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Fluctuations of an atomic ledge bordering a crystalline facet
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When a high symmetry facet joins the rounded part of a crystal, the step line density vanishes asAr with r
denoting the distance from the facet edge. This means that the ledge bordering the facet has a lot of space to
meander as caused by thermal activation. We investigate the statistical properties of the border ledge fluctua-
tions. In the scaling regime they turn out to be non-Gaussian and related to the edge statistics of Gaussian
unitary ensemble multimatrix models.
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Equilibrium crystal shapes typically consist of various fl
facets connected by rounded surfaces. For a microscopic
flat facet there must be an atomic ledge bordering the fa
This border step could be blurred because of thermal exc
tions, but is clearly visible at sufficiently low temperatur
@1–3#. While in the interior of the rounded piece of the cry
tal the step line density is of order one on the scale of
lattice constant, it decays to zero as the edge of a high s
metry facet is approached. Ifr denotes the distance from th
facet edge, according to Pokrovsky-Talapov@4# the step line
density vanishes asAr . Thus there is a lot of space for th
border ledge to meander, in sharp contrast to steps in
rounded part which are so confined by their neighbors
they fluctuate only logarithmically@5#. The goal of our Rapid
Communication is to explore quantitatively the statistics
border ledge fluctuations. To illustrate our setup we disp
in Fig. 1 a typical configuration from a statistical mechan
model which will be discussed below. One clearly recogni
the three facets as joined through a single rounded piece.
interest is the statistics of the uppermost ledge.

Experimentally ledge fluctuations are an elegant tool
determine step energies@6,3#: One carefully prepares an is
land, linear sizeL and single atom height, on a high symm
try facet. Alternatively, one sputters an undercut island. T
ledge bordering the island is well described by a rand
walk, which implies fluctuations of sizeAL @7#. In contrast,
as can be clearly observed from Fig. 1, the border ledge
facet interacts with its neighbors and a random walk mode
not appropriate. In fact as our main result we will establ
that the border ledge has fluctuations of sizeL1/3 with a
non-Gaussianstatistics.

To gain some understanding of the origin of such anom
lous fluctuations let us consider the terrace-ledge-kink~TLK !
model, which serves as an accurate description of a vic
surface, i.e., a crystal cut at a small angle relative to a h
symmetry crystal plane. The surface is made up of an a
of ledges which on the average run in parallel and are se
rated by terraces. The ledges are not perfectly straight
meander through kink excitations, only constrained not
touch a neighboring ledge. One can think of these ledges
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as discrete random walks constrained not to cross, i.e., w
purely entropic repulsion. Such a line ensemble is v
closely related to Dyson’s Brownian motion, in which th
random walks are replaced by continuum Brownian motio
As discussed in@8,9#, the location of the steps at fixed ran
dom walk timet have the same distribution as the eigenv
ues of a GUE (b52) random matrix. On this basis it i
expected that the ledge-ledge distance is governed by
GUE level spacing@10#. This prediction is verified experi-
mentally @11#, however, with deviations fromb52 which
are attributed to long range elastic forces mediated thro
the bulk of the crystal and not included in the TLK mode

If in the TLK model one retains the lattice structure in th
transverse direction and makes the continuum approxima
in the direction along the ledges, then the ledges can
regarded as the world lines of free fermions in space-ti
Z3R @12#. The world lines are piecewise constant and ha
jumps of only one lattice spacing. Consequently the trans
matrix has a nearest neighbor hopping term and the P
exclusion principle guarantees entropic repulsion in the se
that ledges never cross.

The TLK model, in the version as just explained, has
facet. The crystalline surface has a constant average s

FIG. 1. Crystal corner viewed from the@111# direction.
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Slope variations can be enforced through avolume con-
straint. For this purpose we introduce the ‘‘occupation’’ var
ablesh j (t), u j u<N, utu<T, in the surface patch@2N,2N
11, . . . ,N#3@2T,T#: h j (t)51 if there is some ledge pass
ing through (j ,t), and h j (t)50 otherwise. In these vari
ables, up to an overall constant, the crystal volume is gi
by

Av5E
2T

T

dt (
j 52N

N

j h j~ t ! ~1!

and volume constraint means to have an ensemble of le
where the actionAv is kept fixed.

