg-Landau modi&] (modelA). However, cific hea) from the region with smalh where o>0. In the
the critical dynamics is determined by the slow modes andirst region the conserved density decouples from the OP in
therefore conserved densities which couple to the OP have the asymptotics and need not to be taken into account for
be taken into account. In 1974 Halperin, Hohenberg, and Masymptoticcritical properties. This is quite different in region
introduced such a modg2] in which a conserved secondary Il where the conserved density influences the dynamics of
density (usually the energy density itsglfs coupled to the the OP in such away that both variables scale withsthme
nonconserved OP. The OP relaxes with the relaxationlfate exponentz but differentfrom modelA. Quite independent of
and the conserved density diffuses with the diffusion mate the loop order in region Il the value=2+ «/v (v being the
This model has a wide spectrum of physical applicationsexponent of the correlation lengtin the anomalousregion
such as nonequilibrium relaxatidl], finite-size effects in the value ofz and the validity of dynamical scaling behavior
the dynamics of the Ising modpd], systems with quenched remained unclear. Model was subsequently treated within
impurities [5], and aging at criticalityf 6]. Physical realiza- the field-theoretical version of renormalization group theory
tions can be found in such different systems as intermetallicip to two-loop order by Brezin and De Dominidi&3] and
alloys [7], layers on solid substratg§], and supercooled Murata[14].
liquids [9]. The results of Brezin and De Dominicis in two-loop order
Moreover, features relevant for models with energy con-corroborated a scenario where the anomalous region exists.
servation(model C) have been observed in another modelThey calculated the field-theoreticand g functions which
describing the critical dynamics at a tricritical poifitO]. allow one to calculate the fixed points and corresponding
Another interesting application of mod€l is found in the critical exponents. However, the analysis was restricted to
field of quantum chromodynamics describing the dynamicghe e-expansion technique. They obtained from their calcula-
of quarks and gluons when one takes into account théons at small values o& boundary curves within region Il
baryon-number conservation lad1,12,. separating region Il from region Il, although the extension
The theoretical analysis of mod€l by Halperin, Hohen- of the anomalous region to the whole phase space could not
berg, and Ma to first order ia=4—d led to suggest various be given. Further peculiarities—namely, a nonuniformity—
“phase diagrams” in the two-dimensional space whose axesppeared in the two-loop calculation when taking the limits
are the spatial dimensiott and number of the OP compo- e—0 andw* — o, which was believed to be the fixed-point
nents,n. The “phases” in this space were characterized byvalue. A further subtlety appeared in region I, since the bor-
the values of the stable fixed point for the time scale ratioderline fora changing sign and the fixed poimt* =0 being
w=TI"/\ of the kinetic coefficients of the two dynamical den- stable became different. This led to a small regigrnvhere
sities. Three regions were found: region | with the fixed pointthe conserved density scales with=2+ «/v whereas the
w* =0 (in one-loop order this is the regian>4), region Il OP still scales with the dynamical critical exponent of model
with O<w*=n/(2—n)<« (in one-loop order this is the A. In the other region I, called,| the conserved density
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decouples from the OP and its asymptotic critical dynamicss purely relaxational while the dynamics of the secondary

is described by modeA. density is determined by a diffusion process. This leads to
Subsequently Murata performed a second-okderpan- the dynamic equations

sion and gave explicit results for the time ratioThe fixed-

point values contrary to exponents are dependent on the 3@0 3 )
renormalization procedure and cannot be compared with the —=—2I'—+40,, (on)
results of other methods. However, he recognized that in the ot 5%
anomalous region I, the fixed-point value wf showed an
essential singularity and that this property might, even in the >t
. : - b o OH .
anomalous region, restore scaling and make the critical ex- NAL RN A 9‘{/}, 2
ponent take the value=2+ a/v. at 5@0
Halperin, Hohenberg, and Ma then compared their
second- and higher-order results with results known at the amy . SH
time [15] and found agreement with the boundary curves of Tzhmvzé—moﬂL O, 3

[13]. On the other hand, the peculiarities in the two-loop
order and the results 4] led them to the supposition that which we will call modelC* in the following. In the case of

the anomalous region might not exist, but they were unabl% real order parameter it reduces to mo@de]. The super-

to draw a definite conclusion. . . . .
Recently we calculated the field-theoretic functions for aScrlpt T denotes complex-conjtigatoe d quantities. The kinetic

much more complicated model—for the dynamics of coefficient of the order parametBe=I"" +iI'" is also a com-
He3-He* mixtures at the superfluid transition—containing Plex quantity. The stochastic forceg, fulfill the relations
the modelC functions forn=2 as the limit of the properly

reduced more complicated moddl6]. Reducing our result <0¢_(x,t)0},_(x’,t’))=41°“’5(x—x’)5(t—t’)5ij A
for the field-theoretic functions to the simpler modelit ' !

turned out that our results differed from those [a8]. A o - , .
calculation of the critical dynamics of mod€l for arbitrary (Om(X,1) Or(X" 1)) = = 2AV=S(X—X") S(t=t").  (5)
n[17] then showed that the two-loop calculation[&8] was
incorrect for alln. The correct result, however, allows us
now to perform a systematic analysis of mo@ah two-loop
order (a short account was given [i8]) by calculating the L ni2 o
complete phase diagram and performing the limit to the one- _ d o7 12 g, Uy

loop results. This shows that no anomalous region Il exists H _f d X[§T| ol *+ 5;1 VoV ot EWOl

and that the standard systematiexpansion breaks down for

2<n<4. Previous results for the boundary curves at small , 1, -, e

were due to a mistaken application of taexpansion, which + 5 8mMy+ 5 YmMol tho|“— hmMo (6)
cannot catch the essential singularity appearing in the fixed-

point functionw* (e,n). The boundary line previously found with | o] 2= - % The centerdot denotes a

between regions | and Il is correct. This was possible be_}n/Z)-dimensional scalar product. The above static func-
cause the authors calculated the borderline by the equality lonal may be reduced to the Ginzburg-Landau-Wilson func-

the dynamical critical exponents in the different regions. tional with comolex order parameter by intearating over the
In the following we reconsider modél starting from a P i P y 9 9
secondary density:

generalization—modeC* —to a complex OP and in conse-

The critical behavior of the thermodynamic derivatives fol-
lows from the static functional

guence from an OP dynamic equation with a complex relax- 1 ni2 g

ation ratel’. This generalization is then for=2 a limiting H zf A% =% G2+ = Vi Vit — a4t
case of modeF [19] without reversible terms. We then re- v 2 [ 2 2:1 YioV dio 4! o

strict our further study of the fixed-point properties to model (7)

C and calculate the fixed points, the stability exponents, and ]

the flow of the dynamic parameters. A detailed comparisorf he parameters and u in Eq. (7) are related tor, T, ay,
with the earlier field-theoretic results is then added. Severa¥m. andhy in Eq. (6) by

explicit calculations are collected in the Appendixes. L. w5

Yol g3 2m, (®
aI’T'I am

F=7+

N[ =

I. MODEL C* EQUATIONS

Let us consider a system including a complex uncon-The choice of an 1f/2)-component order parameter in the
served order parametég(x,t) and a real conserved second- equations above guarantees that the static functi¢Gaknd
ary densitymg(x,t). The order parameter is assumed to be &7), and also all static properties derived from them, are fully
vector withn/2(n=2,4,...) components, while the secondary equivalent to the corresponding static properties of a system
density should be a scalar quantity. In the absence of anwith a real n-component order parameter. The ability to
mode coupling the critical dynamics of the order parameteeliminate the secondary density in E@) also leads to a
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relation between the correlations of the secondary densit¥jty 4, m, 3, i or any model parameter; . The only excep-

and order parameter correlations. For the first and secongbn in the definition of thef functions is the additive renor-

cumulants one obtains malizationA ;2 of the specific heat introduced in E(B9),
which leads to

