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Lattice Boltzmann model for the compressible Navier-Stokes equations
with flexible specific-heat ratio
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We have developed a lattice Boltzmann model for the compressible Navier-Stokes equations with a flexible
specific-heat ratio. Several numerical results are presented, and they agree well with the corresponding solu-
tions of the Navier-Stokes equations. In addition, an explicit finite-difference scheme is proposed for the
numerical calculation that can make a stable calculation with a large Courant number.
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The kinetic equation approa¢ti—9] is often used to ob- where
tain solutions of the compressible Navier-StokKS§) equa-

tions. The merits of this approach are the simple basic equa- P=pRT, (1d)
tion, the linear derivative terms, the high resolution for du, dug 2 du, au,
capturing discontinuitiege.g., shock wavegswithout any Pug=—H T I 3 ax OaB| THE L Sup
complicated treatment of the numerical scheme, etc. How- B @ X X

ever, to solve the kinetic equation, the molecular velocity (a,8,x=12,...D), (10

space must be considered in addition to the physical space.

Therefore, the calculation time naturally becomes larger. Byandt is the time andx, is the spatial coordinate, u,, T,
employing the molecular velocities of discrete type, this dis-and p are, respectively, the density, the flow velocity in the
advantage can be avoided to some extent. This is the lattige, direction, the temperature, and the pressure of aRs.

Boltzmann methodLBM) [1-7]. the specific gas constant abds a given constant related to
The LBM for the compressible NS equations was firstthe specific-heat ratiey by

devised by Alexandeet al. [1]. Their model includes the

nonlinear deviation terms that are proportional to the third- y=(b+2)/b. @
order flow velocity. Later, Chert al.[2] proposed a model
without these nonlinear deviation terms. However, an impor
tant defect still remains. That is, the specific-heat ratio
cannot be chosen freely. Especially for the one and two
dimensional modelsy is fixed at unphysical values of 3 and
2, respectively.

The above NS equationda—(1c) are characterized by,
u(p,T) (the viscosity, ug(p,T) (the bulk viscosity, and
M(p,T) (the thermal conductivity Note that, in the present
study, the subscriptg, B, and y represent the number of
spatial coordinates and the summation convention is applied
In the present paper, we develop a lattice Boltzmanr{® these subscripts. . .

model (without nonlinear deviation termsof the two- NC_)W we present a Iatt_|ce Boltzmanr_1 model that gives the
dimensional version that overcomes the defect cited abov&°!Ution of the compressible NS equatiatial—~(1¢). Letci,,

For possible future extension to the one and threel! =1.2,...J; I is the total number of discrete molecular
dimensional versions, the formulation is presented with ( velocitieg be the molecular velocities in the, direction of

=1, 2, or 3 spatial dimensions, and then the specific two-theith particle, andy; be another variable newly introduced
dimensional model® =2) is given. to control the specific-heat ratid;(t,x,) is the velocity dis-

For the sake of clarity, we first write down the CompreSs_tribution function of theith particle. The macroscopic vari-

ible NS equations: ablesp, u,, andT are defined as
|
dp dpu, :E £
%p _ p= . (33
at * X, 0, (13 =1
|
JP!
%+M+a_p:__“5' (1b) Pua:Z fiCia, (3b)
at IXg X, IXpg =1

2 2
o7p(bRT+ua)+&pua(bRT+uB)+2pua p(bRT‘*‘Ui):El fi(ci2a+ 77i2)- (30

ot X

a

9 J p’ 1 Note that the summation convention is not applied to the
~Toxg )\&_xﬂ_ apla | (10 subscripti representing the kind of molecules.
Consider the kinetic equation of the BGK typH0]:

*Fax: +81.78.803.6137. Jf; afy  fp,u, 1),

—+Cp—=— 4
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where ¢(p,T) (the relaxation timgis a given function ofp A
and T [3], and f{Yp,u,,T) (the local equilibrium velocity
distribution function is a given function of the macroscopic
variables that satisfies the following relations:

|
p=2, fF, (58
|
pua:E fiecbia! (Sb)
i=1 v
I FIG. 1. Distribution ofc;, («=1,2;i=1,2,...,16) for thero-
p5a3+ puauB:; fieociaciﬁa (50) posed lattice Boltzmann model.
| f8%= plag+ay T+ay T2+ (ag +a, 1) 02+ a5 0203
p(bRT+ ui):izl ffa(Ciza‘F 77i2)v (5d) i — pLAoi T ayj 2i 3i T Ay o a5l Ug
, +(boi +by T+ b5 02) U8 5+ (o +dyy T+d0%)
pLb+2)RT+uglu,= 2, et ni)cia, (59 X081 501,81+ €010 8150, 81 ]
p[RT(Uy 85, T Ugd, ot U, 5,5 +UsUgU, ]
| for i=1,2,...,16, (8)
:IZ]. fieqciaCiBCiXi (Sf)
whereay, , . .. 6 are given constants whose specific values

