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Nonequilibrium stationary states and entropy
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In transformations between nonequilibrium stationary states, entropy might not be a well defined concept. It
might be analogous to the ‘‘heat content’’ in transformations in equilibrium which is not well defined either, if
they are not isochoric~i.e., do involve mechanical work!. Hence we conjecture that in a nonequilibrium
stationary state the entropy is just a quantity that can be transferred or created, such as heat in equilibrium, but
has no physical meaning as ‘‘entropy content’’ as a property of the system.
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I. THERMOSTATS AND CHAOTIC HYPOTHESIS

In studying equilibrium and nonequilibrium thermod
namics the notion ofthermostatplays an important role: it is
usually defined phenomenologically@1# as a system capabl
only of exchanging heat without changing its temperature
performing work~hence it is ideally an infinite system!.

In a statistical mechanical approach to a theory of
nonequilibrium stationary states of a system which is sub
to external nonconservative forces, which~therefore! per-
form work, thermostats must then be present to avoid that
work performed by the external forces causes an increas
the energy beyond bounds. In statistical approaches the
mostats must be defined as mechanical forces: the routes
one can follow are the following.

~i! Introduce stochastic forces acting on the system~usu-
ally on the boundary!.

~ii ! Assume that the system interacts via conserva
forces with infinite systems~‘‘thermostats’’! which are ini-
tially in equilibrium and which one would like to show tha
by interacting with the system the thermostats will unde
only changes localized in the vicinity of the contact surfac

~iii ! Assume that the interaction with the ‘‘outside world
is modeled by an effective force on the system which b
ances the work of the external forces working on the sys
@cf. Eq. ~1! below# thus allowing the system to reach statio
arity.

The third possibility has recently emerged as a very c
venient way of studying the problem, since it at least avo
the virtually untractable theory of the behavior of systems
contact with infinite reservoirs. However it is often regard
as ‘‘unphysical’’ because it ‘‘amounts to modifying the sy
tem’s equations of motion.’’ But the equations of motion a
modified also if one uses the option~i!, while the option~ii !
is interesting but not really suitable for investigations whic
at least until now, mostly rely on numerical experimen
Furthermore, theoretically the only ‘‘infinite thermostat
which have been considered are infinite systems of free
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ticles interacting only with the particles of the system a
not directly with each other, a rather restricted case.

Here we shall model thermostats by mechanical for
acting on the system; however, we do not want to make v
specific choices of the forces and the thermostats since
are interested only in general properties which would
shared by ‘‘any’’~reasonable! choices of the forces and the
mostat models. We think that the mechanical models of th
mostats fall into ‘‘equivalence classes,’’ just as one thin
that phenomenological thermostats do. Therefore we c
sider mechanical systems which, in spite of being acted u
by nonconservative forces, are kept in a nonequilibrium s
tionary state with the help of other mechanical~thermostatic!
forces, and study which relations, if any, can be establis
about transitions between stationary states@2#. We restrict
ourselves here to transformations between stationary s
which arequasistatictransformations through intermedia
stationary states. This means that on the time scale of
observations the control parameters~e.g., volume, strength o
the external forces, etc.! of the stationary states are kept fixe
long enough so that the system can at any time can be
sidered to be in a stationary state. This is a generalizatio
reversible transitions in equilibrium.

We consider only systems consisting of many partic
and we donot consider systems that are modeled by co
tinua. Continua could be considered but one must first
derstand the thermodynamics of simple systems@3#. The par-
ticle motions occurring in a simple system are assumed to
chaotic. Thechaotic hypothesis@4#, essentially states that a
isolated system of particles has a chaotic evolution on mic
scopic time scales~see below!.