1/, /1.
<m0(x)>:a_(hm_ 7m<§|¢0(x)|2>): (9) 2 d 2
m sz(U)ZKEszKa(ng K Ay2). (12
02
1. 1.
(mo(x)mMg(0))e=—1 1+ Tm < > | wo(x)|2§ | 1//0(0)|2> ) : The relationgB7) and(B9) between the statiZ factors men-
am am c tioned in Appendix B lead also to relations between the
(10)  functions, which are
Note that the angular brackets in E¢®) and(10) have to be £, (U, Y)=2Lm(U, V) + Ly(u) + £ y2(u) (13

calculated with a probability density expH)/A on the left-

hand side and with exp(H,)/A/" on the right-hand side, and

whereN and N are appropriate normalization factors. The 1

st_atl_c and dynamic vertex functions ha_ve to be_ calculated £(Uy) = —yZsz(u), (14)
within the usual Feynman graph expansion. Details concern- 2

ing the dynamic perturbation theory are given in Appendix
A.g y P y g PP respectively. The second relation can be used to elimifjate

in the first one. Thus we obtain
Ill. RENORMALIZATION OF MODEL ~ C* £,(UN) = 2B 2(U) + £y (U) + £ (), (15)

Several renormalization schemes are available in the litgyhere all functions on the right-hand side are determined by
erature, which can be separated into two main classes. Thge Ginzburg-Landau-Wilson modél). The ¢ functions of
first one uses expansion and the second one calculates alipe kinetic coefficients’, I'T, and\ follow from the Z-factor

functions directly atd=3 where the theory is super renor- rg|ation (B15) by inserting them into Eq(11). We obtain
malizable[20]. The second class makes it necessary to iden-

tify and sum up the contributions of thE; shift and the N t 1
correlation length carefully in all functions in order to avoid ~ $r(W I I y) == r(u,y, PN + 5 8y(u),

singularities at=3, while in the first class it is necessary to (16)
collect singularities atl=4 in renormalization factors. This

can be done in several ways like using normalization condi- §Ff(u,y,F,FT,)\)=§}(u,y,l“,l“*,)\), (17)
tions or performing a minimal subtraction in which the pole

terms only are collectefor an overview se¢21]). Also a O(U,y)=2m(u, ). (18

renormalization scheme which uses methods of both class

has been developg@2] where the renormalization factors With Eq. (14) we obtain for the third equation

are detgrmlned by using theexp_apsmn W|t_h the minimal 4 (U, y)= yZB¢z(u). (19)
subtraction scheme, while the finite amplitudes are calcu-
lated atd= 3. In order to obtain fixed points within dynamics the complex

Because renormalization of modglis known in principle  time scale ratio
[13], we have shifted the explicit introduction & factors

into Appendix B. There we have defined Zlfactors in order W E (20

to clarify the notation we will use. We want to emphasize N

that our introduction of renormalized parameters is not re- ) ) _

stricted to a specific renormalization scheme. is usually introduced. Inserting Eql6)—(19) into ¢,,= {r
— ¢\ we see immediately that thefunction of the time scale

A. { functions ratiow is

The ¢ functions following from the renormalization fac- . 1 _ 1 N2
tors introduced in Appendix B are not uniquely defined so Cul Uy, W, W) = Eg,,(u) ng(u,y,w,w )= 7 ByaW).
that they are differently introduced in the literature depend- (21

ing on the authors. We will use in statics and dynamics the ) i )
definition [23] The ¢ function ofw' is the complex conjugate of ERL).

dinz* B. B functions

gai({aj}): dink (1D The B functions for static or dynamic model parameters
«a; are generally defined as
in the following, Where{a]-}={u,y,I‘,FT,)\} is the set of
static and dynamic model parameteasstands for any den- Ba({ajh)=ail—ci+La({ah)], (22
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wheregc; is the cutoff dimension of the corresponding param-perturbation expansion. All other functions are known from

eter. For the static couplingsand y the cutoff dimensions
have the valueg and €/2, respectively. All kinetic coeffi-

cientsT, I'", and\ are dimensionless quantities regarding

the cutoff dimension, which means=0. Equation (B8)
leads to the stati@ function

BN =] = 5= LW = Ln(u )+ LU | (23

The B function of the time scale ratio can be written as

Buu, y,w,wh) =w,(u, y,wwh), (24)
which follows immediately from Eq(22). Since the cutoff
dimensionc; of all kinetic coefficients is zero, it is zero also
for ratio w; see EQ.(20). The flow equations of the three
relevant model parameters are explicitly given by

du B
| m—ﬂu(u), (25
dy
| g7 =Bu.), (26
dw
| W:ﬂw(u!‘}/’W!WT)- (27)

The complex equatiof27) includes two separate differential
equations, one for the real pavt and one for imaginary part
w”:

!

w
|W=,8\;V(U,’y,W,WT), (29)

’

d
|—|=ﬁ;’v(u,y,w,wT). (29

Each of theB functions above is expressed by certéafiunc-

tions according to its definition and the relations in Appendix

B. Equation(B2) leads immediately to the expression
Bu(u)=u[—e=2{,(u)+ L, (W)].

Using the relations between thefunctions given in Egs.
(13)—(21) we obtain for modeC* the following 8 functions
for y andw:

(30

€ 1 5
By(uy)=9| — 5+ L)t 5y B¢z<u>), @Y
BW(U’Y!Win)

1 1
=w<§§¢(u)— Eg’y(u,y,w,w*) — 7ZB¢2(U)) .
(32

Only one complex dynami¢ function—7+—appears in the

the Ginzburg-Landau-Wilson modér).

C. Two-loop results

The static ¢ functions of the Ginzburg-Landau-Wilson
model (7) are well known up to two-loop order and in
higher-loop order within several renormalization approaches.
We will restrict ourself to the minimal subtraction scheme in
the following. The stati¢ functions in this approach in two-
loop order are

n+2 )
{ylu)=——=5-u7, (33
n+8 5n+22 )
fu(u)= —— U= ——Uu? (34)
n+2 5
glpz(U):TU(l—l—zU), (35)
n
B¢z(u)=§. (36)

Two-loop expressions for the dynamic functigp+ or {r,
respectively, have been calculated by several authors so far
only for the real modelC (real order parametef=y'= ¢

and real kinetic coefficienf =T""). Two results for the dy-
namic { functions have been publish¢di3,19 (the second
reference treats only the special caise?2); a third calcula-
tion has remained unpublishg@4]. All of them obtained
different results for thel function. Although it remained
unclear which result is the correct one, some comments
could have been madé) The result for{ of [13] contains
some very strange properties even &rl (see Chap. VI

(ii) The result of 19] did not reduce to modéA in the limit
where the ratio of the time scales goes to zero and the
static couplingy stays finite.

An answer to this open problem can only be given by an
independent calculation. Our calculation uses structures in
the perturbative expressioh6] which allow a separation of
static and dynamic contributions before the renormalization
is performed. Since the correlation length remains unrenor-
malized, a perturbational resummation of the correlation
length leads to expressions which are easy to survey. Finaly
only five independent integrals remain whose poles deter-
mine the renormalization factors. The structure of the pertur-
bation theory also give rise to specific relations of various
vertex functions and allows internal consistency checks of
the expressions. Details are given in Appendix A 2. From our
two-loop calculation we obtain the dynanjdunction in the

