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Thouless-Anderson-Palmer approach for lossy compression
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We study an ill-posed linear inverse problem, where a binary sequence will be reproduced using a sparse
matrix. According to the previous study, this model can theoretically provide an optimal compression scheme
for an arbitrary distortion level, though the encoding procedure remains anNP-complete problem. In this
paper, we focus on the consistency condition for a dynamics model of Markov-type to derive an iterative
algorithm, following the steps of Thouless-Anderson-Palmer approach. Numerical results show that the algo-
rithm can empirically saturate the theoretical limit for the sparse construction of our codes, which is also very
close to the rate-distortion function.
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Lossy compression is quite important in our modern li
One first encodes information into an appropriate for
which will be decoded to reproduce similar sequence. T
theoretical framework for this kind of compression sche
with a fidelity criterion is called rate-distortion theory, whic
consists an important part of the Shannon’s informat
theory @1#.

We start by defining the concepts of the rate-distort
theory and stating the simplest version of the main result@2#.
Let J be a discrete random variable with alphabetJ. Assume
that we have a source that produces a seque
J1 ,J2 , . . . ,JM , where each symbol is randomly drawn fro
a distribution. We will assume that the alphabet is fini
Throughout this paper, we use vector notation to repres
sequences for convenience of explanation:J
5(J1 ,J2 , . . . ,JM)TPJ M. Here, the encoder describes t
source sequenceJPJ M by a codewordj5 f (J)PX N. The
decoder representsJ by an estimateĴ5g(j)PĴM. Note that
M represents the length of a source sequence, whileN rep-
resents the length of a codeword. In this case, the rat
defined byR5N/M . Note that the relationN,M always
holds when a compression is considered; therefore,R,1
also holds.

A distortion function is a mappingd:J3Ĵ→R1 from the
set of source alphabet-reproduction alphabet pairs into
set of non-negative real numbers. Intuitively, the distort
d(J,Ĵ) is a measure of the cost of representing the symbJ

by the symbolĴ. This definition is quite general. In mos
cases, however, the reproduction alphabetĴ is the same as
the source alphabetJ. Hereafter, we setĴ5J and the fol-
lowing distortion measure is adopted as the fidelity criteri
the Hamming distortion is given by

d~J,Ĵ!5H 0 if J5 Ĵ

1 if JÞ Ĵ,
~1!

which results in a probable error distortion, since the relat
EJ@d(J,Ĵ)#5P@JÞ Ĵ# holds, whereEJ@ # represents the ex
pectation andP@ # the probability of its argument. The dis
tortion measure is so far defined on a symbol-by-sym
basis. We extend the definition to sequences. The distor
between sequencesJ,ĴPJ M is defined by d(J,Ĵ)
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5(1/M )(m51
M d(Jm ,Ĵm). Therefore, the distortion for a se

quence is the average distortion per symbol of the elem
of the sequence. The distortion associated with the cod
defined asD5EJ@d(J,Ĵ)#, where the expectation is with
respect to the probability distribution onJ. A rate-distortion
pair (R,D) should be achievable if a sequence of ra
distortion codes (f ,g) exists withEJ@d(J,Ĵ)#<D in the limit
N→`. Moreover, the closure of the set of achievable ra
distortion pairs is called rate-distortion region for a sour
Finally, we can define a function to describe the bounda
the rate-distortion functionR(D) is the infimum of ratesR,
so that (R,D) is in the rate-distortion region of the source f
a given distortionD.

In this paper, we restrict ourselves to a binary sourcJ
with a Hamming distortion measure for simplicity. We a
sume that binary alphabets are drawn randomly, i.e.,
source is not biased to rule out the possibility of compress
due to redundancy. We now find the description rateR(D)
required to describe the source with an expected propor
of errors less than or equal toD. In this simplified case,
according to Shannon, the boundary can be written as
lows; the rate-distortion function for a binary source wi
Hamming distortion is given by

R~D !5H 12h2~D !, 0<D<
1

2

0,
1

2
,D,

~2!

whereh2( ) represents the binary entropy function.
Next we introduce a toy model for the lossy compressi