A simple system will be described by a differential equ
tion in its phase space: we write it asẋ5XE(x) where x

5(q̇,q)PR6N[V ~phase space!, N5number of particles,
m5mass of the particles, with

mq̈5f~q!1E•g~q!2qE~ q̇,q![XE~x!, ~1!

wheref(q) describes the internal~conservative! forces~e.g.,
hard cores!, E•g(q) represents the ‘‘active external forces
~nonconservative for the reasons mentioned at the beginn!
acting on the system. For definiteness we suppose that
are locally conservative~like an electromotive force! but not
globally, andqE is the force law which models the actio

a
:
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exerted by the thermostat on the system to keep it from
definitely acquiring energy: this is why we shall call it
mechanical thermostat. Linearity of the dependence on th
‘‘fields’’ E is only for convenience: we arenot assuming
them to be small~the theory of linear nonequilibrium is am
ply discussed in the literature@5#!. More generally the exter
nal forces could be velocity dependent and even time dep
dent ~periodically! but we restrict ourselves to position
forces only for simplicity.

Models of thermostats in the above sense can be v
different even for the same macroscopic system; for insta
~a list far from exhaustive!, ~1! assuming the system to hav
hard cores~e.g., a granular material of the type considered
Ref. @6#! one can consider inelastic collisions, e.g., supp
that the head-on component of the energy is decreased
scale factorh,1 upon each collision or,alternatively, the
total energy of the two colliding particles is rescaled afte

collision and assigned a value 23
2 kBT ~this is essentially

‘‘Drude’s conduction model’’! @7#; or ~2! assuming that there
is a background frictionq i52nq̇i , n.0, for all compo-
nents ofẍ j ; or ~3! assumingminimum effortto keep, say, the
total kinetic energy or the total energy constant~‘‘ Gaussian
thermostat’’ @8#!.

Remark. The restriction that the external force
E•g(q) be positional is a strong restriction as it does n
allow velocity dependent forces or several different therm
stats as needed in any heat conduction problem where
nonequilibrium stationary state is achieved by putting
system in contact with two reservoirs without any exter
forces acting. However, such cases could also be consid
@9#, but we do not treat them here since we want to rest
ourselves to the simplest case.

We shall assume about the system which we consider
chaotic hypothesis@4# @The system evolution is supposed
be as chaotic as possible, i.e., to be hyperbolic~one also
says, technically, that the system is ‘‘an Anosov system’’!.#,
which will be a key assumption in our analysis.

II. SRB STATISTICS AND NONEQUILIBRIUM
ENSEMBLES

Any initial statex, randomly chosen in phase space with
probability distribution which has a density in phase spa
@i.e., such that the probability of a phase pointq̇,q to be in
dq̇dq has the formr(q̇,q)dq̇dq for some probability density
r(q̇,q)>0 in phase space# will admit a statistics~under the
above chaotic assumption!: i.e., for all ~smooth! observables
F,

lim
T→`

1

TE0

T

F~Stx!dt5E
V

mE~dy!F~y!, ~2!

where mE is a stationary probability distribution on phas
space, called theSRB distributionor also SRB statistics
@3,10–12#. This is a ~nontrivial! consequence of the abov
chaotic hypothesis.

Definition.A system in a microscopic statex, which has
SRB statisticsmE , is said to be in the stationary statemE .
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The collection of all stationary states of a system that
constructed by varying the parameters~typically the volume
V of the container, the number of particlesN, the external
forcesE, etc.! will be called a ‘‘nonequilibrium Ensemble.’

TheEnsemble~with capitalE) is therefore a collection of
probability distributions which we distinguish from wha
following Gibbs, has become established terminology wh
ensembleindicatesa single elementof the collection, with
fixed control parameters: what is usually called simply t
‘‘microcanonical ensemble with parametersU,V’’ is here
just a single element of the collection~i.e., the Ensemble! of
microcanonical probability distributions.

The notion of Ensemble in nonequilibrium is wider tha
in equilibrium since it dependsalso on the equations of mo
tion, because of the presence there of the thermostats. H
ever, one expects that, as happens in equilibrium statis
mechanics, there should be ‘‘equivalent Ensembles’’ cor
sponding to classes of different possible models for therm
stats acting on a system@3,11#.