above equations and has to be determined from dynamicomplex modelC*:
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-~ fe o wy? N wy? [n+2 1L L 20 N ' ' ' T
g,/,T(U,’y,W,W )_ - 1+w 1+w 3 u( —Lo™Xg l) L \\ ) o
. region |,; Z=2+cn
N wy? [n w  n+2 . 15 N 1
1+w'\2 1+w 2 (Lotxba) F e ) ‘/u
1+2w (l-i-W)2 . 10F \ < region |:z=2+cn |
— \Y
Ttw " 1tow N
n+2 oL 1) @7 05} A 1
- ——=u X -1,
18 0 e 4 region Il: z=2+alv
where the following notation has been introduced: 0o : , : 5 : s 4
W n
X1 =2+ —, (38) . . : : :
w FIG. 1. Regions of existence of different fixed points;(n)
separates the region with nondivergifg*=0, right side from
wh|2 those with divergindg y* #0, left sidg specific heatdashed curve
1+ The solid curvee (n) separates the region where the fixed point
w
Lo=2 |”—WF' L:=In — (39 p*(e,n)=0 is stable(right side from those where it is unstable
14+ — 142 — (left side.
w w
The ¢ function ¢ in Eqg. (16), which corresponds to the _ 6e 3(3n+14)
. : .. . . uy= 2 €. (42)
kinetic coefficient, is given by n+8 (n+8)
2 2
w 1w n+2 . . :
Lr(u,y,w,wh) = r - u(l—Lo—x;L4) Independent of the value for the fixed pointwfy* =0 is a
I+w 21+w| 3 fixed point for the couplingy as the second equation in Egs.
wy? [n W n+2 (41 ;hows. The_re exist_ also nontrivial fixed poing qle-
+ w2 17w 2 (LotXx4Lq) pending on the fixed-point values aof From theg function
w w (31) one can see that the equatigh(u*,y*)=0 has the
142w (1+w)? follqwing solutioni .
Trw n 172w (i) In the casau* =0 one obtains
nt2 , 1 , 2¢
+¥U L0+X1Ll_§ . (40) 7*2: ’yO:F (43)
In the case of the real modé& (w=w") the expressior B .
+x,L, reduces td.=3 In 4/3 in Eqs(40) and(37) and{ is (i) In the case ob* =uy one has
then in agreement witf24].
o
*2_ 2 _
IV. FIXED POINTS AND STABILITY Y =ve VB ) (44)

A. Fixed points

where use has been made of the identification of the specific

] . ] ) . heat exponend by the ¢ function {,,2. Both expressions are
The fixed points of3 functions which are based on static \4id in all orders of perturbation expansion. Taexpanded

functionals of the typé&6) or (7) are well known. Hence it is expression of Eq(44) reads in two-loop order

sufficient to give a short survey. The fixed points and v*

of the static couplings are determined by the conditions

1. Static fixed points

2¢ (n+2)(13n+44)
Bu(UF)=0, B,(u*,y*)=0, (41) Ye=nnr ) | 4T T (nr8)?

e|l. (45

independent of the model type because both the complex

model C* and the real modeC use the same static func- Considering thes-expanded expression fa in the whole

tional. e-n plane it turns out that there is a region in whigf is
The fixed point values of the fourth-order couplingare  negative and therefore no real fixed-point value fagxists.

well known from the¢* model. They ardi) the Gaussian The boundary of existence,(n), of a real fixed-point value

fixed pointu* =0 and(ii) the Heisenberg fixed-point value for vy is determined byyé(e,n)=0 (corresponding tax=0)

u* =uy, which readse expanded in two-loop order and is drawn as a dashed line in Fig. 1.
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2. Dynamic fixed points

The dynamic fixed points are determined by the zeros of
the B function of w, which leads to the two coupled condi-

tions

BGV(U*,Y* ,W*,WT*)=0, BQ@(U*,Y* ,W* ,WT*)=O,
(46)

in the complex case, and to the single equation

Buw(u*,y* ,w*)=0, (47)

in the real case. The static fixed points determine the allowed

dynamic fixed points when inserted into E¢46) or (47).
An examination of the two equations in E¢46) reveals that

PHYSICAL REVIEW E69, 036101 (2004

TABLE |. Fixed points of modelC.

Y p* w*
0 0 Osp*=<1 O=sw*<w
Yo 0 O
Po Wo
1 oo
Uy 0 0 0
1 oo
Yc 0 0
Pc We
1 o

no additional fixed points with nonvanishing imaginary partthree types of dynamic fixed points: namepy,=0, p* =1,
appear in modeC*, which means that we have for all fixed and a fixed-point valug* = p¢ resulting from the equation

points

W'* =0, (49)

Thus Eqs(46) reduce to Eq(47) at the fixed points and their

discussion can be restricted to mo@xin the following.

In order to simplify the following discussion of the fixed
points in the real modeC it is more appropriate to change

from the time scale ratiav to the parameter

w

P 1vw

(49)
This transformation maps the infinite range 84of w to the
finite region ranging from 0 to 1w=o corresponds te
=1). The functionZ,,(u, y,w) in Eq. (40) can be rewritten as
a function{,,(u, v,p):

([ n 2_1 , N+2 1-L
n n+2
+py?| 5= p— ——L+(1+p)In(1-p?)
2 2
n+2 ) 1 50
e i) 0
The flow equation foip,
dp
L7 =Be(U7p), (51

follows from Eq.(22). From the definition49) and(27) we
obtain theg function

Bp(U,y,p)=p(1=p)Lw(U,y.p), (52)

with ¢, given in Eq.(50). A survey over the fixed points in
model C*/C is given in Table |. For convenience we have

listed not only the fixed-point values @f but also the cor-
responding values of the time scale ratiqlast column in
Table I.

At each static fixed point defined ly* andy* except the
Gaussian fixed point, thg function (52) basically implies

gW(U* ’ 7* ipC) =0.

At the Gaussian fixed poinu¢ =0,y* =0), {,, vanishes
independent of the value pfand thus each fixed-point value
between 0 and 1 is allowed; see Table |. Becaflsds a
power series iu and vy, this is true in all orders of perturba-
tion expansion.

In the casau* =uy, y* =0 a special situation occurs be-
cause the possible values @f depend on the order of per-
turbation theory. In two-loop ordef,, in Eq. (50) is always
different from zero due to the? contribution of modelA.
Thus only two corresponding fixed poingg =0 andp* =1
are allowed, which is also valid in all higher orders of per-
turbation expansion. The structure outlined in Table | is valid
in two-loop order. In one-loop order these twdixed points
degenerate to a line of fixed points ranging from 0 to 1. The
reason is that,, is proportional toy? and nou terms appear
in one-loop order. In the casg"=0 the one-loop function
Zo(U*,y*,p*) is zero, independent of the value gf.

In order to obtain the solutiong* from the nonlinear
equationZ,,(u*,y*,p*)=0 we have two ways to proceed.
The first one is to use strictly the expansion up to the
second order and the second one is to look numerically for
solutionsp* of the nonlinear equation.

Inserting the static fixed-point values waindy from Eqs.
(42)—(45) up to ordere? into ¢,,(u*,y*,p*)=0 (note that
L, 1s then proportional t&) and performing the expansion
consequently, we obtain theexpanded fixed-point values of
p for two different values of the* (see Table)l In the case
of u* =0,

1+n
2

n?\ n+2
|n(1—z>—TLH. (53)

In the case of the Heisenberg fixed poirft=uy,

LS P
po=3|1+3

pe=5{1+bee}, (54)
_(n+2) 8-n 4-n n2>
b= gy |7t g |n(1—Z
i3l
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T T T T T T v T
g (UH,Yc,pZO):O. (56)
@, Tl “”
osl 1 loop ~, 7 ‘8/_ 1 This reads explicitly to all orders
L V ;=0.5 :
— L o
S 06 H cp——=0, (57)
N : v
¥ 04F .
[oN |
I e=1 ! where we have used {,(u)—{3t(u,0p)]2= g(FA)(uH)
02 7 :‘ =cy, Egs.(19 and(44).
J (] In Fig. 2(@) the nonlinear solution for the fixed point at

€=0.25 appears to reach the valudetjuivalent tow* = «)
y T - T - T y T but actually this is not the case. In contrast, the dashed one-
101 (b) ST y loop solution does have the value 1 in the considered region.
I The fixed-point value remains below 1 but stays so close to it
that it cannot be resolved in the figure. This can be verified
by examining{, very close atp=1. Expanding the fixed-

/
08+ 1 |oop —~— Y /8=025
L /

7/,

14
|
-
N
= 08 i , Y, :' point valuep* about 1, the leading terms;(e,n) read
;2-’/ 04l p —¢e=0.5 :_ ,
Q g pale,n)=1-05exp—a(e/n)/y**]=1-x, (58
02 ' _1 (=
. ° ! with
00 1 1 |
0 1 2 3 4 n1n+2*1Ly*2n1n+2
n alen) =51t - (1-b+ 5|51 =
FIG. 2. Fixed point fop=w/(1+w) as a function of the order (n+ 2)u*2 1
parameter dimension for several space dimensiody e=4-d). - Ty*z( - E) (59

