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The phase-amplitude method for solving the Sdinger equation is implemented for free-free absorption in
a hot, dense plasma. The method is benchmarked against two independent diredin§ehialculations.
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[. INTRODUCTION phase is found from numerical quadrature knowing the am-
plitude.

The phase-amplitude method of solving the Sdimger
equation has been of interest for a long time without giving Il. THEORY AND RESULTS
up many practical applications. The time-dependent three-
dimensional form was investigated by Boldl] as a quan-
tum form of the equations of fluid hydrodynamics. The so-
called “Bohmian Qynamips" has been recerjtly reexam.ined P(r)y=y(r)sine(r)]. (1)

[2,3] from the point of view of the Lagrangian or moving

frame computational scheme, with applications to simpleSubstitution into the reduced radial Scdimger equation
quantum mechanical problems. Although the analog wittyields the equations for the amplitude and phase, respec-
fluid hydrodynamics may make the method seem attractivéively,
from a philosophical point of view, the severe practical prob-

In phase-amplitude theory the reduced radial wave func-
tion is written

lems associated with the three-dimensio{®i) or even 2D ! "+[L(L+1) +V(r) k* + k* 0 (2a)
) Y T2 N=>1YT5,3=Y
solution of the equations of motion in the Lagrangian frame 2 2r 2 2y

which have beset computational physicists in classical hy- : K
drodynamics for many years might give one pause as to why o= f dr'—. (2b)
the problem would be any less daunting in quantum physics. o Y

In classical hydrodynamics these difficulties show up a
distortions of 2D and 3D meshes, requiring techniques suc
as arbitrary Lagrangian-Euleria(ALE) frame mixing, of
which Bohmian hydrodynamicists have already had to avai
themselves to obtain sensible resyl®. The outcome, at
least in classical hydrodynamics, is a theoretical wilderness )7:
in which the possibility of meaningful results depends
strongly on adjustments to the theoretical methods once re- In our application the potential represents the screened
liable laboratory data are in hand. interaction of a free electron with an ion embedded in a

In this paper our phase-amplitude ambitions are morglasma and has the analytic form,
modest but hopefully more practical: we study the phase-
amplitude method for solving the radial Schinger equa- ru =2fV=E a.e ol (4)
tion. Recent paper$4—6] have appeared on this subject ' ’
which reveal that, notwithstanding the greater computational . :
tractability of the 1D problem, difficulties remain in the pro- Where the parameters are given in Table I. There has been
duction of accurate results, as discussed by Wilson and co- TABLE |. Cs plasma notential parameters for a temperature of
workers[6]. These authors implement a hybrid version of the100 oV and. a deF;]sity of% 187 g/é?[ﬂ?] P
phase-amplitude method, first used by Burgess and Sheoréy ' ’
[7], in which the radial Schidinger equation is integrated .

he WKB approximation for the phase, for largefollows
iImmediately by setting the second derivative in Efa)
Fqual to zero and solving for the integrand of E2p),

L(L+1)]¥2

()

. .. . . a; o7
directly from the origin to a point beyond the classical turn-
ing point where it is matched onto a phase-amplitude solui 4.31601 33.89329
tion generated from the matching point to infinity or, as the2 2.42685 23.46050
authors discuss, in the “far field.” In this paper we integrate 3 59.01007 6.30434
the nonlinear equation for the amplitude over all space and 44.28462 0.20468

find that the solution is numerically stable and accurate. The
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much interest recently in dynamic screening, in which the g e L s — e —— Lot L

potential depends on the velocity of the projectile, for ex- ]
ample in fast photoexcitation in semiconductor physgigk ]
and in ion-beam plasma interactiof®-11]. It appears that ;
the methods presented here could also be useful in dynami ]
screening applications. 050 g

Results for free-free absorption are presented in terms of ]
the Gaunt factor, ]

LI A e e

V3
9= Zwkika LIME g -1t M el )

0.00 —

Wave function (a.u.}

where the radial matrix elements are defined in the accelera ]
tion gauge, 050

o du
MkikaL':fO drf Lgy YL (6)