Equilibrium is a special case of a nonequilibrium statio
ary state: in such caseE50 andqE50 and the chaotic hy-
pothesis implies the validity of the ergodic hypothesis@11#;
the Ensemble~or collection! of SRB distributions each o
which can be parametrized by the total energyU and volume
V coincideswith the corresponding collection of microca
nonical ensembles@11#. Furthermore, in general, the chaot
hypothesis implies that observables that are represente
smooth functions on phase space have finite time corr
tions which converge exponentially fast to their stationa
state averages~i.e., SRB averages!.

We now want to consider which relations can be est
lished in general between the properties of stationary st
that can be transformed into one another by changing rev
ibly the external parameters, just as is done on equilibri
states.

In fact, if we limit ourselves to equilibrium states firs
then it is well known, since Boltzmann~in his papers in the
period 1866–1884, see Ref.@13#!, that if a transformation
generates an energy variationdU and a volume variationdV
when the pressure~defined as a time average of a functio
defined on phase space, see for instance Ref.@11#! is p and
the average kinetic energy is32 NkBT then, see Ref.@11# ap-
pendixes A1.1 and A9.3,

dU1pdV

T
5~exact differential!, ~3!

while dU1pdV is not exact,exceptin the isochoric case
~i.e., whendV50) and it is called theheat transferredfrom
the heat reservoirs to the system. It makes no sense to ta
heat contentcontained in the system@14#, unless one limits
oneself to isochoric transformations: there is no heat con
of a system because one cannot distinguish between the
and the mechanical work contents unless one allows o
isochoric transformations in which the system performs
work ~and in that case it is just another name for the inter
energy!.
4-2
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Defining theentropycontent of a system as an integralS
of the exact differential (dU1pdV)/T, an immediate ques
tion is whether one can extend the notion of entropy con
to nonequilibrium states.

III. ENTROPY PRODUCTION RATE AND TEMPERATURE

The proposal that emerges from various theoretical c
siderations and a number of numerical experime
@8,11,15,16#, is to define, ifkB is Boltzmann’s constant,

Definition. The entropy production rate in a stationa
statemE is kBs1 with @cf. Eq. ~2!#:

s15^s& 5
de fE

V
mE~dx!s~x!, ~4!

wheres(x)52 divergence ofXE(x) @i.e., s(x) is the phase
space contraction rate# andmE is the SRB statistics.

This definition elicits a few comments.
~a! There is no generally accepted definition of entropy

nonequilibrium stationary states.
~b! In several thermostat models considered in the lite

ture the average divergences1 of the equations of motion is
essentially related toW, the average work per unit time don
by the thermostating forces, i.e., to the time averageW of
q̇•q(q,q̇), which in stationary states equals the avera
work done by the external forces. For instance ifq(q,q̇) is
proportional toq̇, i.e., q(q,q̇)5a(q̇,q)q̇ for some function
a, then W5^aq̇2& while s15^s&53N^a&1^(] q̇a)q̇&:
henceW.^a&2K ands1.3N^a& so that in such casesW
ands1 are related bys15W/2K/3N. Since the work done
by the thermostating forces is naturally interpreted as
heat that the system cedes to the thermostat we see that
cases considered@i.e., q(q,q̇)5a(q̇,q)q̇] the quantitys1

has the meaning of the entropy increase of the thermost
~c! An important general theorem@17#, guarantees tha

s1>0, and s150 corresponds to the case in which t
SRB distributionmE admits a density on phase space, a c
that one naturally identifies with an equilibrium state a
which essentially happens only ifE50.

Certainly the above three properties are, at best, only
indication that the phase space contraction can be interpr
as the entropy increase of the thermostats~in the classical
sense of the word and due to the heat generated by the
tem!. If we used phenomenological thermostats they wo
be systems in thermal equilibrium and at a fixed tempera
so that the heat absorbed per unit time would generate
entropy increase of the thermostats which is well defin
Here one has to bear in mind that the notion of heat abso
by a mechanical thermostat as well as the notion of its te
perature arenew concepts. We use the arbitrariness offere
us by the lack of a generally accepted definition of the
concepts to conjecture the above definition of the entr
production rate on the basis of the general result in~c! which
guarantees the positivity that is desired for compatibi
with classical thermodynamics.