(a) Results of the nonlinear solution of E@L7) and (b) results of

the e expansion. The one-loop order has not changed the region of . .
existence of the fixed point contrary to cse The one-loop fixed Proving to be smaller than 1. Thus there is no anomalous
points are plotted as dashed lines in both figures. region where the fixed-point value is 1. Therefore the dy-

namical critical exponent is in all orders of perturbation

. , . . , theoryz=2+ o/ v [this is easily derived from Eq21); see
One can see that obviously in any dimension the existenc 3].

borderline lies am=2. This is caused by the logarithmic = Ope also sees in Fig(@ that the nonlinear solution for
terms in two-loop order. The finite fixed point<Qc<<1  the fixed point reaches in the limi—0 the one-loop solu-
only exists fom<2; otherwise, the logarithms have negativetjon in the region Bsn<4. The e-expanded solution in Fig.
arguments. This type of logarithmic term is not restricted to2(b) reaches the one-loop fixed-point values only in the re-
the second order of perturbation expansion but also appeagson 0<n<?2.

in higher-order contributions, restricting the existence of the

e-expanded solution always tosh<2. Thus it seems to be B. Stability of the fixed points

an artifact of thee expansion, indicating that it is a less . o : le wh . I
suitable method to treat fixed points of time scale ratios in. A fixéd pointis considered stable when an arbitrary sma

model C. In [13] the authors tried to overcome this border- deviation of the initial values of the flow equations from the

X ; ; L . . fixed point values leads to a flow which runs into the fixed
!\?ii \?v;;;/nsertlng thes expansion iteratively, in a nonsystem point again. Linearizing the flow equatiof25)—(27) around

Instead we calculate the fixed points @by solving Eq. the fixed-point value one can introduce the transient expo-

(47) directly [25], avoiding the artificial existence boundary nents as the eigenvalues of the matrix
atn=2. This procedure is valid in our opinion sinpandw, By By IBw IBut
respectively, is not a coupling and appears in ghieinction - ==
in a nonpolynomial way. In order to illustrate this we have
plotted in Fig. 2 the fixed-point valugs: as a function oh

au au au au
(7By IBw  IPut

at different dimensiong=1 (d=3), €=0.5, ande=0.25. In B 0 dy dy  dy
Fig. 2(a) the nonlinear solution is drawn while in Fig(®2 —|= . (60)
the corresponding results of theexpansion54) is given. 94 0 0 % IBut
As can be seen from Fig(& a new borderline appears as ow  Iw
a function ofe where the nonzero solution, which has to be By  IBut
positive, goes to zero at finite nonzeno This defines the 0 0 Fmillewa

existenceborderlinee;(n) (see Fig. 1 given by the equation

036101-7



R. FOLK AND G. MOSER PHYSICAL REVIEW E69, 036101 (2004

From the structure of Eq60) we can see that the derivatives to uy . According to Fig. 1 twoy fixed points exist. Calcu-
of the staticg functions decouple from the dynamic deriva- lating the transient exponents frog, we obtain
tives. Thus we obtain the static eigenvalues

By B, Y =0=0,=w, (69)

)\u— ou )\72(9_’)/' (61)

. : . _ Y =ye= 0=~ oc. (70)
The complex time scale ratio and its complex conjugated
form a two-dimensional subspace with eigenvalues

1 {&ﬁw 9B (aﬁw I?BWT)Z 9By aﬂm]

The e-expanded transient exponanf reads in second order

T2 ow T aw oW ow owt ow (n+2)(13n+44)
.= 5| N—4+ > €. (71
(62 2(n+8) (n+8)
In the case of the real mod€l the above eigenvalug§2)

reduce to The stability of the twoy fixed points depends on the sign of

¢, Which itself is dependent on the value mfThe condi-

N, = _ﬁlﬂ N =0 63) tion is now that the expression in the bracket in Etf.) has

+— fw -

Coow’ to be positive.
. . . ) ) Considering only the first orddone loop in the pertur-
The transient exponents for a given fixed point are defined agation expansion we see that the boundary of stability would
the eigenvalues taken at the corresponding fixed-point valugse n=4. Forn>4 we would havew,>0 which means that
{af} of the parameters. Since for mod@) \ _ is zero, in  for this case the fixed point* =0 would be stable and that in
any case this means that a nonzero initial value of the imagithe casen<4 the fixed pointy* =y, would be the stable
nary part ofw decays very slowly(in fact logarithmically;  one. The second-ordeftwo-loop) perturbation expansion
see Sec. Y. adds a positive contributiofordere termg to the expression
N o _ in the brackets shifting the boundary to lower valuesnof
1. Stability of the static fixed points The boundary is now determined by the equatidr 25n2
The following considerations are valid for both the com- +70n—168=0 (at e=1) from which we can immediately
plex and real modes. The static transient exponents are  see that the change in sign occurs betweernl andn=2.
As a result we obtain that the fixed poipt = y is stable in

~ 9By the casen=1 only and that for all other order parameter
“u= 0 o (64) component numbera=2 the stable fixed point ig*=0.
e} ={al) The stability properties of the fixed points strongly change
with the step from one-loop to two-loop calculation, espe-
E% . (65) cially for physically relevant systems with=2 andn=3.
7 ady {at={a¥} As long as only the static critical behavior is considered, the

secondary coupling is of less importance because the criti-
The two transient exponents define the stability of the stati¢al behavior is completely determined by the fourth-order

fixed points. The conditions coupling u. The stable fixed point ire expansion is the
Heisenberg fixed point* = uy, for all n. With respect to the
0,>0, ©,>0 (66) critical dynamics of modelC the fixed-point value of the

] o ) ) stable static coupling is most important since it governs the
define a region in the space dimension and order paramelgyteraction of the two modes. These considerations are cor-
component(e-n) plane in which the considered static fixed yoporated by higher-loop order calculatidi2§]. The border-
point is stable. Of all static fixed points listed in Table 1 only jine curve—wherew,(n,e) = 0—has been discussed [i27]
those which fulfill Eq.(66) are stable and therefore deter- gjng resummation procedures.

mine the critical behavior for certain order parameter com- Eor dynamical calculations a two-loop perturbation ex-
ponentsn and spatial dimensiond. The static fixed points  hansjon is essential. Moreover, as far as the stability of the
are well known and will be briefly discussed. Within the fixed points of the time scale ratiw (or p) is concerned, it
Ginzburg-Landau-Wilson model the transient exponents ar&nows a similar strong dependence on the order of perturba-
tion expansion, as the fixed-point structure discussed in the

* — —
U =0=0,="¢ 67) previous subsection.
. 3(3n+14) . o .
U =up=w,=€l 1— (n+—8)26 . (68 2. Stability of the dynamic fixed points

Within dynamics there are differences in the transient ex-
Thus ind= 3 the Heisenberg fixed point, is the stable one ponent in modelC and modelC*; however, insertingyv”*
becausev,, in Eq.(68) is positive for all values ofi. We only =0 one obtains Eq(63). Therefore, the dynamic transient
need to consider thg andw fixed points which correspond exponent

036101-8



CRITICAL DYNAMICS OF STOCHASTIC MODEIS. .. PHYSICAL REVIEW E 69, 036101 (2004

3By TABLE Il. Stability of the fixed points of modeC in one-loop
o= (72 order.
{a}={a}
u* v p* Region
defines by the conditiom,,>0 the stability region of the " R
dynamic fixed pointv* for a given static fixed point* and Uk 0 O<p”<1 '
¥*. In order to include the fixed poin* = it is conve- Ye 0 Unstable
nient to consider the parametedefined in Eq(49) instead pc n<2
of w, leading to a stability condition 1 2<n<4
_9By . .
0= >0. (73 [we=n/(2—n)]. Inserting these values together with Egs.
{o}={af} (77) into Eq. (73) the one-loop transient exponents read
The two transient exponents are related by n, n ( ) n) )
W,=0="5%Ycr Wp=p.— 5|17 5|7c
©,= @y 2p* Lu(U*, 75 p¥) (74 T2 Tre 2y 2
and therefore coincide for the fixed poinfs#1 (w* finite). B ny ,
From Eq.(52) we obtain immediately wp=1=—| 1~ PIRECH (78)
‘9_/3;1(11 y,p)=(1=2p) LU, y,p)+ p(1— )%(u v.0) with the static one-loop fixed-point value
ap"p P)ew Y, p)Tp Papylpv
(75 2(4—n
, 2(4—n) 79