The acceleration gauge is the obvious choice owing to the e
long range of the integrands belonging to dipole matrix ele- ‘ ' T
ment in the length or velocity gauges. It would be of interest
in future work to make comparison calculations in all three FIG. 1. Wave function fol. =0 andk=10.5 a.u. Upper curve:
gauges, for which results appear not to be widely availabl@/(r). Lower curves:y(r)=y(r)sin¢(r)] and ¢ from the direct
for free-free absorptiofl2]. The agreement of the results for selution of the reduced radial Schiiager equation.
the different gauges is a sensitive test of the accuracy of the B
wave functions, a result which has been widely exploited in A selection of phase-amplitude and direct Schinger re-
bound-free and bound-bound absorption. In these transitiorlts is given in Table II. The two Schdimger calculations
one or both of the wave functions respectively is bound withserve as a benchmark for the accuracy of the phase-
exponential decay at large distances from the nucleugmplitude results. The GSFC Schioger calculation was
thereby facilitating studies in all three gaudé$] since the ~ performed in quadruple precision, using ODE procedures
radial matrix elements are rapidly convergent in all threebased on the Nordsieck method.
gauges. Free-free absorption on the other hand has rapidly In order to run down the small differences between the
convergent matrix elements only in the acceleration gaugdwo Schralinger calculations, we calculated a single LLNL
such that the length and velocity gauge calculations are usiesult in quadruple precision for photon energy 0.01 eV and
ally carried out[12,14,15 with the use of an exponentially
decaying cutoff factor in the matrix element, and the results ,4 1 o T b e L
of a series of calculations are extrapolated to a result corre: 1 i
sponding to unit cutoff factor. The length and velocity gauge
matrix elements are convergent only through the phase mis
match of the initial and final radial waves, such that one
really requires an analytic representation of the wave func- 1
tions in order to use these gauges with complete reliability. 100 4
For this reason we do not pursue a gauge study further at thi.ﬁ; ]
time.

Equation (2 is integrated backwards from largeinto
the origin, withy=1 as initial value at large. At smallr, y
is dominated by the solution irregular at the origin, 1
~r~L. The phase goes as~r2-*! and ¢ [Eq. (1)] as ¢ 000
~rL*1 or the Schrdinger solution regular at the origin. Itis
necessary only to stop the backward solution far enough
from the origin to avoid overflows igr and at the same time
satisfy thatis is negligibly small. This procedure is illustrated
in Figs. 1 and 2, where the amplitude and the wave function
from the phase amplitude solutidiEqg. (1)] and from the R o B T T T
direct integration of the Schdinger equation are plotted ver- 0.00 1.00 200 8.00
susr. Note the agreement perfect within graphical accuracy )
of the wave functions from the two different methods. We  FIG. 2. Wave function foL. =5 andk=10.5 a.u. Upper curve:
have used the automatic error control ordinary differentialy(r). Lower curves:y(r)=y(r)sin¢(r)] and ¢ from the direct
equation(ODE) method due to Bulirsch and Stoft6]. solution of the reduced radial Scliinger equation.

Wave function (a.u)}
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TABLE Il. Comparison of results for Gaunt factdGaunt fac- The speedup in computational time due to using the
tors have been obtained by solving the Scimger equation at  phase-amplitude method has been examined by ofiédrs
Goddard Space Fllght Centé@SFQ and at Lawrence Livermore and we do not belabor the p0|nt here Obv|0usly the phase
National LaboratoryLLNL ). These have also been calculate by theand amplitude can be tabulated on a coarse mesh with sub-
phase-amplitude methddLNL ). Ey, is the photon energy an, o tia| savings in computational time: however the speedup
the incident electron energiL ., is the number of partial waves . . .

. ) for the matrix element requires techniques such as those de-
required to obtain convergenge. . . - . .
veloped in[6] in which the slowly varying part of the inte-
grand is fitted to a linear functional form and the rapidly
varying part is evaluated analytically. Our concern here is to

Gaunt factor

Eph Ei Schradinger Phase amplitude  show that the nonlinear equation for the amplit{illg. (22)]
(eV) (eV)  Lmax (GSFQ (LLNL) (LLNL) can be integrated over all to obtain a numerically stable
001 100 36 258944 259.086 258 387 rgsu[t. Wilsonet al. [6].have stat_ed that the amplitud(_a equa-
500 54 641588  640.446 641.363 t!on is unstable; we find no evidence to support this asser-
1000 120  936.642 936.604 936.476  toON.
1500 130 1155.49 1155.23 1155.06
80.7 100 22 493.228  492.683 492.649
500 38 748379 748.234 748.020 IIl. CONCLUSIONS
1000 46 993.365  993.319 993.060 Although the phase-amplitude method has been investi-
1500 76 120059  1200.08 1199.99 gated since the early days of quantum mechanics, most no-
246.0 100 15 659.046  658.648 657.984 tably in its approximate form, the WKB approximation, it
500 33 848.959  848.769 848.746 has not been widely implemented in atomic or plasma phys-
1000 50 105351  1051.99 1051.72 ics applications. Previous applications have suffered from
1500 70 1227.65  1227.25 1226.81 inaccuracie$5] or from hybrid phase-amplitude-Sciiager
13120 100 9 135575 135481 1355.29 procedure$6,7] which we believe are unnecessary in today’s
>00 14 1433.14 1432.39 1432.83 era of fast high-precision computing.
1000 16 1524.92 1524.01 1524.44
1500 22 1612.67 1611.19 1611.55
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