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Nonequilibrium stationary states and entropy
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In transformations between nonequilibrium stationary states, entropy might not be a well defined concept. It
might be analogous to the “heat content” in transformations in equilibrium which is not well defined either, if
they are not isochorigi.e., do involve mechanical workHence we conjecture that in a nonequilibrium
stationary state the entropy is just a quantity that can be transferred or created, such as heat in equilibrium, but
has no physical meaning as “entropy content” as a property of the system.
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I. THERMOSTATS AND CHAOTIC HYPOTHESIS ticles interacting only with the particles of the system and
not directly with each other, a rather restricted case.

In studying equilibrium and nonequilibrium thermody-  Here we shall model thermostats by mechanical forces
namics the notion ofhermostagplays an important role: itis acting on the system; however, we do not want to make very
usually defined phenomenologically] as a system capable specific choices of the forces and the thermostats since we
only of exchanging heat without changing its temperature ofre interested only in general properties which would be
performing work(hence it is ideally an infinite system shared by “any”(reasonablechoices of the forces and ther-

In a statistical mechanical approach to a theory of themostat models. We think that the mechanical models of ther-
nonequilibrium stationary states of a system which is subjecfnostats fall into “equivalence classes,” just as one thinks
to external nonconservative forces, whitherefore per- that phenomenological thermostats do. Therefore we con-
form work, thermostats must then be present to avoid that theider mechanical systems which, in spite of being acted upon
work performed by the external forces causes an increase & nonconservative forces, are kept in a nonequilibrium sta-
the energy beyond bounds. In statistical approaches the thefonary state with the help of other mechanitthlermostatig
mostats must be defined as mechanical forces: the routes tHafces, and study which relations, if any, can be established

one can follow are the following. about transitions between stationary stdt2s We restrict
(i) Introduce stochastic forces acting on the systesu- ~ ourselves here to transformations between stationary states
ally on the boundary which are quasistatictransformations through intermediate

(i) Assume that the system interacts via conservativétationary states. This means that on the time scale of the
forces with infinite systemg‘thermostats” which are ini-  observations the control parametéesy., volume, strength of
tially in equilibrium and which one would like to show that the external forces, efoof the stationary states are kept fixed
by interacting with the system the thermostats will undergdong enough so that the system can at any time can be con-
only changes localized in the vicinity of the contact surfacessidered to be in a stationary state. This is a generalization of

(iii ) Assume that the interaction with the “outside world” reversible transitions in equilibrium.
is modeled by an effective force on the system which bal- We consider only systems consisting of many particles
ances the work of the external forces working on the syster@nd we donot consider systems that are modeled by con-
[cf. Eq. (1) below] thus allowing the system to reach station- tinua. Continua could be considered but one must first un-
arity. derstand the thermodynamics of simple systEBisThe par-

The third possibility has recently emerged as a very conticle motions occurring in a simple system are assumed to be
venient way of studying the problem, since it at least avoidshaotic. Thechaotic hypothesif4], essentially states that an
the virtually untractable theory of the behavior of systems inisolated system of particles has a chaotic evolution on micro-
contact with infinite reservoirs. However it is often regardedscopic time scaleésee below.
as “unphysical” because it “amounts to modifying the sys- A simple system will be described by a differential equa-
tem’s equations of motion.” But the equations of motion aretion in its phase space: we write it as=Xg(x) where x
modified also if one uses the opti¢n, while the option(ii) = (q,q) e R®N=0 (phase spade N=number of particles,
is interesting but not really suitable for investigations which, = mass of the particles, with
at least until now, mostly rely on numerical experiments.

Furthermore, theoretic_ally the or_1|y ‘finfinite thermostats” ma="f(q)+E-g(q) — 9g(q,q) =Xg(x), )
which have been considered are infinite systems of free par-
wheref(q) describes the internétonservativg forces(e.g.,
hard corel E-g(q) represents the “active external forces”
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exerted by the thermostat on the system to keep it from inThe collection of all stationary states of a system that are
definitely acquiring energy: this is why we shall call it a constructed by varying the parametérgically the volume
mechanical thermostat.inearity of the dependence on the V of the container, the number of particlds the external
“fields” E is only for convenience: we argot assuming forcesE, etc) will be called a “nonequilibrium Ensemble.”
them to be smalithe theory of linear nonequilibrium is am- The Ensemblgwith capitalE) is therefore a collection of
ply discussed in the literatuf&]). More generally the exter- probability distributions which we distinguish from what,
nal forces could be velocity dependent and even time deperiellowing Gibbs, has become established terminology where
dent (periodically) but we restrict ourselves to positional ensemblendicatesa single elemenof the collection, with
forces only for simplicity. fixed control parameters: what is usually called simply the
Models of thermostats in the above sense can be ver§microcanonical ensemble with parametelsV” is here
different even for the same macroscopic system; for instancgist a single element of the collectighe., the Ensemb)eof
(a list far from exhaustive (1) assuming the system to have microcanonical probability distributions.
hard corege.g., a granular material of the type considered in  The notion of Ensemble in nonequilibrium is wider than
Ref.[6]) one can consider inelastic collisions, e.g., supposén equilibrium since it dependslso on the equations of mo-
that the head-on component of the energy is decreased bytian, because of the presence there of the thermostats. How-
scale factorp<1l upon each collision omlternatively the  ever, one expects that, as happens in equilibrium statistical
total energy of the two colliding particles is rescaled after amechanics, there should be “equivalent Ensembles” corre-

collision and assigned a valuelR;T (this is essentially Sponding to classes of different possible models for thermo-

