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Stochastic heart-rate model can reveal pathologic cardiac dynamics

Tom Kuusela*
Department of Physics, University of Turku, 20014 Turku, Finland

~Received 21 November 2003; published 31 March 2004!

A simple one-dimensional Langevin-type stochastic difference equation can simulate the heart-rate fluctua-
tions in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a
stochastic part typical of Gaussian noise, and both parts can be directly determined from measured heart-rate
data. Data from healthy subjects typically exhibit the deterministic part with two or more stable fixed points.
Studies of 15 congestive heart-failure subjects reveal that the deterministic part of pathologic heart dynamics
has no clear stable fixed points. Direct simulations of the stochastic model for normal and pathologic cases can
produce statistical parameters similar to those of real subjects. Results directly indicate that pathologic situa-
tions simplify the heart-rate control system.
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I. INTRODUCTION

Mathematical analyses of many physiological rhythm
including long-term heart-rate fluctuations, have shown t
the underlying mechanisms are nonlinear, since linear
tems cannot produce the observed complex behavior@1#.
Nonlinear purely deterministic models can display chao
dynamics and generate apparently unpredictable oscillati
However, in practice it has not yet been possible to extr
such models directly from real experimental data@2#. An-
other possibility is that the underlying system is stocha
and that its time evolution is influenced by a noise sour
There is also evidence that noise is an integral part of
dynamics of various biological systems@3–5#, where this
noise originates from the system itself or is a reflection
external influences.

Recently it has been shown that the long-term dynam
of the human heart rate can be modeled by a o
dimensional difference equation@6#:

X~ t1t!5X~ t !1g„X~ t !;t…1h„X~ t !;t…G~ t !, ~1!

whereX(t) represents theR-R interval at timet, t is the time
delay, functiong gives the nonlinear deterministic chang
and in the last termh is the amplitude of the stochastic co
tribution andG(t) presents uncorrelated Gaussian noise w
vanishing mean. In the limitt→0 @if g„X(t);t… is approxi-
mated astg„X(t)…] we obtain the normal Langevin differen
tial equation@7,8#. However, it has been shown that Eq.~1! is
valid only if the delay parametert is in the range 2–20 min
@6#, since it is only within this range that the functionsg and
h do not depend significantly on the delayt.

A simple method can be used to determineg andh from
the measured time series@9,10#. First we divide the range o
R-R intervals into equal-size bins. By scanning the who
time series we check when theR-R interval value is inside a
bin, e.g.,uX(t i)2xu<Dx, wherex is the middle value of the
bin andDx is the half width of the bin. When the valueX(t i)
occurs in the bin we look at the future valueX(t i1t), where
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t is the fixed delay parameter. Since the trajectory of
system passes each bin several times, we can calculat
distribution of the future values for each bin. By assumi
that the noise is Gaussian, we can fit a Gaussian function
each distribution. The mean of this distribution is equal
X1g(X), and the deviation is equal toh(X) @11,12#. When
fitting the Gaussian function to the distribution we also c
culated the correlation asA12Sres /Stot where Sres is the
sum of the squared residuals andStot is the variance. The
only values ofg(X) and h(X) accepted were those assoc
ated with a correlation higher than 0.8.

In our analysis we have usedR-R interval time series
covering 22-24 h, corresponding to 80 000–100 000 d
points. The data are actually interval data, i.e., they consis
a sequence ofR-R interval values. Therefore it is more con
venient to count the delay in terms of heart beats than s
onds. Since the functionsg andh are quite insensitive to the
time delay, using a beat index as a variable does not sig
cantly change their functional form@6#. The value of the
delay parametert was 500 beats, and 100 bins were used
construct local distributions.

II. TYPICAL RESULTS FROM NORMAL AND HEART-
FAILURE SUBJECTS

In order to discover if there are differences in the det
ministic and stochastic parts of the model between nor
and heart-failure subjects, we analyzed Holter recordi
from 15 healthy subjects and from 15 patients with cong
tive heart failure~CHF; NYHA classification III or IV! of
various ages and gender. The recordings are availabl
PhysioBank~MIT-BIH Normal Sinus Rhythm Database an
BIDMC Congestive Heart Failure Database! @13#. The only
recordings accepted were those with clear sinus rhythm
where the proportion of non-normal beats~mostly ventricular
or supraventricular ectopic beats! was less than 5%.