We use the inverse problem of Sourlas-type decoding to
alize the optimal encoding scheme, a variation of which h
recently been investigated by some information theorists@3#.
As in the previous paragraphs, we assume that binary alp
bets are drawn randomly from a nonbiased source and
the Hamming distortion measure is selected for the fide
criterion. Theoretically speaking, it has been reported that
typical distortion could be well captured by the Parisi on
step RSB scheme, giving the physical interpretation ofR(D)
@4#. In this paper, we will discuss an actual encoding te
nique for this optimal family of codes.
©2004 The American Physical Society05-1
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First, we take the Boolean representation of the bin
alphabetJ, i.e., we setJ5$0,1%. We also setX5$0,1% to
represent the codewords. LetJ be anM-bit source sequence

j an N-bit codeword, andĴ an M-bit reproduction sequence
Here, the encoding problem can be written as follows. Giv
a distortionD and a randomly constructed Boolean matrixA
of dimensionalityM3N, we find theN-bit codeword se-
quencej, which satisfiesĴ5Aj (mod2), where the fidelity
criterion D5E@d(J,Ĵ)# holds, according to everyM-bit
source sequenceJ. Note that we applied modulo 2 arithme
ics for the additive operations. In our framework, decod
will just be a linear mappingĴ5Aj, while encoding remains
an NP-complete problem.

Let the Boolean matrixA be characterized byK ones per
row and C per column@5#. The finite, and usually small
numbersK and C define a particular code. The rate of o
codes can be set to an arbitrary value by selecting the c
bination ofK andC. We also useK andC as control param-
eters to define the rateR5K/C. If the value ofK is small,
i.e., the relationK!N holds, the Boolean matrixA results in
a very sparse matrix. By contrast, when we consider den
constructed cases,K must be extensively big and must ha
a value ofO(N). We can also assume thatK is notO(1) but
K!N holds.

The similarity between codes of this type and Ising s
systems was first pointed out by Sourlas, who formulated
mapping of a code onto an Ising spin system Hamiltonian
the context of error-correcting codes@6#. To facilitate the
current investigation, we first map the problem to that of
Ising model with finite connectivity following Sourlas
method. We use the Ising representation$1,21% of the al-
phabetsJ andX rather than the Boolean one$0,1%; the ele-
ments of the sourceJ and the codeword sequencesj are
rewritten in Ising values, and the reproduction sequenceĴ is
generated by taking products of the relevant binary co
word sequence elements in the Ising representationĴm
5) i PL(m)j i . Here, we denote the set of codeword indicei
that participate in the source indexm by L(m)5$ i uam i51%
with A5(am i). Therefore, choseni ’s correspond to the one
per row, producing an Ising version ofĴ. Note that the ad-
ditive operation in the Boolean representation is transla
into multiplication in the Ising one. Hereafter, we s
Jm ,Ĵm ,j i561 while we do not change the notations f
simplicity. Furthermore, as we use statistical-mechanics te
niques, we consider the source and codeword-sequenc
mensionality (M andN, respectively! to be infinite, keeping
the rateR5N/M finite.

To explore the system’s capabilities, we examine
Hamiltonian H(SuJ)5(m51

M G@SuJm#, with G@SuJm#
52Jm) i PL(m)Si , where we have introduced the dynamic
variable Si to find the optimal value ofj i , and G@SuJm#
denotes the local connectivity of a random hypergraph ne
boring the source bitJm . It is convenient to represent th
posterior probability of codewordS, given a sourceJ in the
form P(SuJ)5exp@2bH(SuJ)#/Z(J) with the inverse tem-
peratureb, whereZ(J)5TrSexp@2bH(SuJ)# is the partition
function.
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We obtain an expression for the free energy per source
expressed in terms of the probability distributionsp(x) and
p̂( x̂), providing a set of the saddle point relations:

p~x!5E F)
l 51

C

p~ x̂l !dx̂l GdS x2 (
l 51

C21

x̂l D , ~3!

p̂~ x̂!5E F)
l 51

K

p~xl !dxl G K dF x̂2
1

b
tanh21

3S tanh~bJ! )
l 51

K21

tanh~bxl !D G L
J

. ~4!

