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When a high symmetry facet joins the rounded part of a crystal, the step line density vanishesitsr
denoting the distance from the facet edge. This means that the ledge bordering the facet has a lot of space to
meander as caused by thermal activation. We investigate the statistical properties of the border ledge fluctua-
tions. In the scaling regime they turn out to be non-Gaussian and related to the edge statistics of Gaussian
unitary ensemble multimatrix models.

DOI: 10.1103/PhysRevE.69.035102 PACS nuner05.70.Np, 05.40-a, 68.35.Ct

Equilibrium crystal shapes typically consist of various flat as discrete random walks constrained not to cross, i.e., with a
facets connected by rounded surfaces. For a microscopicallyurely entropic repulsion. Such a line ensemble is very
flat facet there must be an atomic ledge bordering the facetlosely related to Dyson’s Brownian motion, in which the
This border step could be blurred because of thermal excitaandom walks are replaced by continuum Brownian motions.
tions, but is clearly visible at sufficiently low temperatures As discussed i8,9], the location of the steps at fixed ran-
[1-3]. While in the interior of the rounded piece of the crys- dom walk timet have the same distribution as the eigenval-
tal the step line density is of order one on the scale of thaies of a GUE $=2) random matrix. On this basis it is
lattice constant, it decays to zero as the edge of a high synexpected that the ledge-ledge distance is governed by the
metry facet is approached. ifdenotes the distance from the GUE level spacind10]. This prediction is verified experi-
facet edge, according to Pokrovsky-Talagdythe step line  mentally [11], however, with deviations fron8=2 which
density vanishes agr. Thus there is a lot of space for the are attributed to long range elastic forces mediated through
border ledge to meander, in sharp contrast to steps in thiée bulk of the crystal and not included in the TLK model.
rounded part which are so confined by their neighbors that If in the TLK model one retains the lattice structure in the
they fluctuate only logarithmicallys]. The goal of our Rapid transverse direction and makes the continuum approximation
Communication is to explore quantitatively the statistics ofin the direction along the ledges, then the ledges can be
border ledge fluctuations. To illustrate our setup we displayegarded as the world lines of free fermions in space-time
in Fig. 1 a typical configuration from a statistical mechanicsZXx R [12]. The world lines are piecewise constant and have
model which will be discussed below. One clearly recognizegumps of only one lattice spacing. Consequently the transfer
the three facets as joined through a single rounded piece. Oonatrix has a nearest neighbor hopping term and the Pauli
interest is the statistics of the uppermost ledge. exclusion principle guarantees entropic repulsion in the sense

Experimentally ledge fluctuations are an elegant tool tahat ledges never cross.
determine step energi¢6,3]: One carefully prepares an is-  The TLK model, in the version as just explained, has no
land, linear size. and single atom height, on a high symme- facet. The crystalline surface has a constant average slope.
try facet. Alternatively, one sputters an undercut island. The
ledge bordering the island is well described by a random
walk, which implies fluctuations of sizgL [7]. In contrast,
as can be clearly observed from Fig. 1, the border ledge of a
facet interacts with its neighbors and a random walk model is
not appropriate. In fact as our main result we will establish
that the border ledge has fluctuations of slzE® with a
non-Gaussiarstatistics.

To gain some understanding of the origin of such anoma-
lous fluctuations let us consider the terrace-ledge-Kink )
model, which serves as an accurate description of a vicinal
surface, i.e., a crystal cut at a small angle relative to a high
symmetry crystal plane. The surface is made up of an array
of ledges which on the average run in parallel and are sepa-
rated by terraces. The ledges are not perfectly straight and
meander through kink excitations, only constrained not to
touch a neighboring ledge. One can think of these ledges also
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(a;ram can be computed in terms of the Bessel function
Jj(z) of integer order j and its derivative L;(z)

=(d/dj)J;(t) with the result
W
MW

s pra(j)= <ajTaj>)\: ML 142020 J542pg(2N)

WMMWWMW
R g e S L 203 e (2) @)
% where[ ] denotes the integer part. For largethe height

