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We study an ill-posed linear inverse problem, where a binary sequence will be reproduced using a sparse
matrix. According to the previous study, this model can theoretically provide an optimal compression scheme
for an arbitrary distortion level, though the encoding procedure remaind Racomplete problem. In this
paper, we focus on the consistency condition for a dynamics model of Markov-type to derive an iterative
algorithm, following the steps of Thouless-Anderson-Palmer approach. Numerical results show that the algo-
rithm can empirically saturate the theoretical limit for the sparse construction of our codes, which is also very
close to the rate-distortion function.
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LOS.S)/ Compressiqn is quit-e im_portant in our m(-)dern Ilfe:(llM)El’\/{l:ld(‘]M’jM) Therefore, the distortion for a se-
One first encodes information into an appropriate formqguence is the average distortion per symbol of the elements
which will be decoded to reproduce similar sequence. Thef the sequence. The distortion associated with the code is
theoretical framework for this kind of compression schemey ¢4 asD=E,[d(J,3)], where the expectation is with

with a fidelity criterion is called rate-distortion t,hepry, wh|qh respect to the probability distribution Qfi A rate-distortion
consists an important part of the Shannon’s information

theory[1]. pair (R,D) should be achievable if :?1 sequence of rate-
We start by defining the concepts of the rate-distortiondiStortion codesf(g) exists withE,[d(J,J)]<D in the limit

theory and stating the simplest version of the main rg@t N—. Moreover, the closure of the set of achievable rate-

Let J be a discrete random variable with alphalfetAssume distortion pairs is called rate-distortion region for a source.

that we have a source that produces a sequendé'na”y' we can define a function to describe the boundary;

J1,J5, ... Ju, where each symbol is randomly drawn from the rate-distortion functioiR(D) is the infimum of rates,

a distribution. We will assume that the alphabet is finite.SO that R D) is in the rate-distortion region of the source for

Throughout this paper, we use vector notation to represerit 9iven distortiorD. _ _

sequences for  convenience of explanationd _In this paper, we restrict ourselves to a binary soutce

=(31,d5, ... dy)TeTM. Here, the encoder describes the with a Hamming distortion measure for simplicity. We as-

source sequencée J™ by a codewordg=f(J) e XN. The Sume that binary alphabets are drawn randomly, i.e., the

. s - source is not biased to rule out the possibility of compression
decoder represengsby an estimatd=g(#) e 7. Note_ that due to redundancy. We now find the description iR{®)
M represents the length of a source sequence, vihilep-

resents the length of a codeword. In this case, the rate irequwed to describe the source with an expected proportion

) . 53f errors less than or equal . In this simplified case,
defined byR=N/M. Note_ th"’.‘t the r(_alatlori\.I<M always according to Shannon, the boundary can be written as fol-
holds when a compression is considered; theref&€,1

lows; the rate-distortion function for a binary source with
also holds.

) . o ] N Hamming distortion is given by
A distortion function is a mappind: 7x J—R™" from the
set of source alphabet-reproduction alphabet pairs into the 1
set of non-negative real numbers. Intuitively, the distortion 1—hy(D), OSDSE

d(J,J) is a measure of the cost of representing the synibol R(D)= )
by the symbold. This definition is quite general. In most 0
cases, however, the reproduction alpha,b’eis the same as ’

the source alphabef. Hereafter, we sef/=7 and the fol- _ _
lowing distortion measure is adopted as the fidelity criterionwhereh,() represents the binary entropy function.

=<
2 D,

the Hamming distortion is given by Next we introduce a toy model for the lossy compression.
We use the inverse problem of Sourlas-type decoding to re-
R 0 if J=J alize the optimal encoding scheme, a variation of which has
d(J,J)= ) R (1) recently been investigated by some information theofBls
1t J#J, As in the previous paragraphs, we assume that binary alpha-