YeT e €
where{,, has been given in E450). From the same equa- n(n+8)

tion one gets A survey over the stability regions obtained from E&8),

Al n+2 which are valid for arbitrary, is given in Table II.
a—(u,y,p)= 72| 1- Tu(l— L) b. Stability of the fixed points in two-loop orddthe situ-

p ation sketched in Table 1l changes drastically when the two-
loop expressions of theand B functions are considered. The
degeneration mentioned above is now resolved and the sta-
bility regions change to a behavior which can also be ex-

pected to be valid in higher-loop orders.
]- (76) Let us consider at first the casé =0 which has been

completely undetermined in one-loop order regarding the

According to the determination of the fixed points, the dy-fixed-point values as well as the stability. According to the

namic transient exponent can be calculated in @) or ~ Previous subsection in two-loop order only the two fixed-

(73), respectively, by using either theexpanded fixed-point Point valuesp” =0 andp* =1 remain from the line of fixed

values or the fixed-point values found by direct solution ofPoints. At vanishingy only the modelA contributions remain

Eq. (47). From Table I it can be seen that in the cage in the dynamicZ function which is independent of the value

—u, we have to consider the transient exponents of fivedf p*. The ¢ function (21) reduces toz{¥(u), valid in all

fixed points. orders of perturbation expansion. Thus we obtain from Eq.
a. Stability of the fixed points in one-loop ordéxs al- (75 immediately

ready mentioned earlier the fixed points and also their stabil-

ity regions depend strongly on the order of the loop expanwaO:)f {w(up,0,0)=cn, wﬁ,oz)f —{w(uy,0,1)=—cn.

n n+2
§—p—TL+(1+p)In(1—pz)}

—pY*

1 1+p
220 P _ 2
+297(1_p In(1-p°)

sion. One-loop order represents a degenerated situation in (80
some sense because thdunction (21) and its derivative
(76) reduce to In two-loop order we hav§28,29
n al n+2 1
= g |42 2W_ .2 =— —2lL=Z=
§W_< 2)7 ’ &p Y (77) C77 36 UH(L 2/ (81)

lacking anyu contribution. In the case* =0 both functions
vanish independent gf or w, respectively. Thus all values
within the intervall[0, 1] are allowed fixed-point values for
p, giving a line of fixed points, and),=0 for all of them,

where the e-expanded expression is obtained when the
Heisenberg fixed-point valug, from Eq.(42) is inserted in
first order. The above quantity is always positive since it is
an anomalous dimension in an unitary field the$80].

making a statement to the stability impossible. In the cas@herefore the fixed point* =1 is always unstable. The sta-

y*2=9Z we have the three fixed poins"=0 (w* =0),
p*=pc (W*=wc), and p*=1 (w*=) with pc=n/2

bility region of p* =0 is determined bw.=0; with Eq.(71),
we obtain thestability boundary
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_ (4-n)(n+8)?
(M= 2+ 49)

(82

in the e-n plane. From Eqs(69) and (70) it is evident that
the curve(82) separates the region with stable finite fixed-
point valuey* =y from the region with stable fixed-point
value y* =0, or in other words the stability boundary is the
line where the specific heat exponents changes sign.

In the second case, whey =y, three dynamic fixed
points exist as shown in Table I. At vanishipghe ¢ func-
tion (21) reduces tol,(u,yc,0)= 1/ {,(u)— {yt(u,v,0)]

— 4, (U, y) = (u) = £, (u,y) which is also valid in all or-
ders of perturbation expansion. With Ed.9) this leads to
the transient exponent

© _

wp—O gW(UHl‘}/CyO):Cn_ 7(2:B$2(UH)

(83

With the two-loop resultg81) for ¢ andB 2(uy)=n/2 the

condition w2, =0 leads to the stability boundary curve

B (4—n)(n+8) B a4

6St(n)_ ) 3n+44 1 =61(n), ( )
(n+2) 78 L=3

with the two-loop fixed-point valuesl,; and yc inserted.
One sees that thetability border line between the fixed point
p*#0 andp* =0 coincides with thexistenceborderline of

PHYSICAL REVIEW E59, 036101 (2004

0.10
0.08
0.06

@ I
8 0.04

FIG. 3. Dynamic stability functionw(e,n) divided by e for
variouse (a) for the nonlinear fixed point Eq73) and (b) for the
e-expanded solution. The curves consist of the different parts cor-
responding to the stable fixed poinsee text

the nonzero fixed point to all orders of perturbation theory

since Eq.(83) is identical to Eq(57). Moreover, the stability

boundary condition is equivalent to the equality of the dy-

namical critical exponentg of the adjoining regionghere
region Il and regiony). This condition was used ifi5].

Equation (84) defines together with the boundaf$2)
three different regions in the-n plane in which different
fixed points (*,v*,p*) are stablgsee Fig. L

(i) region L : right to €,(n) with (uy,0,0) stable,

(i) region L,: betweene;(n) ande,(n) with (uy,yc,0)
stable,

(iii ) region II: left to e1(n) with (uy,yc.pc) stable.

In region |, the conserved densityecouplefrom the non-
conserved OP. In region, the densities are coupled but the
OP scales withz=2+c# [31] and the conserved density
with z,,=2+ a/v. Thus one may call this region the weak-
scaling region. In region Il both densities scale with saene
dynamical critical exponert= 2+ o/ v different from model
A
At p* =1 (w* =) one obtains from Eq50)

w(C)lz — LUy, ye, D)~ 1im |n(1—p2)—>—oo, (85)

p=
p—1

()

Wp=pe

=(1-2pc) {w(Uy,vc,pc)

Al
+Pc(1_Pc)$(UH'7’c1Pc) (86)

explicitly. This can be done either by using a stréatxpan-
sion or by a nonlinear calculation using the fixed-point val-
ues ofp found by direct solution of the equatigs),=0.

Inserting Eq.(54) into Eq. (73) systematically in thee
expansion we obtain the-expanded result for the transient
exponent:

© —
“p=rc 2(n+8)

_(2-n)(13+49)

(2—=n)(4—n)+

el (2L—1)

n
n+8

+(4—n)e[2(2—n)bc

n+8
(4—n)(n+2) 1
T (4_”)(Z_L>
n(2—n) nz) )
H3=nt gi|n L—z-]. 87

It turns out that Eq(87) is positive in the whole existence

from which it is evident that this fixed point is always un- 'egion of thee-expanded fixed point* = pc [see Fig. 8)].
stable. This is also the case for the corresponding existence region,

In order to obtain the transient exponent for the finiteWhene, _ is calculated from the nonlinear equation without
fixed-point valuep* = p- we have to calculate € expansion, which is shown in Fig(8 at severale. The
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transient exponent discussed so far is valid in the region 0.8 . T
where the fixed pointuy , vc,pc) is stable. However, in the L (a)
e expansion it turns out that within the stability region of

p* =pc there may be other stable fixed points present de- 0.6
pending on the dimension. From Fig. 1 one can see that at

constante the stable fixed point first changes 1o, y¢,0) at 04}
€,(n) and then to ¢,,0,0) ate,(n). The corresponding o
transient exponents of these two additional fixed points are 0.2

also drawn in Fig. @) in the corresponding region of stabil-
ity. Such a situation does not appear when one solves the
nonlinear equationgsee Fig. 8a)]. The existence regions 00
and the stability regions of the different fixed points then join
neatly.

In Fig. 3(a) one can see that the transient exponent drops
down to zero at the existence boundary, indicating the stabil-
ity boundary. For small values af in the region where the
fixed-point value is nearly see Fig. 2a)] the transient ex-
ponent also drops down to very small values. In this region
we cannot calculate the transient exponent numerically but
analytically. From the asymptotic solutigns in Eg. (58) we
can calculate the asymptotic transient exponeﬁf) as

M 1 L 1 " M
-40 -30 -20 -10 0
n+2
1—Tu*(1—L) log(l)

w;as)(e,n): y*4+X7*2

FIG. 4. Flow of(a) the static parameter? and(b) the time scale
, (88)  ratiowate=1 (d=3) at three physically relevant order parameter
component numbens=1, 2, 3. The initial values/?(l,)=0.8 and
w(ly)=0.246 are the same in all three caddsg(l)=log(1)].