) _ ) h]-*(t) is of order\. Therefore we rescale the lattice spacing
FIG. 2. Top lines for a TLK model with volume constraint. by 1A. Then |imﬁm)\_1h[>\r]()\t)= he(T,t) with the mac-

o roscopic equilibrium crystal shape
Slope variations can be enforced throughv@ume con-

straint For this purpose we introduce the “occupation” vari- r for r<=-2
ables#;(t), [j|<N, [t|<T, in the surface patch—N,—N

1
+1,... NIX[=T,T]: 5;(t)=1 if there is some ledge pass- ;[r arccosr/2) — \4—r?]

ing through (,t), and 7;(t)=0 otherwise. In these vari- hedr —2,)= ®
ables, up to an overall constant, the crystal volume is given for —2<r=<2
by 0 for r=2.

T N Thus under volume constraint the TLK model has two facets,
AV:] dt > i 7;(t) (1)  one with slope 1, the other one with slope O, joined by a
-T j=-N rounded piece. The upper facet edge is locatec=di. It has
zero curvature. Expanding near=0 results inhe(r,t)=

and volume constraint means to have an ensemble of ledges(2/3m)(—1)*¥? consistent with the Pokrovsky-Talapov
where the actior, is kept fixed. law.

Without volume constraint the transfer matrix is generated With the exact result4) it becomes possible to refine the
by a free fermion Hamiltonian with nearest neighbor hop-Tesolution. The appropriate step size\i$® lattice constants.
ping [12]. Imposing the volume Constr%int grand-canonically For the step density, (j)=(a]a;), close tor =0 one finds
adds to the fermionic action the ternt “A, with a suitable . . .,

Lagrange multipliei ~ 1. Thereby the nearest neighbor hop- A"flkllgpx(vl%(): —XAi(x)?+Ai’ (x)?, (6)
ping Hamiltonian is modified to

where Ai is the Airy function. Equatioi6) has the asymp-
totics

J—afaj . (2

— i i 1
HF—Z —a;aj+1— 3,18+ 2a;a;+ N

(l/w)\/m for X— —oo,
(7)
a; (a)) is the annihilation(creation operator at lattice site [1/(8mx)] exp(—4x¥%3)  for  x— oo,
jeZ. They satisfy the anticommutation relatiofa; ,a/} Our real interest is the border ledge fluctuations. Clearly
=& {a;,a}=0={al a/}. In Eq. (2) we have taken al- the border ledge is the top fermionic world line which we
ready the limitN—o. The transfer matrix i®~""'F, t=0,  denote byb,(t). b, (t) takes integer values and is piecewise
and in the limitT—co one has to compute the ground stateconstant with unit size kinks. Since, at fixgdhe steps in the
expectations forHg. A macroscopic facet emerges as bulk have approximately the same statistics as a GUE ran-
A— o0, dom matrix, one would expect that the transverse fluctua-
In Fig. 2 we display a typical ledge configuration for the tions of the border ledge equal those of the largest eigen-
TLK model with volume constraint. There is no further ledge value. Indeed, using the fermionic transfer matrix combined
above the one shown and fpr- — ledges are perfectly flat with an asymptotic analysig3], one finds that
and densely packed.
Since a ledge corresponds to a fermionic world line, the lim Proff{b,(0)<\"%a}]=F,(a), aeR. (8
average step density;(t)), = p\(j) is independent of and Ao
given by (7;(t)),=(a/aj), with (-), on the right denoting | the random matrix communitf,(a) is known as the
the ground state expectation fbi: . By the linear potential  Tracy-widom distributior{14]. The corresponding probabil-
in Eq. (2) steps are suppressed for lajgéience the average ity density d=,(a)/da has an upper tail as expéa®?) and a
surface heighhf(t) at (j,t), relative to the high symmetry |ower tail as expt &laf).
plane, equals In our context an experimentally more accessible quantity
is the ledge wandering[b, (t) —b,(0)]?). In the limit of
large\ it has been computed i3] with the result

N —
MO==2 (mOh 9 Varfby (1) — by (0)]=AZ3g(x ~21), ©
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using the short-hand VaxX)=((X—(X))?). Thus the trans- itly. If we consider the facet which lies in t{801) plane and

verse fluctuations are on the scal&®. For smalls the scal- denote the coordinate alor@00 by = and the one along

ing functiong(s) is linear ins, g(s)=2|s|, indicating that (010 by b.., then the macroscopic facet edge is given by

for small, on the scala?®, separations the border ledge hasb..(7)=—In(1—€ "), 7>0.