212 2 2
pUbF2)RT,p+ [(D+4)UsUpt+ Uy SapglRTHUULUEE 4 arranged in Table I. The variables with a caret are the
[ nondimensional quantities, i.eT,=T/T, and @,,&,,%)
=2, 59t + 7))ciacip. (59 =(Uy.Ciq,7)/VRT,.
=1 The proposed lattice Boltzmann model, or the kinetic
. . , equation(4) with ¢;,, »;, andf% given aboveor by Egs.
'Lhen tlhe' macfrozcoE_lc vgrlablpsga, afndT obtl?lneld fromf (7) and (8)] can take any value df which is related to the
t E solution of the kinetic equatiof#) for sma Values o specific-heat ratigy by Eq.(2). The key is the introduction of
£=(po,To) VRTo/L (po, To, andL are, respectively, the . ihat makes it possible to satisfy relatioff&)—(5f) at the
refere_nce density, tgmperature, a_nd Iemg;ﬂmsfy the com-  ¢ome time for any value ob [11]. As for the three-
preszs,lble NS equationda—(1c) with the relative error of  ginensional version@=3), it is, in fact, possible to con-
O(e%), whose transport coefficients are given by struct a specific model by using 32 velocitids=(32). How-
u=pRTe, wug=2(1/3—1b)pRTe, ever, this specific model is not shown here, since the one we
derived did not show excellent performance in the numerical
— 2
A=(b+2)pR°T /2. ©®) computation and it will be possible in the future to construct

Th thod of derivation i traiahtf d licati fa better model for computation. For the readers who are in-
€ method of derivation IS a straightforward application Ol -oqteq in the three-dimensional calculation, we introduce

the Chapman-Enskog expansion or the usual asymptoti 5 - -
analysis fore<1. See Refs[1-5,9,11,12 for details. ﬁxegd [Szgetg:é_ﬁg;??:;g;g% three-dimensional model with
ill ai ifi . . eq o .
We will give a specific form oft;,, #;, andfi™ of the In order to solve the kinetic equatiof) of the above
two-dimensional version{ =2 andl = 16) that satisfies the |5tice Boltzmann model numerically, here we propose a

above constrainté5a)—(59): scheme that utilizes the Crank-Nicolson scheme:

(cyc: (=x1,00 for 1l<i=<4
cyc: (£6,00 for 5=<i<8 (| 1) Ci At [ of; of,
(&1,8)=4 V2(x1x1) for 9=i<12 MR 2 x|, Xl
3 —f
Z(+1,+1) for 13<i<16, ffpua, -1
v, + At, ©)
\ ¢(p,T) ;

5/2 for 1si<4

771 0 for 5<i<16 ™

where the quantities with are evaluated at time At is the
time step,Ax is the grid step, andf;/dx, is the usual
(see Fig. 1, where cyc indicates the cyclic permutation, andsecond-order upstream finite difference given by
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of; [3fi(X,) —4fi(X,—AX)+fi(x,—2AXx)]/2Ax  for ¢;,>0

X, | [—3fi(x,)+4f,(x,+Ax)— f,(x,+2Ax)]/2Ax  for ¢;,<O, (10

wheref;(x,) is evaluated at space, . Although the collision are those at=t,. The corresponding numerical results of

term, or the last term on the right-hand side of E®). is  the NS equations themselvisgs.(1a—(1c)], solved by the

evaluated at timé, we can easily find that schen(®@) with so-called MacCormack scherh&3] with the sufficient num-

At~ p(po.To) and Ax~(po,To)VRT, achieves second- ber of meshes, are shown by the lines. We find a good agree-

order accuracy ire, and can describe the solution of the ment between the two results for each valueyof

compressible NS equatiori$a)—(1c) appropriately. Next, we consider the shock-tube problem. The initial
A stable calculation of schen(®) with the large Courant macroscopic variables are given by

number|c;,,|At/Ax is possible. Moreover, it can be solved

from the upstream side af, successively without using an . |1 for x3<0 -

iterative method, becaus#;/dx,|;. »; can be evaluated by P=lP for %,>0, 4,=0, T=1, (12)

the already calculated values ff;, 5; On the upstream side.