. bets are drawn randomly from a nonbiased source and that
z - The Hamming distortion measure is selected for the fidelity
E,[d(J3,J)]=PJ#J] holds, whereE[ ] represents the ex- criterion. Theoretically speaking, it has been reported that the
pectation and[ ] the probability of its argument. The dis- typical distortion could be well captured by the Parisi one-
tortion measure is so far defined on a symbol-by-symboktep RSB scheme, giving the physical interpretatioR@d)
basis. We extend the definition to sequences. The dlStOfth[H_] In this paper, we will discuss an actual encoding tech-
between sequences),Je JM is defined by d(J,J) nique for this optimal family of codes.
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First, we take the Boolean representation of the binary We obtain an expression for the free energy per source bit
alphabet7, i.e., we set7={0,1}. We also sett={0,1} to  expressed in terms of the probability distributioméx) and
represent the codewords. Lebe anM-bit source sequence, (), providing a set of the saddle point relations:

& anN-bit codeword, and an M-bit reproduction sequence.

C Cc-1
Here, the encoding problem can be written as follows. Given _ SNl _ :
a distortionD and a randomly constructed Boolean maix W(X)_f H mx)dx 5( X 21 X')’ ©
of dimensionalityM XN, we find the N-bit codeword se-
guenceé, which satisfiesf]=A§ (mod2), where the fidelity o K 1 .
criterion D=E[d(J,J)] holds, according to everM-bit W(X):J Iﬂl m(X)dx || 8 X— Etanh
source sequencek Note that we applied modulo 2 arithmet-
ics for the additive operations. In our framework, decoding K-1
will just be a linear mapping= A&, while encoding remains X | tanh(BJ) |1:[1 tanr(,8x|)) . 4
J

an NP-complete problem.

Let the Boolean matriA be characterized bl ones per
row and C per column[5]. The finite, and usually small,
numbersK and C define a particular code. The rate of our
codes can be set to an arbitrary value by selecting the co
bination ofK andC. We also us& andC as control param-
eters to define the rate=K/C. If the value ofK is small,
i.e., the relatiorK <N holds, the Boolean matri& results in
a very sparse matrix. By contrast, when we consider densel : L o
constructed case&, must be extensively big and must have |yeduces_; to the paramagneUc SOIUt'd@i_ -1, .Wh'Ch IS
a value ofO(N). We can also assume thtis notO(1) but unphysical forR<1,Awt1|Ie the latter yields continuous dis-
K<N holds. tributions 7(x) and m(x) at the freezing poing3,, which

The similarity between codes of this type and Ising spinc@n be obtained from the root of the equation enforcing the
systems was first pointed out by Sourlas, who formulated th@on-negative - replica symmetric entropy. The random-
mapping of a code onto an Ising spin system Hamiltonian ifeNergy-model limit,C—ce, and simple algebra gives the
the context of error-correcting cod¢s]. To facilitate the relation between the raR=N/M and the distortio in the
current investigation, we first map the problem to that of anform R=1—h,(D), which coincides with the rate-distortion
Ising model with finite connectivity following Sourlas’® function in the Shannon’s theorej¥].
method. We use the Ising representat{dn—1} of the al- We now tak_e the Thoule_ss-Anderson-PaImer approach to
phabets7 and X rather than the Boolean of@,1}; the ele- ~ build a dynamics model using the Markov process assump-
ments of the sourcd and the codeword sequencésare tion on prior beliefs, showing that it is possible to obtain a

rewritten in Ising values, and the reproduction sequehise closed set of equations for prac_tical encoding. At this point,

generated by taking products of the relevant binary codelc 2>5UMe & mean field behavior for the dependence of the
i ) A dynamical variable$ on a certain realization of the source

word sequence elements in the Ising representaipn  goquencg, i.e., the dependence is factorizable and might be

=1l p(uéi - Here, we denote the set of codeword indi€es |gpjaced by a product of mean fields. Furthermore, we treat

that participate in the source indexby £(u)={ila,i=1}  the Boltzmann weights for specific codeword Bitare fac-

with A=(a,;). Therefore, choseiis correspond to the ones qjape with respect to the source Bi [7]. On the other

per row, producing an Ising version df Note that the ad- hand, from a physicist’s point of view, it is natural to intro-

ditive operation in the Boolean representation is translateduce the Markov process assumption on the priors to find a

into multiplication in the Ising one. Hereafter, we set solution in the spin glass state. This term can be considered

Jﬁ,jﬂ,gi:tl while we do not change the notations for as the prior knowledge at a certain time 1, given the

simplicity. Furthermore, as we use statistical-mechanics techprevious one on the variables tatHereafter, we introduce a

niques, we consider the source and codeword-sequence ¢iarametert=1,2, ... torepresent time evolution. In this

mensionality M andN, respectively to be infinite, keeping scenario, we can derive a set of consistency equations

the rateR=N/M finite.

