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Width distribution of contact lines on a disordered substrate
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We have studied the roughness of a contact line on a disordered substrate by measuring its width distribu-
tion, which characterizes the roughness completely. The measured distribution is in excellent agreement with
the distribution calculated in previous works, extended here to the case of open boundary conditions. This type
of analysis, which is performed here on experimental data, provides a strong confirmation that the Joanny—de
Gennes model is not sufficient to describe the dynamics of the contact line at the depinning threshold.
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The physics of elastic interfaces in random media is infrom an energy function, which incorporates the potential
volved in a vast class of problems, such as domain walls irenergy due to the driving forceand the disorder potential
ferromagnetid1] or ferroelectrid 2] systems, and the propa- 7(x,h), as well as an elastic energy. According to this hy-
gation of cracks in solid$3]. A notorious example of an pothesis, the equation of motion fb(x) at zero temperature
elastic interface is provided by the contact line of a liquidis
meniscus on a disordered substriate-7].

In the past years, much effort has been devoted to shed d h(x)—h(x;)
light on both the equilibrium properties and dynamics of this S N)=f+7(x,n)— kf XmW- (1)
system[8—10], which is characterized by long-range interac- !
tions. Very recently, experiments with water or helium mov-
ing on a substrate characterized by a well controlled disorde
[10,11, have explored the depinning threshold. In this re-
gime [12,13 the contact line, driven by an external force,

MOVes very sIow_Iy. Th(_a study_ of the rogghness of the Inter'old, the determination of the roughness exponent stimulated
face, and in particular its scaling behavior, turns out to be a large debatg7,13,15,18: finally, extended renormalization
fundamental tool to test our understanding of the physics °§roup calculations up to the two-loop order proved thi
systems in which the elasticity and the disorder compete ifarger than 1/317]. This finding was confirmed by a numeri-
determining the shape of the interface. cal study by means of an exact algorithm, which is able to
In Fig. 1 we display an experimental sample: a glass platgjetect directly the blocked interface at the depinning thresh-
with chromium impuritiegclear dotg, partially covered by a  old: the precise resulting value is=0.388+0.002[18].
water meniscugdark region. The so-called contact line is  In spite of the large amount of theoretical work devoted to
separating the wet and dry regions. The contact line is dethe subject, experiments are very few. The main difficulty in

fined by an internal coordinateand by the heighh along  measuring zeta is to design a random substrate. In many
the motion direction. We observe that a single-valued height

he last term in Eq(1) accounts for the long-range elastic
orce calculated by Joanny and de Genp#s At the equi-
librium, independent approaches within E@) led consis-
tently to the value/=1/3[7,8,14. At the depinning thresh-

function h(x) is sufficient to characterize the shape of the ()

contact line. A sample of size=500 um extracted from the

image is also shown in Fig. 1; to analyze its geometric prop- M . X
erties we are interested in the deviations from the mean o

height u(x)=h(x)—(h), with (...)=1/Lf5dx.... The m

mean square width is defined ag=(u?(x)). The rough-
ness exponent is introduced by considering an ensemble of _
lines of sizeL, whereL must be larger than the lengths which b AT
characterize the disorder. Averaging over this ensemble, we | »o "
obtainw?«L?¢ [12].

The theoretical evaluation of the exponeghhas, up to
now, been based on the assumption that the motion of the
line at the threshold is quasi-stafit3]; this assumption was
shown to be valid for most viscous fluidi$1]. This means

that the equation of motion of the heighfx) can be derived FIG. 1. Bottom: image of a water meniscus receding on a dis-
ordered substrate. The wet region is darker. Chromium defects ap-
pear as clear dots on the dry region. Top: sample of &ize
*Now at LPMCN, UniversiteClaude Bernard, 43 Boulevard du =500 um extracted from the digitized contact lina(x) is the
11 novembre 1918, 69622 Villeurbanne Cedex, France deviation from the mean height averaged over the sample.
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experiments, the disorder is not properly character[A€ 1.2 . T T T
Di Meglio [20] and, later on, Patersaet al. [21], overcame A
this difficulty by using computer generated patterns; we have 1+ ﬁiﬁ:?{;
followed the same schenjél]. Small squares of chromium é‘g 208
(size: 10<10 um?) were deposited randomly on a glass 08 L E/Er”//,-/ ook |
plate, such that the 22% of the surface is covered. This pro- ' oy
cedure generates a disorder correlated on a geal® um, /
sufficiently large to prevent thermal fluctuations from play-
ing any role. The correlation lengtis more than two orders
of magnitude below the capillary length (~2.5 mm in this
system where gravity begins to limit the fluctuations. When
the experiment is carried out, the glass plate is withdrawn 02 k-
very slowly from the liquid bath at a fixed velocity ranging o%:.
0