In Fig. 1, we have presented typicalR-R interval record-
ings of 80 min of healthy and CHF subjects. In the case o
normal subject~the upper panel! the variability of theR-R
interval is larger and the mean interval clearly higher than
the case of a CHF subject~the lower panel!. The short-time
fluctuations ofR-R interval of the normal subject are most
©2004 The American Physical Society16-1
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generated by the respiration~periods normally couple of sec
onds! and blood pressure regulation~so called Mayer waves
with periods of about 10 sec!. These oscillations are rathe
small in the CHF subject. For normal subject large abr
changes in theR-R interval are obvious but not evident fo
CHF case. Spikes in theR-R interval time series of the CHF
subject are ectopic beats usually consisting of a pair of s
and long beat.

Figure 2 presents typical analysis results obtained fro

FIG. 1. TypicalR-R interval time series of normal~upper panel!
and heart-failure subjects.

FIG. 2. Typical results derived fromR-R interval time series for
normal subjects~left panels! and CHF subjects~right panels!, show-
ing the deterministic partg(X) ~upper panels! and the stochastic
part h(X) ~lower panels!. In the normal case the deterministic pa
crosses the zero level three times: the first one and the last on
stable fixed points and the middle one is unstable. The determin
part of the CHF subject exhibits no clear stable points.
03191
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healthy case and a CHF case. As reported previously@6#, for
healthy subjects it is most typical for theg(X) function to
cross the zero line three times, each representing a fi
point of the system, as shown in the top-left panel of Fig.
The left and right fixed points are stable: without any no
term these points attract all nearby states because the co
function g(X) is locally decreasing. In contrast, the midd
fixed point is repulsive. This kind of ‘‘pitchfork’’ configura-
tion of the fixed points is typical for systems exhibitin
bistable behavior. The system has a tendency to jump
tween the stable points if the amplitude of the noise is su
ciently high. Far from the stable points theg(X) function
increases or decreases strongly, and this forces the sy
back to oscillate around stable points. It is possible for
g(X) function to have more than three zeroes~but always an
odd number thereof!, indicating a multiple-pitchfork system
@6#. In contrast, the deterministic part of the CHF case has
clear fixed points since theg(X) function is practically zero
and flat over a rather large range ofR-R interval values, as
can be seen in the top-right panel of Fig. 2. Again, at
lowest and highest values of theR-R interval theg(X) func-
tion increases or decreases rapidly, forcing the system b
to the flat part. However, within the flat part the system e
hibits little control since there are no distinct stable fix
points—the system can wander freely.

The deterministic parts of a collection of CHF subjec
are shown in Fig. 3. All of them have a clear flat segme
which distinguishes them from the pitchfork type of dete
ministic part of the normal subjects~see Fig. 5 in Ref.@6#!.
The length of the flat segment varies but in most cases
around 200 ms, which represents a remarkably large pa
the total range of theR-R interval, and hence the effect o
this part on the dynamics of the system is not marginal. T
mean level of the stochastic parth(X) for normal subjects
was 70-110 ms@6#, and there was a maximum inh(X) be-
tween the stable points, as evident in the example show
the bottom-left panel of Fig. 2. The mean level ofh(X) was
slightly less for CHF subjects, at 40-90 ms. Moreover,
obvious common structure was evident inh(X), although
sometimes the stochastic part appeared to have a com
structure, as can be seen in the example case in Fig. 2.
mean noise level, however, is large enough to force the
tem to explore also the rapidly increasing and decreas
parts of theg(X) function.