By using the result obtained for the free energy, we can e
ily perform further straightforward calculations to find all th
other observable thermodynamical quantities, including
ternal energy which records reproduction errors. This se
Eqs.~3! and~4! may be solved numerically for generalb, K,
andC. The spin glass solution can be calculated for both
replica symmetric and the one-step RSB ansatz. The for
reduces to the paramagnetic solution (f RS521), which is
unphysical forR,1, while the latter yields continuous dis
tributions p(x) and p̂( x̂) at the freezing pointbg , which
can be obtained from the root of the equation enforcing
non-negative replica symmetric entropy. The rando
energy-model limitK,C→`, and simple algebra gives th
relation between the rateR5N/M and the distortionD in the
form R512h2(D), which coincides with the rate-distortio
function in the Shannon’s theorem@4#.

We now take the Thouless-Anderson-Palmer approac
build a dynamics model using the Markov process assu
tion on prior beliefs, showing that it is possible to obtain
closed set of equations for practical encoding. At this po
we assume a mean field behavior for the dependence o
dynamical variablesS on a certain realization of the sourc
sequenceJ, i.e., the dependence is factorizable and might
replaced by a product of mean fields. Furthermore, we t
the Boltzmann weights for specific codeword bitSi are fac-
torizable with respect to the source bitJm @7#. On the other
hand, from a physicist’s point of view, it is natural to intro
duce the Markov process assumption on the priors to fin
solution in the spin glass state. This term can be conside
as the prior knowledge at a certain timet11, given the
previous one on the variables att. Hereafter, we introduce a
parametert51,2, . . . to represent time evolution. In this
scenario, we can derive a set of consistency equations

Wt~JmuSi ,$Jm8Þm%!5 (
Si 8Þ i

e2bGt(SuJm) )
i 8Þ i

Pt~Si 8u$Jm8Þm%!,

~5!

Pt11~Si u$Jm8Þm%!

5am iQt11~Si ! )
m8PM( i )\m

Wt~Jm8uSi ,$Jm9Þm8%!, ~6!

with
5-2
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Qt11~S!5^exp~aS1tanh21^g&SSi !&Pt(Si u$Jm8Þm%) , ~7!

wheream i is a normalization factor. In Eq.~7!, we have two
parameters to determine;a denotes the ferromagnetic bia
andg introduces the autocorrelation for sequences.

Here, we introduce another setM( i ) such that it defines
the set of source indices linked to the codeword indexi.
Equation ~5! evaluates the average influence of the new
added parity bitJm to Si , when $Si 8u i 8PL(m)\ i % obeys a
posterior distribution, which should be determined by t
rest of the data set$Jm8um8PM( i )\m%. This calculation
corresponds to the cavity method in the conventional fram
work, representing the effective Boltzmann weig
Wt(JmuSi(t),$Jm8Þm%) produced byJm , in which the self-
induced contributions are eliminated by assuming the
description for loopy interactions@8#. On the other hand, Eq
~6! indicates the stack of the cavity fields determining t
posterior distributionPt(Si u$Jm8Þm%).

In this formula, the approximated marginal posterior w
be

Pt11~Si uJ!5aiQt11~Si ! )
mPM( i )

Wt~JmuSi ,$Jm8Þm%!,

~8!

taking the full set of the cavity fields, determined se
consistently by Eqs.~5! and ~6!, into account, whereai is a
normalization factor again.

Next, we present a more convenient form of the abo
equations. The conditional probabilityPt(JmuSi ,$Jm8Þm%) is
a normalized effective Boltzmann weight:

Pt~JmuSi ,$Jm8Þm%!5bm iWt~JmuSi ,$Jm8Þm%!

5bm i (
Si 8Þ i

e2bGt(SuJm) )
i 8Þ i

Pt~Si u$Jm8Þm%!,

~9!

wherebm i is a normalization constant. This relation is o
tained by taking the connectionm out of the system, and
taking into consideration the dependance of the variableS
on all other connections.

The identity

e2bGt(SuJm)5
1

2
cosh~bJm!S 11tanh~bJm! )

i PL(m)
Si D

~10!

and simple algebra with respect to the newly defined v
ablesmi j (t), m̂i j (t)P@21,11# satisfying the relations

Pt~Si u$Jm8Þm%!5
11mm i~ t !Si

2
, ~11!