Without volume constraint the transfer matrix is genera
by a free fermion Hamiltonian with nearest neighbor ho
ping @12#. Imposing the volume constraint grand-canonica
adds to the fermionic action the terml21Av with a suitable
Lagrange multiplierl21. Thereby the nearest neighbor ho
ping Hamiltonian is modified to

HF5(
j

S 2aj
†aj 112aj 11

† aj12aj
†aj1

j

l
aj

†aj D . ~2!

aj (aj
†) is the annihilation~creation! operator at lattice site

j PZ. They satisfy the anticommutation relations$ai ,aj
†%

5d i j ,$ai ,aj%505$ai
† ,aj

†%. In Eq. ~2! we have taken al-
ready the limitN→`. The transfer matrix ise2tHF, t>0,
and in the limitT→` one has to compute the ground sta
expectations forHF . A macroscopic facet emerges a
l→`.

In Fig. 2 we display a typical ledge configuration for th
TLK model with volume constraint. There is no further led
above the one shown and forj→2` ledges are perfectly fla
and densely packed.

Since a ledge corresponds to a fermionic world line,
average step density^h j (t)&l5rl( j ) is independent oft and
given by ^h j (t)&l5^aj

†aj&l with ^•&l on the right denoting
the ground state expectation forHF . By the linear potential
in Eq. ~2! steps are suppressed for largej. Hence the average
surface heighthj

l(t) at (j ,t), relative to the high symmetry
plane, equals

hj
l~ t !52(

k5 j

`

^hk~ t !&l . ~3!

FIG. 2. Top lines for a TLK model with volume constraint.
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^aj
†aj&l can be computed in terms of the Bessel functi

Jj (z) of integer order j and its derivative L j (z)
5(d/dj )Jj (t) with the result

rl~ j !5^aj
†aj&l5l„L j 2112[l]~2l!Jj 12[l]~2l!

2L j 12[l]~2l!Jj 2112[l]~2l!… ~4!

where @ # denotes the integer part. For largel the height
hj

l(t) is of orderl. Therefore we rescale the lattice spaci
by 1/l. Then liml→`l21h[lr ] (lt)5heq(r ,t) with the mac-
roscopic equilibrium crystal shape

heq~r 22,t !55
r for r<22

1

p
@r arccos~r /2!2A42r 2#

for 22<r<2

0 for r>2.

~5!

Thus under volume constraint the TLK model has two face
one with slope 1, the other one with slope 0, joined by
rounded piece. The upper facet edge is located atr 50. It has
zero curvature. Expanding nearr 50 results inheq(r ,t)>
2(2/3p)(2r )3/2, consistent with the Pokrovsky-Talapo
law.

With the exact result~4! it becomes possible to refine th
resolution. The appropriate step size isl1/3 lattice constants.
For the step densityrl( j )5^aj

†aj&l close tor 50 one finds

lim
l→`

l1/3rl~l1/3x!52xAi ~x!21Ai 8~x!2, ~6!

where Ai is the Airy function. Equation~6! has the asymp-
totics

~1/p!Auxu for x→2`,
~7!

@1/~8px!# exp~24x3/2/3! for x→`.

Our real interest is the border ledge fluctuations. Clea
the border ledge is the top fermionic world line which w
denote bybl(t). bl(t) takes integer values and is piecewi
constant with unit size kinks. Since, at fixedt, the steps in the
bulk have approximately the same statistics as a GUE
dom matrix, one would expect that the transverse fluct
tions of the border ledge equal those of the largest eig
value. Indeed, using the fermionic transfer matrix combin
with an asymptotic analysis@13#, one finds that

lim
l→`

Prob@$bl~0!<l1/3a%#5F2~a!, aPR. ~8!

In the random matrix communityF2(a) is known as the
Tracy-Widom distribution@14#. The corresponding probabil
ity density dF2(a)/da has an upper tail as exp(24

3a
3/2) and a

lower tail as exp(2 1
12uau3).