The notion of temperature of a thermostat is however s
missing but the above definition leads to a definition of
03510
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effective temperature of the thermostating forces~we stress
that there is no universally accepted definition of temperat
in systems out of equilibrium, even if stationary@2,6#!. Here
we propose the following.

Definition. The ~effective! temperatureT of the thermo-
stats for a stationary nonequilibrium state is

T5
W

kBs1
, ~5!

whereW is the average work per unit time done on the s
tem by the external forces, equal to the average workQ̇ done
on the thermostating forces, andkBs1 is the entropy produc-
tion rate.

The equality betweenW5^E•g(q)•q̇& and Q̇5^q•q̇& is
due to the fact that the internal forces being conserva
perform zero work on the average.

Remark.The situations in which there is heat conducti
between different thermostats is not considered here. In s
cases one has at least two thermostats acting on the sys
i.e., the thermostating forceq is then the sum of, for in-
stance, forcesq5q11q2, which perform the work2Q̇1

and 2Q̇2, respectively, so that the divergences(x) is the
sum of two quantitiess1(x) and s2(x). Therefore in such
cases it will be natural to define the temperatures of the
thermostats asTi5Q̇i /kBs i 1 we do not discuss the matte
further since, from the outset, we are not considering sit
tions in which the system is subject to several thermosta
forces.

The above definition does not make sense as such in e
librium because it becomes 0/0: however, one can imag
introducing a small forcingE and a corresponding thermo
stat. Then in the limit of vanishing, forcing this yields
definition of T which by the ‘‘fluctuation dissipation theo
rem’’ can be checked to be the correct equilibrium tempe
ture @9,18–20#.

Our definition of nonequilibrium temperature has alrea
been hinted at by Bonetto and Menon as well as used in
literature@6,18#, in particular cases.

Adopting the above concepts leads naturally to giving
the possibility of defining the entropy content of a noneq
librium stationary state because the system creates entro
a constant rate and if one would insist in defining the entro
content of a dissipating~i.e., with s1.0) stationary state
one would be compelled to assign to it a value2`. Thus in
our view of nonequilibrium stationary states the entropy en
up to be undefined and one can speak meaningfully only
‘‘entropy production’’ or ‘‘entropy transfer,’’ much as the
‘‘heat content’’ of a system is undefined in equilibrium, b
production and transfer of heat are well defined.

The divergence of the entropy has been discussed in
@11# ~see Chap. 9.7! and Refs.@2,21#. Other approaches
which try to define entropy as a finite quantity are in Re
@22–24#.

IV. DISCUSSION

~1! Having defined the notion of entropy production ra
one can define a ‘‘duality’’ between fluxesJj and forcesEj
4-3
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usingkBs15kB*m(dx)s(x) as a ‘‘generating function:’’

Jj~E!5kB

]s1

]Ej
,

which, in the limitE50, leads to Onsager’s reciprocity an
to Green–Kubo’s formulas for transport@19,20#.

~2! We have proposed a general definition of entropy p
duction rate and of temperature for a class of station
states. But a new definition is really useful if it is associa
with new results: we think that such new results may alre
be around and cluster around thefluctuation theorem, for
which we refer to the literature@2,4,6,25–29#.

~3! The reason for our conjecture on the absence of
entropy content in nonequilibrium stationary states diff
from the absence of heat content in equilibrium. This is
cause in equilibrium the heat content cannot be defined s
rately from the mechanical energy content@14#. However in
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e
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n
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a nonequilibrium stationary state the impossibility to defi
entropy content is due to the steady entropy producti
which makes the entropy content2`. In spite of that there
is an analogy in that both quantities can be transferred
produced and they can even be defined if one limits one
to consider a suitably restricted class of transformations~e.g.,
isochoric transformations between equilibrium states
what concerns heat or general transformations between e
librium states for what concerns entropy!.
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