To explore the system’s capabilities, we examine the _ — 3G(S)

Hamiltonian H(§J)==)_,G[S]J,], with G[S|J,] Wl S A 2h) = %. e Al ”)il;li PUS3ur2ub),

=—J,Ilic£(,ySi, where we have introduced the dynamical (5)

variable S to find the optimal value o&;, and G[S|J,]

denotes the local connectivity of a random hypergraph neighP;+ 1(Si[{J,,' = ,.})

boring the source bif, . It is convenient to represent the

By using the result obtained for the free energy, we can eas-
ily perform further straightforward calculations to find all the
ther observable thermodynamical quantities, including in-
ternal energy which records reproduction errors. This set of
Egs.(3) and(4) may be solved numerically for geneigy K,
andC. The spin glass solution can be calculated for both the
replica symmetric and the one-step RSB ansatz. The former

posterior probability of codewor8, given a sourcd in the =a 0 WIS AT ve V), 6
form P(S|J)=exd —BH(SJ)1/Z(J) with the inverse tem- “ Hl(si)ﬂfe};[(i)w (S ) ©
peratureB, whereZ(J)=Trgexg —BH(SJ)] is the partition

function. with
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Q1. 1(S)=(expaS+tanh {7)SS)nsya,., 1o (7

?‘P-}),

mu(t+1)=tanh(pd,) II m,(v, (13
O
wherea,,; is a normalization factor. In Ed7), we have two S

parameters to determine; denotes the ferromagnetic bias _qa

and y introduces the autocorrelation for sequences. mm(t+1)=tan}‘( , 2 tanh {m, () ]+«
Here, we introduce another s#t((i) such that it defines pE M

the set of source indices linked to the codeword index

Equation (5) evaluates the average influence of the newly +tanh—1[7mi(t)]), (14

added parity bitJ, to S, when{S;/|i’ e L(u)\i} obeys a

posterior distribution, which should be determined by thewith the pseudoposterior expression

rest of the data sefJ, |u’e M(i)\u}. This calculation P P P

corresponds to the cavity method in the conventional frame- R

work, representing the effective Boltzmann weight mi(t)ztan}‘( > tanh '[m,; () ]+ a

Wi(3,1S(t),{3,+ ,}) produced byd,, in which the self- e M@

induced contributions are eliminated by assuming the tree

description for loopy interactiori8]. On the other hand, Eq. +tanh ' ym;(t)]

(6) indicates the stack of the cavity fields determining the

posterior distributiorP(S;|{J,,: - .})- _ . The set of Eqs(13) and(14) give an iterative algorithm for
In this formula, the approximated marginal posterior will 5qa generation. In our dynamics model, the choice of pa-

. (15

be rameter y=0 results in naive Thoulers-Anderson-Palmer
equation without the reaction terfi®]. Therefore, in this
Pria(SI) =a Q¢ 1(Si)ﬂel;[4(i) WH,IS A3, 2ub), case, the dynamics can be strictly captured using the method
)
taking the full set of the cavity fields, determined self- 3t
consistently by Egs(5) and (6), into account, wherg; is a
normalization factor again.
Next, we present a more convenient form of the above ol
equations. The conditional probabili‘@t(JM|Si A% ut) is
a normalized effective Boltzmann weight:
,Pt(‘-],u,lg 1{‘J,u’#,u.}):b,u,iwt(‘),u,|si l{Ju’#M}) 1r TE(XA)
T (x)
:b,u,i E eiﬁet(sl‘]“)l_[ ,Pt(SiHJ,u'#,u})!
S 4i i’ #i 0_2 7 9 g 5
€)
whereb,,; is a normalization constant. This relation is ob-
tained by taking the connectiop out of the system, and 3(
taking into consideration the dependance of the variaBles
on all other connections.
The identity 21
1
e Pe == costipd,)| 1+tanhpd,) I s
2 i€ L(u) 1 o
(10 p(y)
p(y)
and simple algebra with respect to the newly defined vari- 5