In our context an experimentally more accessible quan
is the ledge wanderinĝ@bl(t)2bl(0)#2&. In the limit of
largel it has been computed in@13# with the result

Var@bl~ t !2bl~0!#>l2/3g~l22/3t !, ~9!
2-2
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using the short-hand Var(X)5^(X2^X&)2&. Thus the trans-
verse fluctuations are on the scalel2/3. For smalls the scal-
ing function g(s) is linear in s, g(s).2usu, indicating that
for small, on the scalel2/3, separations the border ledge h
random walk statistics. On the other hand,g(s) saturates for
large s, g(s).g(`)2c/s2, reflecting that the border ledg
fluctuations are stationary~on the scalel2/3). For the leading
term one findsg(`)5 liml→`l22/32^bl(0)2&51.6264. The
subleading coefficientc has recently been derived in@15,16#
with the resultc52.

Within the volume-constrained TLK model we arrived
an interesting prediction for the border ledge fluctuations.
be convincing we have to check against a more reali
model, for which we take the three-dimensional Ising mo
at low temperatures. At fixed crystal volume the equilibriu
shape is then a cube with rounded corners. Taken liter
this model is still too complicated and we simplify throug
an SOS-type approximation by allowing only atomic co
figurations which are lattice convex. This means that wh
the crystal is cut along any line parallel to the major ax
then the atoms fill a single interval~no holes!. We use trans-
lation invariance to choose our coordinate system in suc
way that the crystal lies in the positive octant ofZ3 with
three of the facets coinciding with parts of the plan
spanned by the three coordinate axes. If one now rest
attention to the piece of the crystal close to the origin, th
the actual crystal shape can be represented by a height
tion h( i , j ), wherei, resp.j refers to the~100!, resp.~010!,
axis. By construction

~i! h( i , j )>0,
~ii ! h( i , j )>h( i 11,j ), h( i , j )>h( i , j 11).
The number of atoms missing, relative to the perfect cu

is

V~h!5 (
i , j >0

h~ i , j !. ~10!

Thus the volume constraint translates into
~iii ! V(h)5const.
Every atomic configuration satisfying~i!–~iii ! has the

same number of broken bonds and thus the same en
Therefore our simplified version of the three-dimensio
~3D! Ising equilibrium droplet is to allow only atomic con
figurations which have a height function satisfying~i!–~iii !
and to give them equal statistical weight. Note that o
model is purely entropic. Figure 1 shows a typical sam
with V(h)533105.

By projecting along the~111! direction the Ising corner
model is equivalent to tilings of the plane with rhombi
three distinct orientations. In this version the surface tens
is computed in@17#. According to the Andreev constructio
the Legendre transform of the surface free energy yields
equilibrium crystal shape@18,19#. Convenient formulas are
available in @20#, where it is also established that, for th
constraintV(h)5N, in the limit N→` with corresponding
lattice spacingN21/3 the equilibrium crystal shape is attaine
with probability one. From the implicit formula for the shap
it can be deduced that near facet edges the Pokrov
Talapov law holds. The facet edge can be computed exp
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itly. If we consider the facet which lies in the~001! plane and
denote the coordinate along~100! by t and the one along
~010! by b` , then the macroscopic facet edge is given
b`(t)52 ln(12e2t), t.0.

As observed in@21#, the 3D Ising corner can be analyze
through fermionic techniques. In particular, one can stu
the border ledge fluctuations. The details are rather intric
and given elsewhere@22#. Here we only report on those re
sults which allow us to gain some understanding of the u
versal properties of ledge fluctuations. We introduce the s
ing parameter, by N5 1

4 z(3),3, z(3)51.202 . . . being
Apery’s constant. The atomic border ledge position in t
~001! plane is given byb,(x), x50,1,2, . . . . b,(x) takes
positive integer values and is decreasing asb,(x11)
<b,(x). The ledge has only south and east turns and me
ders close to its asymptotic mean,b`(x/,). We zoom at the
fixed macroscopic edge point„,t,,b`(t)…, t.0. Upon
proper rescaling@22#, one recovers exactly the same statist
as in Eq.~8!. More precisely, for large,,

Var@b,~,t1x!2b,~,t!#>~ 1
2 A, !2/3gS A1/3

21/3,2/3
xD ,

~11!

with A5b9̀ (t). Equation~11! differs from Eq. ~9! in two
respects. Firstly, to obtain the border ledge fluctuations
has to subtract the systematic mean. Since for our partic
model the macroscopic facet edge is explicit, the subtrac
is ^b,(,t1x)&2^b,(,t)&>b8̀ (t)x1 1

2 b9̀ (t),21x2 with
negligible higher order corrections. Secondly, mod
dependent properties enter indirectly through the coeffic
A. Since g(s)52usu for small usu, Var@b,(,t1x)
2b,(,t)#5Auxu, A can be identified with the local wande
ing, respectively diffusion, coefficient.