Now several numerical examples are presented. FirstyhereP is a given constant. This problem is characterized by

consider the Riemann problem whose initial macroscopiGhea four parameter®, s, ¢(p,T), and . The numerical

variables are given by results withP=2, £=0.001, andp=1/p are shown for three

—U for %,<0 different values ofy=5/3, 7/5, and 9/7 in Fig. 3 by the plots

(12) together with the corresponding numerical results of the NS
equations solved by the MacCormack schefrepresented

whereU js a 9iven constant. This problem is charact_erizedfgsgl]é ;g‘regégr\{evgmi ;.good agreement between the two

by U, &, ¢(p,T)=#(p,T)/ #(po,To), andy. The numerical Finally, we show the results of the two-dimensional

results withU=0.5, £=0.001, and¢$=1/p are shown for steady Couette flow. The boundary conditions are

three different values of=5/3, 7/5, and 9/7or b= 3, 5, and

U for X,>0,

7) in Fig. 2 by the plots. There is no characteristic length in 0,=-U, T=1 at&,=0, (139
the initial condition so that the dimension of the length is
nondimensionalized by, R Ty, where the presented results 0,=U, T=1 ats,=1, (13b)

TABLE I. The coefficientsay;, . ..,g (i=1,2,...,16) in the

whereU is a given constant. This problem is characterized
local equilibrium distribution functiorf$® given by Eq.(8). 9 P

by the four parameters, &, ¢(p,T), andy. The numerical

i 1-4 5-8 9-12 13—-16 results withU=0.5, £=0.002, and:ﬁ=1/f) are shown for
three different values o§=>5/3, 7/5, and 9/7 in Fig. 4 by the

aoj 0 1/96 81/160 —4/15 plots together with the corresponding numerical results of

b—2 —121b—408 —22%+8 890+ 222 the NS equations solved by the MacCormack schémp-
ai 25 86400 3200 2700 resented by the lingsWe find a good agreement between the

two results for each value of.
b+2 b+2 —b-2
ayi 0 —_—
1728 320 270 ey ——

as; —36/115  —799/397440 —117/640 13/135 | /
ay bil 1%+ 306 9b+38 —2b—-9

115 397440 640 270
as; 1/115 19/397440 9/640 —-1/135
boi 0 0 9/40 —2/45
by, 2(b—2) —2b+29 —14b+3 2(7b+11)

25 32400 400 2025
[ 0 —1/2592 1/80 —7/810
doi 72/115 —29/298080 9/160 —2/405 ) A ~ .

FIG. 2. The profiles ofT and 0, for the Riemann problem

dy —2b+4) b4 —b-4 b+4 whose initial condition is Eq(11) with U=0.5, £=0.001, andé

115 74520 160 810 =1/p. The plots are the results by the LB, y=5/3; A, y=7/5;
dy; —2/115 1774520 —1/160 1/810 O, y=9/7. The lines represent the corresponding results by the
g 0 1/46656 —3/320 8/3645 MacCormack method with the sufficient number of meshes5/3

(solid lineg, 7/5 (dashed lines and 9/7(dotted line$.
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FIG. 3. The profiles ofi and @, for the shock-tube problem 552
whose initial condition is Eq(12) with P=2, £=0.001, andab
=1/p. See the caption of Fig. 2 for the representation of the sym-

bolsM, A, O, and the lines. FIG. 4. The profiles op andT for the two-dimensional steady

Couette flow whose boundary conditions are E48a and (13b)

. . with U=0.5, £=0.002, and&&=l/f). See the caption of Fig. 2 for
In conclusion, we have developed a lattice Boltzmannue representation of the symbdis A, O, and the lines.

model for the compressible NS equations with a flexible

specific-heat ratio. Several numerical results are presented

and they agree well with the corresponding solutions of th&an make a stable calculation with large Courant number so
compressible NS equations solved by the MacCormackhat it can be a new merit of the LBM. According to our
scheme. Thus, the validity of our model has been strongly,umerical tests, it can make stable calculation with the Cou-
confirmed. The explicit finite-difference scheme is also prorant number of up to 100 if the solution is smooth akt
posed for the numerical calculation of the LBM. This scheme<2¢(p,T) is satisfied.

[1] F. J. Alexander, S. Chen, and J. D. Sterling, Phys. Re47,E [7] G. Yan, Y. Chen, and S. Hu, Phys. Rev5H 454 (1999.

R2249(1993. [8] S. Y. Chou and D. Baganoff, J. Comput. Phyi30 217
[2] Y. Chen, H. Ohashi, and M. Akiyama, Phys. Revcg 2776 (1997.

(19949. [9] T. Ohwada, J. Comput. Phy$77, 156 (2002.
[3] M. Soe, G. Vahala, P. Pavlo, L. Vahala, and H. Chen, Phys[10] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rdy511

Rev. E57, 4227(1998. (1954.
[4] Y. H. Qian, J. Sci. Comps, 231 (1993. [11] Y. Sone Kinetic Theory and Fluid Dynamid®irkhauser, Bos-
[5] S. Chen and G. D. Doolen, Annu. Rev. Fluid Med&®, 329 ton, 2002.

(1998. [12] T. Inamuro, M. Yoshino, and F. Ogino, Phys. Flui@ls3535
[6] N. Cao, S. Chen, S. Jin, and D. Martinez, Phys. Re§5221 (1997.

(1997). [13] R. W. MacCormack, AIAA Pap69, 354 (1969.

035701-4