L[N n+2 5
—y* 5_1_TL+ EIan

showing that the transient exponent always remains positivdemperature distances which correspond to flow parameter
The detailed behavior within this region has been shown irvalues ofl =1071° at best, it is obvious that their results are
Fig. 3(b) of Ref.[18]. far away of any asymptotic behavior.

A numerical calculation of the dynamic transient expo- The casen=1 is considered in more detail in Fig. 5. The
nents at some points in then space where real experiments flow for y? is plotted [Fig. 5a)] for three different initial
can be expected, which ake=1 atn=1, n=2, andn=3, conditions, one where the parameter starts at its fixed-point
reveals that in the case of=2 andn=3 its value is very value (the result has clearly to be a consjaand two with
small—namely, 0.0145n(=2) and 0.015 (=3). Forn  deviating values. To each of the flows three flows of the

=1 we obtain 0.045. Thus the fixed-point valw& =0 will dynamic scale ratio with different initial conditiong| ;) are
be only reached very slowly, but this is true even fof drawn in Fig. %b). Analogous to the static parametgione
=w¢ as shown in the next section. initial value ofw is the fixed-point value. The remaining two

initial values arew(l) =w*/10 andw(ly) =2w*. When y?
andw start at their fixed-point values the resultingflow is
V. FLOW OF THE MODEL C PARAMETERS a constant, which is a test for the correctness of the flow
equations. At deviating initial conditiong?(l,)# y* the
The behavior of the flow at different order parameterfiow of w drifts away from its fixed-point value at first even
component numbersis demonstrated in Fig. 4. The flows of when it starts precisely on it. This is because the nonasymp-
the static parametey” and the time scale ratiw are plotted  totic behavior ofy? couples into the flow equation .
ate=1 at severah. In all cases the same initial valug$(l,) In Fig. 6 the influence of the imaginary part ofin the
andw(lo) have been chosen. For=1 the flow tends to the complex modelC* on the flow of the real part ofv is ex-
stable finite fixed-point valueg*?=y2 andw* =wc. The  amined. There we have compared the flowotalculated
other two casesn=2 andn=3) have to reach the fixed- from the flow equation27) using the{ function from the
point valuesy* =0 andw* =0. While y?(I) decreases rela- real modelC with the flow ofw’ calculated within the com-
tively fast to its fixed-point value, the time scale ratigl) plex modelC*. The initial valuesw(ly) andw’(ly) are the
has not reached it even at a flow parameter vha@0 °. same; thus, the corresponding curves start from the same
Thus the nonasymptotic behavior of extends over the pointin Fig. 6. In the complex modé&* the imaginary part
whole region plotted in Fig. 4 and cannot be neglecteccouples into the flow equation for the real partngfresulting
therein. Recalling that experiments can been performed tin a considerable deviation in’ (1) compared tav(l) in the
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ogk ~ " T T T T 1.0

06 F 08

0.4 06

/

0.2 04 w in real Model C 4
0.0 0.2 1
1.0
0-0 n 1 n 1 n 1 n
08 -40 -30 -20 -10 0
3 log(l)
0.6
FIG. 6. w flow of the real modelC compared to the flow oiv’
3 04 andw” of the complex modeC* at e=1, n=2. The initial values
1 are chosen asw(lg)=w’(lg)=0.246 andw”(ly)=0.3. [log()
02 =logu(1)].
n 1 n+2
0040 WU yp)=|p- 2) Y= 5p7| — 3 u(l+L+Inp)
,(N1-2p n+2
TPy 5 —p~ 5 L(1+p)
FIG. 5. Flow of(a) the static parametey? and(b) the time scale P
ratiow ate=1 (d=3), n=1 for different initial valuesy?(l,) and ,. N n+2 ) 1
. = . XIn(1-p°)—=I +—== L—=].
w(lo). [log()=logi)] n(1-p%-3 np) T ( 2)
real case. Due to the appearance of a zero eigenyahe (89)

Eq.(63)], the decay is logarithmically slow and leads to large ) ) .
differences between the flows of andw’. A comparison with Eq(50) reveals several differences

The general result for all cases=1,2,3 is that applying Petween the two expressions ranging from different signs
model C to a physical system one has to expect nonasympRVer differentp terms to additional Ip terms, which lead to
totic behavior. This is also seen from the small transient ex2 completely different behavior in the fixed-point function

ponents(which are equal to the stability exponenis two- P~ =pc(€,n) and also in the derivative of,, and therefore
loop order. in the transient exponents. At smaland largen Eq. (89) has

fixed-point solutions which are qualitatively similar to our
solutions. But at largee or small n their fixed-point solu-

VI. COMPARISON WITH THE RESULTS 10 ! s — ' ]
OF OTHER AUTHORS I e=1 <‘."} 27
\ < s 1
The ¢ functions{y, and{,,, respectively, have been cal- 081 0.5 ¥l ! .
culated so far by several authors within the field-theoretic - e 2
renormalization group theory. Actually two results exist 06} L7 .
which have been published in the literature. The first result M I ,/
was published by Brezin and De Domini¢ik3] in 1975 for < 04 Z i
arbitraryn and the second one was published by Dd\8j ' .r\ —FM
within his calculation of modeF (critical dynamics of*He) AN Y /5 =1 | BD
in 1991 for the special case=2. The results obtained by 021, ----BD|
these authors are different from each other and also different I
from our result. 0.0, P > 3 2

A. Results of Brezin and De Dominicis . . ) .
FIG. 7. Comparison of the solution for the fixed-point values

Rewriting the result of Brezin and De Dominidi$3] by  following from our ¢ function (solid line9 and from thef function
the use of our definitions to our notation, the dynarfiic obtained by Brezin and De Dominicislashed and dotted lineat
function obtained by these authors re&83] two different values fo.
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0.04 0.6 : : : : : :
=1, n=1
003 | y
—FM
ooz | —---BD
BD
)
S o001} 4
000 |
0.2 Folk & Moser
001 “r - - - -Brezin & DeDominicis |
0 4
0.0030 : ‘ , . .
r =025 1 -40 -30 -20 -10 0
0.0025 | i
L log(l)
0.0020 | 4 . .
I —F FIG. 9. Comparison of the flow o following from our ¢
v 0.0015 | = --BD | function (solid line) and from theZ function obtained by Brezin and
g 3 De Dominicis(dashed lingat e=1, n=1. [log(l)=log;(I)].
00010 | i
0.0005 L | only atn=2 where the stable fixed point v&* =0 anyway.
I Rewriting Dohm’s¢ function £{P°"™)(u, y,p) [19] to our no-
0-00002 4 tation we get

1
| | _ LMW, y.p) = Lu(Uy.p) + 15(3p=2) (1= p) YL
FIG. 8. (a) Comparison of the solution for the transient exponent
following from our ¢ function (solid lineg and from the{ function (90
obtained by Brezin and De DominiciBD) (dashed and dotted
lines) at two different values foe. The two fixed-point solutions of =+ (u v p) is in this case(50) taken atn=2. Qualitatively
BD at e=1 lead to two transient exponenfisompare Fig. J () the main difference between our’s and Dohm's result is that
The region marked irt@) enlarged fore=0.25. our result(50) turns into theZ function of modelA in the
) ) ) , ) . limit p—0 (corresponding to the limiv—0) even wheny is
tions differ considerably from ours, leading to discontinuous,ot zero. while Dohm'’s result does not have this property
functions which also have a region where two finite ﬁxed'because,of the additional term in E§O). Thus forn=2 in
point values exist simultaneously. This is demonstrated ifpe asymptotic limit the models coincide but not in the non-
FP' 7 whe_re we have compared our fixed-point solution abgymniqtic region. This is seen in the differences in the flow
e=1 ande=0.25 with the solutions obtained from E@9). ot the time scale ratiov at e=1 in Fig. 10. For comparison

At larger e values the function (89) of Brezin and De DO~y have also plotted the flow obtained with th&unction of
minicis produces fixed-point solutions in regions where Wega,in and De Dominicis.

do not have any solutions. In Fig. 7 one can see thatdt

two fixed points exist simultaneouslidashed and dotted
lines) in the region 1.5n< 3, while our solution(solid line)
does not exceed=1.5. Nearn=0 the fixed-point values
show a strong increase instead of going to zero. Thus the
two-loop results of 13] do not converge in the limi&—0 to

the one-loop result in a simple manner. The resulting differ-
ences in the transient exponent are plotted in Fig. 8.