“Drude’s conduction modely [7]; or (2) assuming that there Stats acting on a systef8,11]. o .
is a backaround frictions: = — »a . »>0. for all compo- Equilibrium is a special case of a nonequilibrium station-
fxg 3 ] G- ﬁ ' K P h ary state: in such cade=0 and 9¢=0 and the chaotic hy-

nents ofx; ; or (3) assumingninimum efforto keep, say, the  hothesis implies the validity of the ergodic hypotheis];

total kinetic energy or the total energy constéhGaussian  he Ensemblgor collection of SRB distributions each of

thermostat [8]). L which can be parametrized by the total enetggind volume
Remark. Th.e. restriction that th_e . external forces v coincideswith the corresponding collection of microca-

E-g(q) be positional is a strong restriction as it does notngnical ensemblefl1]. Furthermore, in general, the chaotic

allow velocity dep_endent forces or se\(eral different thermo*nypothesis implies that observables that are represented by

stats as needed in any heat conduction problem where thgnooth functions on phase space have finite time correla-

nonequilibrium stationary state is achieved by putting th&jons which converge exponentially fast to their stationary
system in contact with two reservoirs without any externalstate averageé.e., SRB averages

forces acting. However, such cases could also be considered \yie now want to consider which relations can be estab-

[9], but we do not treat them here since we want to restricfished in general between the properties of stationary states

ourselves to the simplest case. that can be transformed into one another by changing revers-

We shall assume about the system which we consider thg)y the external parameters, just as is done on equilibrium
chaotic hypothesi§4] [The system evolution is supposed 10 gt5tes.

be as chaotic as possible, i.e., to be hyperbtice also In fact, if we limit ourselves to equilibrium states first
says, technically, that the system is “an Anosov systein” ihen it is well known, since Boltzman(in his papers in the
which will be a key assumption in our analysis. period 1866—1884, see RdflL3]), that if a transformation
generates an energy variatiddd and a volume variatiodV
Il. SRB STATISTICS AND NONEQUILIBRIUM when the pressuréefined as a time average of a function
ENSEMBLES defined on phase space, see for instance [R&f) is p and

the average kinetic energy $\kgT then, see Ref11] ap-

Any initial statex, randomly chosen in phase space with a endixes AL1 and A9.3,

probability distribution which has a density in phase :spacé3
[i.e., such that the probability of a phase paipg to be in

dqdq has the fornp(q,q)dqdq for some probability density dU+pdV _ .

p(0,9)=0 in phase spadewill admit a statistics(under the T — (exact differential, S
above chaotic assumptipri.e., for all (smooth observables

F7

107 while dU+ pdV is not exact,exceptin the isochoric case
lim _f F(S[x)dtzf we(dy)F(y), 2) (i.e., whendV= 0.) and it is called théneat transferredrom

TJo Q the heat reservoirs to the system. It makes no sense to talk of

heat contentontained in the systeffii4], unless one limits

where ug is a stationary probability distribution on phase oneself to isochoric transformations: there is no heat content
space, called theSRB distributionor also SRB statistics of a system because one cannot distinguish between the heat
[3,10-13. This is a(nontrivial) consequence of the above and the mechanical work contents unless one allows only
chaotic hypothesis. isochoric transformations in which the system performs no

Definition. A system in a microscopic state which has  work (and in that case it is just another name for the internal
SRB statisticsug, is said to be in the stationary stgig: . energy.

T—oo
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Defining theentropycontent of a system as an integfl effective temperature of the thermostating for¢es stress
of the exact differentialdU+ pdV)/T, an immediate ques- that there is no universally accepted definition of temperature
tion is whether one can extend the notion of entropy contenin systems out of equilibrium, even if stationd®;6]). Here

to nonequilibrium states. we propose the following.
Definition. The (effective temperatureT of the thermo-
lIl. ENTROPY PRODUCTION RATE AND TEMPERATURE stats for a stationary nonequilibrium state is
The proposal that emerges from various theoretical con- T W ®)

siderations and a number of numerical experiments
[8,11,15,18, is to define, ifkg is Boltzmann’s constant, _ o
Definition. The entropy production rate in a stationary whereW is the average work per unit time done on the sys-