Do)
o
(o)}

between 0.2 and 2@m/s. The liquid is pure water or an o L
aqueous solution of glycerol with a viscosity up to 20 times 0 01 02 03 04 05 06 07 08
that of water. One observes that the shape of the contact line x

is independent of the velocity. This is a clear signature of the , , , _ -
depinning limit[11]. From these measurements it has been  FIG. 2. Experimental scaling functiope,{x): study of finite

; _ - : size effects. Open symbols: Aqueous solution of glycetol,
obtained, for Z<L<L/2, {(=0.51x0.03, in disagreement *f P (squarpe:L=i/24,um; ci?cle: L 186 uom: triaggle: ¥
with all theoretical prediction§18]. B , L

The discrepancy between the theoretical and the measurec 72pm). Ful symbols: water (circle: L =366um, v

. =20 um/s; square:L=500um, v=1 um/s). We observe that

ro_ughness exponent 5“996‘5.“ that a rlche_r model, more COMGr L>300 nm the finite size effects are negligible and the scatter
plicated than th?_ one desc'_"bed by E), is negded to ac- of the data is mostly due to the finite width of histogram bins. In
count for the critical behavior of the contact line at the de-,;s way we have access to the large scale formpgf(x).
pinning. However, as the range of accessible scales is less
than two orders of magnitude, a rigorous determination of In order to determine the experimental width distribution
the exponent is a very delicate experimental task. In this we have employed the same experimental setup as described
paper we present on analysis approach which allows us tim Ref. [11]; the contact line is imaged with a progressive
study the universal properties of the roughness, by compuscan CCD camera equipped with a microscope. Two differ-
ing the complete width distributioR(w?). The main advan- ent magnifications are used, corresponding to pixels of sizes
tage consists of providing an accurate description of finiteAx=6.10 and 2.14um. After the analysis of the images we
size effects, which are instead difficult to evaluate with theobtain a digitized line of 760 pixels. Thanks to the good
traditional analysis method based on the direct measuremesbntrast and signal-to-noise ratio of the CCD, the final reso-
of the critical exponents. The method we apply here is dution is still one pixel. The experimental lines are cut into
general tool to characterize rough interfaces, and we propossamples of sizé =nAx, wheren is the number of pixels in
its further application to other kinds of systems, e.g. thethe sample. From each line we extract an ensemble of (760
crack propagation. —n) samples, whose width is simply given bw?

The theoretical studies performed on systems without dis=1/n3!" ,u?. These operations are repeated over all the
order such as stochastic modg22—24 or magnetic systems  configurations detected by the camera. Clearly the values of
[25] have shown that it is possible to expreBéw?) in @ w2 are not independerig3], but this procedure ensures that

universal scaling form: no information is lost.
The histogram derived by the data gives access to the

1 universal functionge,(x) which is plotted in Fig. 2 for vari-
2y — — 2/ 2 ous sizesL and for various experimental conditions. For
P(W?) w2 Px=wiw, @ samples of size in the range 3@0n<L <800 um, the ob-
tained functiong.,(x) is independent of the size, the vis-
_ cosity and the velocity of the receding meniscus. In smaller
wherex is the renormalized widtw?/w?. In Eq. (2) the size  samples (10Qum<L <300 xm), the distribution is sensi-
dependence appears only through the averagethe non- tive to finite size effect related to the details of the way the
trivial scaling function¢(x) is universal and characterizes a disorder is created. Samples bigger than800 wm cannot
full class of systems. Recent[26], the same scaling prop- be treated due to the significant statistical noise.
erties have been proved for elastic interfaces in random me- At this stage, the universal functiat(x), which we have
dia at the depinning threshold. The width distribution of extracted from experiments can be compared to the theoret-
these systems is, for all intents and purposes, given by &al evaluation within the Gaussian approximation. Previous
generalized Gaussian approximation of independent modetheoretical workd22—24,26 dealt with samples where the
which decay with a characteristic propaga@fq)~q°* 2. boundary conditions were periodic, which is obviously not
Within this approximation, for interfaces of a fixed internal the case of our experimefgee Fig. 1 In order to calculate
dimension and for the required boundary conditioph$x) #(x) in the Gaussian approximation for open boundary con-
depends only on the roughness exponént ditions, we generalize the discussion of R&6]. The main
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difference, as briefly discussed in Ref&7,28, lies in the
Fourier decomposition of the patl{(x). In the case of open
boundary conditions, the general path of slzdakes the
form

=g
U(X)= 2, acosTX), 3
where(,,= mn/L. The probability associated with this path
is
Plul=nT] e Ve, (4)
n=1
1 -
where AV is the normalization factor and, for larde the os L
exact disorder-averaged two-point functi@, takes the - '
form G,—C/n'"2¢. The expression foP(w?) follows from z 06
the generating functions of the moments: 04 -
o 02
W(z)=f dw?P(w?)e 2", (5)
0 I ! ! I 1 ! I 1 !