ablesm; (1), rﬁij(t) e[ —1,+1] satisfying the relations -2 -1 0 1 2
FIG. 1. Snapshots of probability distributions fid=2, L=3,
1+m,(HS andB,=2.35.(Top) Stable solution of Eqg3) and(4) is calculated
PI(S|{‘]#’¢#})_ 2 ’ (1D by Monte Carlo methods. We use ®1Bin models to approximate
the probability distributionsr(x) and 7(X), starting from various
14 (S initial _conditions.(Bottom) Fix_ed-point condit_ion for the density
PI,S Iz )= Y A (12) evolution of Eqs(13) and(14) is represented in terms of the prob-
" T 2 ability distributions in the same bin model. We use the relation
m,; =tanhgy and i, =tanhgy, where the variables are assumed
give the set of consistency equations in the form to be generated from common densitieand p, respectively.
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of “density evolution” proposed by Richardson and Urbanke 1 = :

in the context of determining the capacity of low-density o Z::Zﬁment
parity-check codes under message-passing decddifp A

Let p() denote the common density of @tanh *m,; and 0.8

p() the density of (18)tanh™? i, ; it is easy to see that the
set of probability distributions should satisfy the saddle point
equations(3) and (4). It is quite interesting to find the con-
sistency between the information theoretic density evolution
technique and the replica theory for disordered statistical sys

tems. Therefore the similarity betweenandp (or 7 andp)
can be considered as an important measure for good encot
ing, giving the design principle for dynamics modEig. 1). 0.2
Finally, Eq. (15 provides the Bayes optimal encoding

m;(t) =sgn(m;(t)) in the Ising representation.

Practical encoding scheme for this compression model o
will be as follows. Given the source sequentewe first
translate the Boolean alphabets into that of Ising ones. Then,
for a certain set of control parameters 8 andy, Egs.(13)

and (14) are recursively calculated until they converge to 3yound for sparse construction of the codes, whére2 and L
certain fixed point. Finally, according to E@L5), we calcu- —34 12. We choose/=0.01 forC=3 and;::o 1 for the rest
late the codeword sequengérom the Boolean translation of Solid line denotes the rate-distortion functi®¢(D) for binary se-

m=sgn(m). Notice that the decoding process will be just aquences by Shannon, while dashed line can be easily achieved by
linear mapping. The most interesting quantity to examine isuniversal lossless coding technique&)( Numerical results with
clearly the minimum typical distortion for a given compres- the system siz&l=20 000, averaged over ten trials for each evalu-
sion rate. Empirical results are shown in Fig. 2, together withation. (0) Theoretical bound for the sparse construction obtained
the theoretical evaluation for the code constructions usingy the 16 bin model for Monte Carlo sampling in the replica
the replica method. We use the optimal inverse temperatur&amework.

By fqr code.generatlon, Where.per-blt' entropy' vanlshes at thﬁwore refined approximation techniques to find better coding
freezing point. Recent works in the information science re-

veal that designing the codes which approach to the Shanscheme:s for lossy compression, as well as the evaluation of

non’s limit R(D) is quite difficult in the practical sense; we the trade-off relation between performance and computa-

do not have good coding methods of low complexity, espe_tlonal costs. These tasks are interesting and challenging.

cially of O(N). Our code construction, however, takes only The author thanks Yoshiyuki Kabashima and Jort van

O(N), and the performance is surprisingly good. We believeMourik for useful discussions. The author also thanks

that the physicist approach can play an important role in thdadaaki Hosaka for carefully examining the manuscript. This

lossy compression schemes, as we have already seen in tresearch was partially supported by the Ministry of Educa-

context of the error-correcting codes. tion, Science, Sports and Culture, Grant-in-Aid for Young
Future directions of the current research include utilizingScientists(B), Grant No. 15760288, 2003.
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FIG. 2. Empirical performance: Numerical experiments show
that the algorithm with optimak=0 and 8= 8, can achieve the
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