The different{ functions lead to a flow, calculated from
Eq. (27) with Eq. (89), which deviates considerably from the
flow calculated with ou function. As an example we have
plotted in Fig. 9 both flows fore=1, n=1 starting at the
same initial values.

0.8

e=1, n=2

- - - -Brezin & DeDominicis

L 1
B. Results of Dohm -40 -30 -20 -10 0

The difference between our result and the result of Dohm log®)
is considerably weaker in the explicit expression of the FIG. 10. Comparison of the solution of the flow equati@?)
function (no additional Irp contributiong on one side, but using our(solid line), Dohm's (dotted ling, and Brezin and De
also in the behavior of the flow or the fixed-point values. TheDominicis’ (dashed ling ¢ function ate=1, n=2 with the same
latter is due to the fact that hisfunction has been calculated initial values.[log(l)=log,«1)].
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VII. CONCLUSION 3

o U = sy > o & s
For applications of modeC as discussed in the Introduc- ‘JimZJ dtj dx i("//g' o) (9 ‘//O)JFFTQ(%'%)
tion, it is important to get consistent results for the fixed . _ R _
points and their stability regions, because the fixed points X(tho- U5) +T YmMo(Ud- o) + T ymMo(Wo- 40
characterize the critical behavior. We have shown that model
C has no anomalous properties apart from the fact that due to ° o o s i
an essential singularity iathe e expansion of the fixed point ~ 5 Am¥YmMoV (o~ o) | -
of the time scale ratiovc breaks down. This can be repaired
by solving the fixed-point equation without expansion. Then ) )
the results for the stability regions and the fixed points itselfl he centerdot denotes an/g)-dimensional scalar product.
show a consistent and continuous picture in the sense thatfé{) andfy, represent auxiliary densities.
the borderlines the exponents and fixed points are continu-
ous.

Model C*/C is also a limiting case of more complicated 2. Dynamic order parameter vertex functions

models, like modeF, describing the critical dynamics at the  Within the dynamic approach of Bausch, Janssen, and
superfluid transition ofHe and the planar antiferromagnet, Wagner[33], two dynamic vertex functions exist, which cor-
and modeF’, describing the critical dynamics at the super-respond to the order parameter.
fluid transition inHe-*He mixtures. Therefore, the explicit P

(A2)

The first onel” ;5+(&,k, ) is related to the response func-
tion. Calculating the perturbation expansion up to two-loop
order the vertex function mentioned is obtained from the
dynamic functionalg§Al) and (A2). It turns out that it has
the structure

test functions for the more complicated models. The m@del
functions agree with this limit when the recent resyilt§]
for the more complicated models are used.

The flow of the dynamical parameters to their fixed-point
values turns out to be slow because of the small values of the » - - ’ >
transient exponents found in two-loop order. This has to be L&k 0)==ToQu(6k o)+ Ty (6 21 (A3
taken into account when using these parameters for calculat-

ing physical quantities even in systems with OP componentyhereT",,,i(£,k) is the static two-point vertex function. In
n=2, 3(in d=3) for which the conserved density decouplesihe ahove expression the correlation length, &), which is

asymptotically. . . defined as
The small values of the dynamical transient exponents

may be important even for=1 and should be considered in

the interpretation of computer simulatiof&8]. It might hap- oo alnlo“wf(‘?,l‘],k)
pen that one has not reached asymptotics and finds effective & (V,U)Z—ﬂkz : (A4)
exponents in the analysis of the data. More work in this k=0

direction would be desirable.
already has been introduced by collecting the proper pertur-
bational contributions ofé. The static vertex function

f¢¢T(F,ﬁ,k) is calculated from the Ginzburg-Landau-Wilson

This work was supported by the Fonds zurd@ung der  mage|(7) with complex order parameter. The dynamic func-

wissenschaftlichen Forschung under Project No. 15247-TPH, o .
tion Q5+ reads in two-loop order
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APPENDIX A: PERTURBATION EXPANSION . R > (21)
. , Q€K w)=1+T 5 (Ek0)+Q = (K o), (A5
1. Dynamic functional wit(&Ko) Ylc(&k o)+ Q T(6K ) (AS)

Following [33] the dynamic equationd) and(3) together _ ..
with Eq. (6) lead to a dynamic functional of the for@  Wwith the rescaled coupling=%,/\ay. The two-loop con-

=Jo+Jin With the Gaussian pat, given by tributions have the structure
J0=J dtJ’ dx| — 41" Po- P+ AoV 2, (o) N2 .
Qwﬂﬁ(g’k'“’)_l_sru Ww:ﬂ(g,k,w)
7 (A PR 21 A (£+1°“T(°T—V2))J/T N+2e o
oLt ot ° — - TP D (g kw)
3 Py
(9 o o o

M| 5t amkmvz)mo] (A1) +T585r(E ko w), (A6)

and an interaction part which is with
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1
& - (T4) (T5) _
Swwr(g,k,w) C T(gk )+ [C (fk ) IC(g,k'w)_jk'[f2+(k+k’)2](—iw+a,), (A8)
—E gk @)]+E (k) with o' defined by
C;ij(g,k,w). (A7) a' =T[£ 2+ (k+k')?]+Xk'2 (A9)
The first two-loop contribution in EqA6) comes from the
The one-loop integrdlc in Eq. (A5) reads well-known modelA. \7V(¢A:ZT is given by
W(A) (£K, f f ! (A10)
nEk0)= | ET D E T RDE 2 (kK 1K)~ T A

with C(T t(f K, o)

A=T (£ 24K 2 +T1(E 2+ Kk2) + TLE 2+ (kK +K")2].
(A1D)

jrfn[g 2+ (k+k'+ k”)z](—lw-l-a (—iw+B)’
The remaining two-loop contributions in Eq#\6) and (A7)

are marked with superscriptdi), which indicate the final (AL3)
expressions of different graphical topologies after all the re-

arrangements have been done. They are

<T3>(§ K.o) éﬁf(fyk,w)
B 1 :J~ J~ °)\k/2
_frf~[§‘2+(k+k’)2](—iw+a’)(—iw+A) Jel€ 2+ (kKD (ot a) (—iw+A)
i u ) N
X §,2+k”2 + g,2+(k,+kn)2 , (AlZ) X §—2+ k//2 + §_2+(k,+k”) ' (A14)

I It
E2r (ki k +K)2 & 24 (k+K)?2

(6) B ‘;\kHZ
C ot (61 )= frf~[§‘2+(k+k’)z](—iw+a’)(—iw+a”)(—iw+A’)

o o

f f r r 1 . Ak"2
e €2+ (k+k) ] (—iw+a")(—iw+B) | —io+a’ * E 2+ (k+k'+k")? —iw+a'] |
(A15)
|
where we have introduced the structure of the OP vertex function, E&3), explicitly
i and identify the functiorf} ;.
B=T[& 2+ (k+k'+K")2]+N(k'2+k"?), (A16) The second dynamic vertex functiohij;+(£,k,w) is
i s necessary for the calculation of the dynamic correlation
A =T[E 2+ (k+K)2]+TTE 2+ (k+K +K")?] function
+T[& 2+ (k+K")?], (AL7) . [31(&k 0)
Cpyi(ék,w)=— H—=—"—"—. (A18)
which are both invariant under an interchangekbfandk”. |I‘¢;ﬁ(§,k,w)|2

Note that Eqs(A7)—(A17) are obtained after a considerable
rearrangement of the graphical contributions in order to geThe correlation function is a real function; thus, from the
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above relation it follows thaf‘j[wr(g,k,w) also has to be
real. A calculation up to two-loop order reveals that this
function fulfills the relation

o 1.
T yut(£0= 5T 4660 (A21)

between the static vertex functions has been used. Corre-
spondingly relation/A19) turns into

From this relation it turns out that the second dynamic vertex

T551(Ekw)=—4RETQ i (Ekw)].  (AL9)

function is completely determined by the first one. In a cal- °__ _ o7 o
culation of the correlation functiofiA18) one only has to I33(&,K 0)=—2T REQ 43(&K, ) ]. (A22)
know the function() ,7+(§,k,w) and the static vertex func- 3. € poles of the integrals

tion T 1(£,k).