Pt~JmuSi ,$Jm8Þm%!5
11m̂m i~ t !Si

2
~12!

give the set of consistency equations in the form
03510
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m̂m i~ t11!5tanh~bJm! )
i 8PL(m)\ i

mm i 8~ t !, ~13!

mm i~ t11!5tanhS (
m8PM( i )\m

tanh21@m̂m8 i~ t !#1a

1tanh21@gmi~ t !# D , ~14!

with the pseudoposterior expression

mi~ t !5tanhS (
mPM( i )

tanh21@m̂m i~ t !#1a

1tanh21@gmi~ t !# D . ~15!

The set of Eqs.~13! and ~14! give an iterative algorithm for
code generation. In our dynamics model, the choice of
rameter g50 results in naive Thoulers-Anderson-Palm
equation without the reaction term@9#. Therefore, in this
case, the dynamics can be strictly captured using the me

FIG. 1. Snapshots of probability distributions forK52, L53,
andbg52.35. ~Top! Stable solution of Eqs.~3! and~4! is calculated
by Monte Carlo methods. We use 105 bin models to approximate
the probability distributionsp(x) and p̂( x̂), starting from various
initial conditions. ~Bottom! Fixed-point condition for the density
evolution of Eqs.~13! and~14! is represented in terms of the prob
ability distributions in the same bin model. We use the relat
mm i5tanhby and m̂m i5tanhbŷ, where the variables are assume
to be generated from common densitiesr and r̂, respectively.
5-3
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of ‘‘density evolution’’ proposed by Richardson and Urban
in the context of determining the capacity of low-dens
parity-check codes under message-passing decoding@10#.
Let r( ) denote the common density of (1/b)tanh21 mmi and
r̂( ) the density of (1/b)tanh21 m̂mi ; it is easy to see that th
set of probability distributions should satisfy the saddle po
equations~3! and ~4!. It is quite interesting to find the con
sistency between the information theoretic density evolut
technique and the replica theory for disordered statistical
tems. Therefore the similarity betweenp andr ~or p̂ andr̂)
can be considered as an important measure for good en
ing, giving the design principle for dynamics model~Fig. 1!.
Finally, Eq. ~15! provides the Bayes optimal encodin
m̂i(t)5sgn(mi(t)) in the Ising representation.

Practical encoding scheme for this compression mo
will be as follows. Given the source sequenceJ we first
translate the Boolean alphabets into that of Ising ones. T
for a certain set of control parametersa, b andg, Eqs.~13!
and ~14! are recursively calculated until they converge to
certain fixed point. Finally, according to Eq.~15!, we calcu-
late the codeword sequencej from the Boolean translation o
m̂5sgn(m). Notice that the decoding process will be just
linear mapping. The most interesting quantity to examine
clearly the minimum typical distortion for a given compre
sion rate. Empirical results are shown in Fig. 2, together w
the theoretical evaluation for the code constructions us
the replica method. We use the optimal inverse tempera
bg for code generation, where per-bit entropy vanishes at
freezing point. Recent works in the information science
veal that designing the codes which approach to the Sh
non’s limit R(D) is quite difficult in the practical sense; w
do not have good coding methods of low complexity, es
cially of O(N). Our code construction, however, takes on
O(N), and the performance is surprisingly good. We belie
that the physicist approach can play an important role in
lossy compression schemes, as we have already seen i
context of the error-correcting codes.

Future directions of the current research include utiliz
-
d
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more refined approximation techniques to find better cod
schemes for lossy compression, as well as the evaluatio
the trade-off relation between performance and compu
tional costs. These tasks are interesting and challenging
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FIG. 2. Empirical performance: Numerical experiments sh
that the algorithm with optimala50 andb5bg can achieve the
bound for sparse construction of the codes, whereK52 and L
53,4, . . .,12. We chooseg50.01 forC53 andg50.1 for the rest.
Solid line denotes the rate-distortion functionR(D) for binary se-
quences by Shannon, while dashed line can be easily achieve
universal lossless coding techniques. (s) Numerical results with
the system sizeN520 000, averaged over ten trials for each eva
ation. (h) Theoretical bound for the sparse construction obtain
by the 105 bin model for Monte Carlo sampling in the replic
framework.
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