= 1
kB(T+

stateug is kgo . with [cf. Eq. (2)]: tem by the external forces, equal to the average Wpdone
on the thermostating forces, akgo . is the entropy produc-
def tion rate.
o =(0) = JQ'“E(dX)‘T(X)’ ) The equality betweekv=(E-g(q)-q) andQ=(9-q) is
due to the fact that the internal forces being conservative
whereo(x) = — divergence oXg(x) [i.e., o(x) is the phase perform zero work on the average.
space contraction rat@nd ug is the SRB statistics. Remark.The situations in which there is heat conduction
This definition elicits a few comments. between different thermostats is not considered here. In such
(a) There is no generally accepted definition of entropy incases one has at least two thermostats acting on the system:
nonequilibrium stationary states. i.e., the thermostating forc& is then the sum of, for in-

(b) In several thermostat models consi'dered in th_e Iit.erastance, forcesd= 9, + 9,, which perform the work—Q,

ture the average divergenoe. of the equations of motionis anq —Q,, respectively, so that the divergenogx) is the
essentially related taV, the average work per unit time done g,m of two quantitiesr;(x) and o(x). Therefore in such

by the thermostating forces, i.e., to the time averdg@fl  cages it will be natural to define the temperatures of the two
q-9(q,q), which in stationary states equals the averag&nermostats a3, = Q;/kgo;. we do not discuss the matter
work done by the external forces. For instancé(i,q) is  further since, from the outset, we are not considering situa-
proportional tog, i.e., 9(q,q) = «(q,q)q for some function tions in which the system is subject to several thermostating
a, then W=(aq?) while o, =(0)=3N(a)+((dga)q):  O'CES. - o
henceW=(«)2K and o, =3N(«) so that in such casés/ The above definition does not make sense as such in equi-
ando, are related byr::W/ZK/SN. Since the work done llbrium because it becomes 0/0: however, one can imagine
by the thermostating forces is naturally interpreted as thdltroducing a small forcing= and a corresponding thermo-

heat that the system cedes to the thermostat we see that in (R4 Then in the limit of vanishing, forcing this yields a
. N . definition of T which by the “fluctuation dissipation theo-
cases considerefd.e., 9(q,q) = «(q,q)q] the quantityo

has the meaning of the entropy increase of the thermostat..c ' &8N be checked to be the correct eqilibrium tempera-

: ture[9,18-20.
(c) An important general theorefil7], guarantees_ that Our definition of nonequilibrium temperature has already
o,=0, ando,=0 corresponds to the case in which the

L . . been hinted at by Bonetto and Menon as well as used in the

SRB distributionug admits a density on phase space, a Cas‘ﬁterature[fs 18], in particular cases

thqt one natl_JraIIy identifies with an equilibrium state and Adoptiné thé above concepts leads naturally to giving up

whg:h tes_slen:;]ally Eappiﬂs only = Ot t best. onl the possibility of defining the entropy content of a nonequi-
ertainly the above three properties are, at best, only aﬁgrium stationary state because the system creates entropy at

indication that th_e phase space contractio_n can be int(_erpret% constant rate and if one would insist in defining the entropy
as the entropy increase of the thermostatsthe classical content of a dissipatingi.e., with o, >0) stationary state

sense of the word and due to the heat generated by the S?ﬁe would be compelled to assign to it a vakies. Thus in

tem). If we qsed phenome.n_olc.)gmal thermogtats they woul our view of nonequilibrium stationary states the entropy ends
be systems in thermal equilibrium and at a fixed temperaturﬁ to be undefined and one can speak meaningfully only of

so that the heat absorbed per unit time would generate a ntropy production” or “entropy transfer,” much as the

entropy increase of the thermostats Wh?Ch is well Oleﬁned"heat content” of a system is undefined in equilibrium, but
Here one has to bear in mind that the notion of heat absorbe oduction and transfer of heat are well defined.

by a mechanical thermostat as well as the notion of its tem* The divergence of the entropy has been discussed in Ref
perature araew conceptsWe use the arbitrariness offered 11] (see Chap. 9)7and Refs.[2,21]. Other approaches )

us by the lack of a generally accepted definition of thesg ,: ' - . ;
concepts to conjecture the above definition of the entrop Zglfg ;]ry to define entropy as a finite quantity are in Refs.

production rate on the basis of the general resultjrwhich
guarantees the positivity that is desired for compatibility
with classical thermodynamics.

The notion of temperature of a thermostat is however still (1) Having defined the notion of entropy production rate
missing but the above definition leads to a definition of anone can define a “duality” between fluxels and forcesg;

IV. DISCUSSION
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usingkgo, =kgf u(dx)o(x) as a “generating function:” a nonequilibrium stationary state the impossibility to define

entropy content is due to the steady entropy production,
which makes the entropy contente. In spite of that there

is an analogy in that both quantities can be transferred or
produced and they can even be defined if one limits oneself
which, in the limitE=0, leads to Onsager’s reciprocity and to consider a suitably restricted class of transformatiert.,

to Green—Kubo’s formulas for transpd9,2Q. isochoric transformations between equilibrium states for

(2) We have proposed a general definition of entropy prowhat concerns heat or general transformations between equi-
duction rate and of temperature for a class of stationaryiprium states for what concerns entropy

states. But a new definition is really useful if it is associated

3 (E) kg Tt
(B)—kg Tt
! IE;
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