The border ledge of the TLK model and the 3D Isin
corner have the same scaling behavior, which suggests
scaling to hold in greater generality. To obtain the for
which properly distinguishes between model-dependent
universal properties we have to rely on a few notions fro
the thermodynamics of equilibrium crystal shapes@23#. Let
us denote byh(x,y) the height of a vicinal surface relative t
the high symmetry reference plane. We find it convenien
measureh in number of atomic layers, whereasx,y are mea-
sured in a suitable macroscopic unit. Thush is dimensionless
andx,y have the dimension@length#. Further letkBT f(u) be
the surface free energy per unit projected area dependin
the local slopeu5¹h. Below the roughening transitionf has
a cone atu50 and for smallu behaves as

f ~u!>g~u!uuu1B~u!uuu3 ~12!

with u the polar angle ofu @24#. The line stiffnessg̃ is
defined throughg̃(u)5g(u)1g9(u). As argued in@25#, for
short range surface models the Gaussian curvature of
equilibrium crystal shape has a universal jump across
facet edge, which implies the relationg̃(u)B(u)5p2/6. Let
us denote by f̂ the Legendre transform off. If
*dxdy f„¹h(x,y)… is minimized under the constraint of fixe
2-3
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volume, then the resulting equilibrium surface is given
h(x,y)5, f̂ (,21x,,21y), where , is the Lagrange multi-
plier adjusted so to give the correct volume.h is convex
downwards and has a convex facet lying in thex-y plane.
The facet boundary is determined byg(u) alone. Close to
the facet edge,h>2 2

3 gPTd3/2 with d the normal distance to
the facet edge, which defines the Pokrovsky-Talapov coe
cient gPT . Under Legendre transformation the angleu be-
comes the angle between thex axis and the outer normal t
the facet and, correspondingly,gPT , the local curvaturek,
and the distancer of a point on the edge to the origin ar
parametrized through this angleu. The relationship between
g̃ andB implies

gPT
2 k52,22p22. ~13!

We return to the border ledge fluctuations close to a gi
angleu0. For this purpose it is convenient to center thex-y
axis coordinate system atr (u0) with the x-axis tangential
and they-axis along the inner normal to the facet. In th
frame, we denote byy5b(x) the fluctuating border step
Then ^b(x)&5 1

2 k(u0)x2, in approximation. For sufficiently
small uxu, still large on the scale of the lattice,b(x) is like a
random walk and Var@b(x)2b(0)#>s2uxu, which defines
the local wandering coefficients2. Following @23# it is natu-
ral to equates(u)2 with the inverse stiffnessg̃(u)21. This
implies

s25k,, k5p2gPT
2 s4/2 ~14!
-

P.

s.

a,

is

03510
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valid for any point on the facet edge.
The general scaling form is obtained now by using t

TLK model as a benchmark. Locally the border ledge p
forms a random walk with nearest neighbor hopping rate
see Eq.~2!, thuss252. From Eq.~5! the PT coefficient is
gPT51/pA, in our units. Using these two as mode
dependent parameters yields the scaling form

Var@b~x!2b~0!#>~pgPT!24/3g„~pgPT!4/3s2x/2….
~15!

Of course, through Eqs.~13!, ~14!, any other pair of model-
dependent parameters can be used to reexpress Eq.~15!.

As a control check, the Ising corner must also satisfy E
~15!. This is indeed the case with coefficientsk5,21s2,
s25b9̀ (t)@11b8̀ (t)2#23/2, and gPT521/2b9̀ (t)21

3,21/2p21@11b8̀ (t)2#3/4.
To summarize, the border ledge of a facet has fluctuati

of size,1/3, thus much reduced in comparison with a simp
random walk. We claim that the scaling form~15! is univer-
sal within the class of surface models with short range in
actions. The scaling functiong can be expressed throug
determinants of infinite dimensional matrices. Short and lo
distance behavior is known explicitly. In Eq.~15! there are
two material parameters. Once they are determined exp
mentally, the functional form of the variance for the led
fluctuations follows.
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