. In order to obtain the pole terms-; we consider the
At least we want to remark that in the case of the real L .
integrals at vanishing frequeney and wave vectok in a

model C, where the complex order parameter turns into ageneralized form. The one-loop integ(@8) has the struc-

real n-component vectots,, Eq. (A3) reads ture

(A23)

T y3(Ek0)=—i0Q 3£k 0)+T 4y (£ T, _f 1
(A20) ¢~ Je(@ark?(b+k?)

where the kinetic coefficierit is now a real quantity. In Eq. The two-loop contribution$A10)—(A15) contain five inde-
(A20) the relation pendent two-loop integrals of the following structure:

1

IC1= f,J”(a_’_ kIZ)(A+ krIZ)[B+(kr+k/l)2][e+ﬂk/2+Vk772+(kl+kr/)2]v (A24)
| —f f ! A25
" Ju Jo(@at kD (T K2 (A+K I [e+ uk 2+ vk + (K +K)7]" (A25)
k/2
IC3: f ’f"(a‘l' k/Z)(b+ k/2)2(A+ k//Z)[e_l_luk/Z_l_Vk//2+(k/+k//)2]! (A26)
k//2
IC :f J 12 12 "2 "2 12 "2 ’ 27 (A27)
) Lo @K Dbk D (A+KD)(B+K?)[e+ uk 2+ vk + (K +K)7]
k//2
IC :f f 12 12 n2 ’ "2 12 n2 ’ ”\27" (A28)
5 rJrr(@a+k ) (b+k' ) (A+K9)[B+ (k' +K")7][e+ uk'“+ vk + (K" +k")7]
[
In order to obtain the dimensional pole terms, all integrals AZ(1 (I+w)(p+v) 1 (1+v)(u+v)
have to be calculated in theexpansion. For the calculation [Icl]szﬂ[; nm > W

of the Z factors only it is necessary to expand the one-loop
integrals up to ordex® and the two-loop integrals up to (1+p)(1+v)

order 1k. The one-loop integralA23) reads (A31)

mrv+uy

2 a—b

_Ad[ ealna—blinb
€

lc= 1———}+O(e). (A29)
Note that in the casge=v=1 anda=A=B=e=¢ ?/«?

the above integral reduces to the integral appearing in the

well-known modelA (pure relaxation model without mode

coupling terms and without secondary densjtidaserting

For convenience we have introduced the geometry factor

€ e\ Q
Ag=T 1—5)1“ 1+§ ﬁ, (A30) this into the above result we obtaincl(,uzvzl)

= (3A§/4e)|n 4/3, which is consistent with previous calcula-

with d the space dimension()4 the surface of the tions. .
d-dimensional unit sphere, add{x) the EulerI" function. The pole terms of the second integral, Eq.(A25), and
For the first two-loop integrallcl we obtain the fourth integral, Eq(A27), are equal. They read
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3 € +y Concerning the Ginzburg-Landau-Wilson model we want
[lc.ls=[lc lss5==——11+5|1+In to remark that the usage of the minimal subtraction approach
2 47> 2e(1+v) 2 1+u o . !
as a renormalization scheme makes it necessary to introduce
1+ o alna—blinb a renormalization for the parametein the form of
—oln —€ s , (A32)
a P=2,'zr. (B4)

where we have introduced= u+ v+ uv. The above results
for Egs.(A31) and(A32) are also consistent with the results
given by Dohm in his moddt calculation. The pole terms of
Egs.(A26) and (A28) read

This renormalization is connected to the renormalization of
the 1/2¢{? insertions by the relatiod .=Z,'Z, . As a con-
sequence no necessity is given to consider correlation func-
tions containing 1/@4|? insertions explicitly within the mini-

2 mal subtraction approach apart frofd/2| o|?1/2] g)%)c

Dol 14 Slemi o e itself
= a -0 .
% 26514 ) 2 1+ p The additional quantities in the extended static functional
b a2lna+b2Inb—2ablinb (6) require the introduction of further renormalization fac-
+e b € (a—Db)2 ] , tors. The secondary density and the coupling parameter
between order parameter and secondary density, which guar-
(A33) antees a nontrivial static critical behavior of the thermody-
namic derivatives, will be renormalized analogously to Eg.
" Aj 1l 1+v (B2) by
Csls 2 5
572 2€(1+v) 2 utv a%zm():me, (B5)
o o alna—binb
+ 7In AF ) (atv)| b aslzs, = KE/ZZglzr—any,}/Agl/ZI (B6)
(A34)  Note that we have introduced tlefactor Z,, instead ofZY?
contrary to most of the definitions in the literature. Our defi-
APPENDIX B: DEFINITION OF THE RENORMALIZATION nition is more convenient when one wants to maintain con-
FACTORS sistency with the definitions necessary in mogél(describ-

o ) ) ing the critical dynamics at the superfluid transition in
The renormalization of the Ginzburg-Landau-Wilson 3e.4He mixtures[16]) where a matrixZ,, had to be intro-
functional(7) is well known within different renormalization 4,ced.

schemeg$20,22,34,3% The extended static functional deter-  gijnce the static functional of mod&* is a Gaussian
mined by Eq.(6) has been considered in detail[it3] using  gxtension of the Ginzburg-Landau-Wilson model, no new in-
the normalization condition approach and[86] within the  jependent renormalization factors are necessary. Thus rela-
minimal subtraction procedure. The justification of severakiqns petween th& factors of the Ginzburg-Landau-Wilson
relations between the stati€ factors mentioned below can ,odel and the modeC* parameters arise. First the renor-

be found in[36,37. R malization factor of the coupling is determined by
For the order parametef we introduce the renormaliza-

tion factor 2,=222,7 ., (B7)
1/702231,/21,7/, @Ozng@T, (B1) leading with Eq.(B6) to
where Z,, is a real quantity. The renormalization of the an " m=kZ o ZyAs 2. (B8)
fourth-order couplingu appearing in Eq(7) is defined as o
usual: Second, the renormalization factdy, of the secondary den-
sity is determined by the additive renormalizati@pe(u) of
0= KZ;ZZUUA;l. (B2)  the specific heat in the Ginzburg-Landau-Wilson model. This
gives
K represents a free wave number scale. To complete the 72 )
renormalization of Eq(7) a Z factor Z, (U, y) =1+ y“Aye(u). (B9)
}W 2=7 2E|¢|2 B3) In the dynamic functional auxiliary field§z0 and i, are
270 ) introduced, which renormalize like

is necessary to renormalize correlation functions containing Z — Zy?jb "IZ*r:Zl/?j;‘ (B10)
1/2¢|? insertions. At least the correlation function 0 IR

(112 0|?212 0|?) (the subscriptc denotes the cumulant _ o ey ,
which represents the specific heat within the model, needs aH'® rengrmallzed auxiliary density’ is complex conju-
additive renormalizatiom 2. gated toys quite analogous to the corresponding unrenormal-
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ized densities; thus, we ha\@FZ{,,. The secondary den- The absence of any mode coupling in mo@i leads to
sity is conserved and therefore no new renormalization factofrivial renormalization factors of the dynamic parts of the
is needed for the corresponding auxiliary density. It simplykinetic coefficients:

renormalizes:

(d) _ (d) _
At least the kinetic coefficients renormalize as Thus Eq.(B13) reduces in modeC* to
I'=2T, amm=Z\. (B12)
—1/2
zrzz}b’zz:bT . Z,=Z2, (B15)

The Z factors in the above equations contain static contribu-
tions which may be separated: "
Only the renormalization factoZiT has to be determined

from dynamic perturbation theory.

—1/2

zr=z§,’227,/T 29, z,=2229. (B13)
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