random walk statistics. On the other hagds) saturates for As observed if21], the 3D Ising corner can be analyzed

large s, g(s)=g(=)—c/s?, reflecting that the border ledge through fermionic techniques. In particular, one can study

fluctuations are stationafpn the scale.?®). For the leading the border ledge fluctuations. The details are rather intricate

term one findgy(«) =lim, _ .\ ~?%2(b,(0)?)=1.6264. The and given elsewherg22]. Here we only report on those re-

subleading coefficient has recently been derived it5,16  sults which allow us to gain some understanding of the uni-

with the resultc=2. versal properties of ledge fluctuations. We introduce the scal-
Within the volume-constrained TLK model we arrived at ing parameter¢ by N=3{(3)¢3, ¢(3)=1.2® ... being

an interesting prediction for the border ledge fluctuations. TéApery’s constant. The atomic border ledge position in the

be convincing we have to check against a more realisti€001) plane is given byb,(x), x=0,1,2 ... . b,(x) takes

model, for which we take the three-dimensional Ising modelpositive integer values and is decreasing lagx+1)

at low temperatures. At fixed crystal volume the equilibrium=b,(x). The ledge has only south and east turns and mean-

shape is then a cube with rounded corners. Taken literallgers close to its asymptotic meéh..(x/¢). We zoom at the

this model is still too complicated and we simplify through fixed macroscopic edge poinif7,{b.(7)), 7=>0. Upon

an SOS-type approximation by allowing only atomic con-proper rescalin¢22], one recovers exactly the same statistics

figurations which are lattice convex. This means that wheras in Eq.(8). More precisely, for largd,

the crystal is cut along any line parallel to the major axes,

then the atoms fill a single intervaho holes. We use trans- v3

lation invariance to choose our coordinate system in such a Var[bf(“*x)_bf(eT)]E(%Ag)mg( 21/3€2/3X)'

way that the crystal lies in the positive octant %t with

three of the facets coinciding with parts of the planes

spann_ed by the 'ghree coordinate axes. If one now_restricwith A=b"(7). Equation(11) differs from Eq.(9) in two
attention to the piece of the crystal close to the origin, thefggpacts. Firstly, to obtain the border ledge fluctuations one
the actual crystal shape can be represented by a height fungag 1o syptract the systematic mean. Since for our particular
tion h(i,j), where!, resp.j refers to the(100), resp.(010,  yodel the macroscopic facet edge is explicit, the subtraction
axis. By construction is (b, (£7+%))— (b, (£ 7)) =bL(r)x+1b" (7)€ x? with

(i) h(ij)=0, negligible higher order corrections. Secondly, model-

(i) h(i,j)=h(i+1)), h(i,j)=h(i,j+1). t . . e
The number of atoms missing, relative to the perfect cubeiepesniﬂﬁg zr((;?irgrsﬁ erfléerr Ir;(rirl];e”cth'/srhro\tjgg t;[?& ::)Le)gluent

(11)

IS —b,(€7)]=A|x|, A can be identified with the local wander-
ing, respectively diffusion, coefficient.
v(h)= > h(i,j). (10 The border ledge of the TLK model and the 3D Ising
Lj=0 corner have the same scaling behavior, which suggests the
. . scaling to hold in greater generality. To obtain the form
Thus the volume constraint translates into which properly distinguishes between model-dependent and
(i) V(h)=const. _ o universal properties we have to rely on a few notions from
Every atomic configuration satisfying)—(iii) has the ihe thermodynamics of equilibrium crystal shapas]. Let
same number of broken bonds and thus the same enerqys genote byn(x,y) the height of a vicinal surface relative to
Therefore our simplified version of the three-dimensionaly,q high symmetry reference plane. We find it convenient to
(3D) Ising equilibrium droplet is to allow only atomic con- ., ocirdh in number of atomic layers, whereas/ are mea-
figurations which have a height function satisfyitig—(iii)  gyred in a suitable macroscopic unit, Thuis dimensionless
and to_give them equ_al sfcatistical weight. Nofte that Ourandx,y have the dimensioflength. Further letkgTf(u) be
model is purely entropic. Figure 1 shows a typical samplene grface free energy per unit projected area depending on