0
0 0204 0608 1 12 14 16 18
Similarly to the case of periodic boundary conditions X

[26], we write
FIG. 3. Top: we compare the scaling functigh,(x) obtained

12 from the experimental data(squares: waterL=500um, v
=1 um/s) with the curves calculated by means of Ef. We
notice the good agreement with the curve obtained fe0.505

) o ) (continuum ling. Bottom: we compare the scaling functign(x)
The function ¢(x) is given by W(z) through an inverse- gptained from the numerical dataircles: L =32, 16 independent

w(z)=]]

n

G, 'z+1

Laplace transform: samplep with the curves calculated by means of Ef). We notice
" 12 a perfect agreement with the curve obtained £610.39 (dashed
) o 8
¢(X)_ fﬂoo dz eZXH n“A (6) line).
—iw 2 T n=1\ z4n%A

In Fig. 3 we summarize our results. As expected from
with A=337_,(1/n%) and @=1+2¢. This complex integral  Ref, [26], the function ¢p,m, derived from the numerical
can be written as a sum of all the tadpole contributions: study of Eq.(1), is in perfect agreement with the function

= (1) pa) w0 12 obtained in the Gau;sian approximation yv'gho.39. The
dx)=D J' 2 dze*[] 7) shape of¢,,, is also in good agreement with the calculated
n=0 T Jay(n) m=1 function, but is clearly shifted with respect t#,,,, and best
approximated by=0.505.
with a; = —A(2n+2)" anda,= —A(2n+1)*. The product To our knowledge, this kind of analysis is applied for the
in Eq. (7) converges slowly, and several thousand terms neefls; time to experimental data. It offers the possibility to

to be computed. Once this is done, however, only a fewsgjyate the roughness exponent from a unique valug of
terms in the external sum of E(7) are sufficient to obtain - o4 it can be useful if the accessible range of scaling is

¢(x) with high precision. LM h finite i ” h
In Ref.[26] it was discussed how the width distribution of §ma - Moreover we have detected finite size effects that are

an interface moving in a random medium, characterized b>|pV|S|b!e on the simple represen.tatlon wof(L). Dl_JeE the
short range elastic interactions, is described in an excelleff@duction of the range of scaling, the anaIyS|_sv<z>3f(L)

way by the distribution obtained within the Gaussian ap-Yields {=0.52+0.04, slightly larger than the previous deter-
proximation. For the sake of completeness, we show th&nlination[11].

Sca”ng functiord)num(x) Computed from the numerical study Our StUdy confirms that a real contact line cannot be de-
of Eq. (1) at the depinning threshold. We use the algorithmscribed by the Joanny—de Gennes model. The same type of
from Ref.[18] and calculate critical lines of size=256  equation of motion has been proposed to describe the propa-
with periodic boundary conditionsh,, (X) is obtained with ~ gation of crack front$3]. In this case the experiments yield
the same procedure employed to deal with experimental datd—0.5—-0.6[29,30. Dynamical mechanisms have been intro-
by using samples of size=32. In this way, we find the duced recently31] to account for the anomalous value pf
scaling function corresponding to the case of open boundarfor crack fronts. On the other hand, for the contact line, a
conditions. precise analysis of the motion justifies the quasistatic hy-

m“A

z+m“A
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pothesis[11], and no such dynamical mechanism has to bethe interface. Moreover the presence of nonlinear terms has
considered. The study of the width distribution of crackalready been introduced in R¢€] to understand the dynam-
fronts could help to understand if the two systems belong tdcs of a contact line in the high velocity limit. It would be
the same universality class and to unravel the origin of thejery interesting to study the effect of these terms on the
discrepancy between the theoretical and experimental valuggitical properties at the depinning transition. Unfortunately,
of £. In fact, in both cases, the derivation of the long-rangeyp to now the numerical computation of this equation of

elastic term in Eq(1) is obtained by a development to first yotion is impossible because of the presence of nonconvex
order in the deformation. This truncation avoids the eXiS+erms in the elastic energy.

tence in the equation of motion of non-harmonic corrections
which, as it has been shown for the short-range elastic inter- We thank C. Guthmann, P. Le Doussal, J. Vannimenus,
actions[32], can drastically change the critical behavior of and K. J. Wiese for useful discussions.
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