with V(h)=3x10". the local slopei=Vh. Below the roughening transitidrhas
By projecting along the111) direction the Ising corner a cone au=p0 and f(.)r smallu behav%s as g
model is equivalent to tilings of the plane with rhombi of

three distinct orientations. In this version the surface tension f(u)=y(0)|u|+B(8)|ul® (12)
is computed if17]. According to the Andreev construction
the Legendre transform of the surface free energy yields th
equilibrium crystal shap§l8,19. Convenient formulas are

available in[20], where it is also established that, for the )
constraintV(h) =N, in the limit N—oc with corresponding short range surface models the Gaussian curvature of the

lattice spacindN ™ *® the equilibrium crystal shape is attained equilibrium crystal shape has a ugiversal jump across the
with probability one. From the implicit formula for the shape facet edge, which implies the relatior(6)B(6) = 7*/6. Let

it can be deduced that near facet edges the Pokrovskys denote by f the Legendre transform off. If
Talapov law holds. The facet edge can be computed explicfdxdy f(Vh(x,y)) is minimized under the constraint of fixed

fuith o the polar angle ofu [24]. The line stiffnessy is
defined throughy(6) = y(6) + y"(6). As argued if25], for
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volume, then the resulting equilibrium surface is given byvalid for any point on the facet edge.

h(x,y)zgf(gflx,gfly), where ¢ is the Lagrange multi- The general scaling form is obtained now by using the
plier adjusted so to give the correct volunteis convex TLK model as a benchmark. Locally the border ledge per-
downwards and has a convex facet lying in thg plane. forms a random walk with nearest neighbor hopping rate 1,
The facet boundary is determined by 6) alone. Close to see Eq.(2), thuso?=2. From Eq.(5) the PT coefficient is
the facet edgeh= — 2 yp;d¥2 with d the normal distance to ypr=1/7\€ in our units. Using these two as model-
the facet edge, which defines the Pokrovsky-Talapov coeffidependent parameters yields the scaling form
cient ypr. Under Legendre transformation the anglée-
comes the angle between thexis and the outer normal to
the facet and, correspondinglypt, the local curvature, Var[b(x) —b(0)]=(myp7) " 3g((myp7) ¥30?x/2).
and the distance of a point on the edge to the origin are (15
parametrized through this anghe The relationship between
"y andB implies .
Of course, through Eq$13), (14), any other pair of model-
yﬁTKzze‘zw‘z_ (13 dependent parameters can be used to reexpresd Bq.
As a control check, the Ising corner must also satisfy Eq.
We return to the border ledge fluctuations close to a given15). This is indeed the case with coefficients=¢ o2,
angle 6. For this purpose it is convenient to center th§  ¢2=p” (7)[1+b.(7)2] 2 and  ypr=2Yl(7r)"?
axis coordinate system af{ 6y) with the x-axis tangential X ¢ V2714 b! ()23
and they-axis along the inner normal to the facet. In this 1o summarize, the border ledge of a facet has fluctuations
frame, we denote by=b(x) the fluctuating border step. of sjze ¢2/3 thus much reduced in comparison with a simple
Then(b(x)) =35 (60)x*, in approximation. For sufficiently random walk. We claim that the scaling for®5) is univer-
small|x|, still large on the scale of the lattick(x) is like @ sa within the class of surface models with short range inter-
random walk and Véb(x)—b(0)]=0?x|, which defines actions. The scaling functiog can be expressed through
the local wandering coefficient”. Following[23] it is natu-  determinants of infinite dimensional matrices. Short and long
ral to equates( )2 with the inverse stiffnesg(#) . This  distance behavior is known explicitly. In E¢L5) there are
implies two material parameters. Once they are determined experi-
5 s 2 4 mentally, the functional form of the variance for the ledge
o°=kt, k=7"ypro"l2 (149 fluctuations follows.
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