CHF subjects normally exhibit considerably more ecto
beats ~both ventricular and supraventricular! than normal
subjects, and it is possible that these are totally or parti
attributable to the form of the deterministic part. We the
fore performed our analysis before and after editing out
topic beats, as shown in Fig. 4. In this example of a C
subject the total number of beats was 85 000, of which 17
~2%! were classified as ectopic. All the ectopic beats w
removed by the editing process. Figure 4 shows that the
terministic partg(X) after editing~open dots! is practically
identical to the original one~solid dots!, from which we can
conclude that the increased number of abnormal beats i
cannot explain the altered shape of the deterministic part
CHF subjects.
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FIG. 3. Deterministic functionsg(X) derived from different CHF subjects. In all cases the functions exhibit a flat section nea
zero line.
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III. MODEL FOR NORMAL AND PATHOLOGIC
DYNAMICS

We generated simulated time series in order to investig
the effects of different functional forms of the determinis
part of our stochastic model on various statistical parame
routinely used to analyze long-term heart-rate time ser

FIG. 4. The deterministic functiong(X) of one CHF subject
before ~solid dots! and after~open dots! editing out the ectopic
beats. The deterministic function is practically unaltered by the
iting process.
03191
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We used two forms of the control functiong(X): both were
third-order polynomials but they had different coefficien
The function used to mimic normal subjects has two sta
fixed points and one unstable one, as shown in the left pa
of Fig. 5. Also, the heights of the local minima and maxim

-

FIG. 5. Left panel shows the model functions used in simu
tions. The ‘‘pitchfork’’ type of deterministic functiong(X) has two
stable fixed points~solid dots! and one unstable point~open dot!,
whereas the ‘‘flat’’ type of function exhibits only one unstable poin
The deterministic parts derived from the simulated time series u
pitchfork and flat model functions closely resemble the origin
ones~right panel!.
6-3
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FIG. 6. The long-range scaling exponentaL calculated by DFA for normal and CHF subjects, and from the simulated time series
the pitchfork and flat deterministic functions~left panel!. Results are shown as means and standard deviations for 15 subjects or simul
The right panel shows the scaling exponent as a function of the noise level used in simulations with pitchfork and flat deterministic f
The normal range of the noise level~marked with dashed vertical lines! corresponds to mean levels of the stochastic parts found in
subjects.
tio
c

or

s

t
e
th

ce
es

el
e
t-

t w

h

s

-

r
nt

ig
ue

rt

-
left
a

ore

s
flat
f

me
sing
se
ap-
eal

t
er-

nd
F
e
s

ger
tes

ves
tic

e
he

ncy

lla-
were adjusted to resemble the typical features of the func
g(X) extracted from real normal subjects. The model fun
tion simulating CHF subjects has no local minima
maxima; it instead has a flat segment near the zero line~we
call this function ‘‘flat’’!. It should be noticed that both type
of model functions are centered on anR-R interval of 1000
ms. In the case of CHF subjects the meanR-R interval is
normally much shorter, but since we are not interested
absolute values of theR-R interval ~which our model canno
predict! but merely in the variability and complexity of th
time series, this choice does not affect our results. For
stochastic parth(X) we simply used a constant value sin
we could not identify any common features in this part,
pecially in CHF subjects.

In simulations we used the difference equation~1! to di-
rectly compute theR-R interval time series. Since the mod
is based on analyses from real data with the delay param
value of 500 beats, the simulated time series is not a bea
beat series—instead, the time variable~or index! is in units
of 500 beats. To check that our approach is self-consisten
analyzed the simulated time series~now with a time delay of
1); the results are shown in the right panel of Fig. 5. T
extracted deterministic partsg(X) for the pitchfork and flat
types of model function closely resemble the original one

IV. STATISTICAL ANALYSIS OF REAL AND SIMULATED
DATA

A. Detrended fluctuation analysis

Detrended fluctuation analysis~DFA! is widely used to
characterize the long-range correlation behavior ofR-R in-
terval time series@14,15#. DFA can be used to quantify self
similar properties of a signal. In the case of theR-R interval
the power-law scaling exponent of DFA is normally dete
mined in two regions:~1! the short-range scaling expone
aS covers the time range from 0 to 10 sec~or beats!, and~2!
the long-range scaling exponentaL covers from 10 sec to
tens of minutes or even hours. For totally uncorrelated s
nals ~e.g., white noise! the scaling exponent takes the val
0.5, 1/f noise has a value of 1.0, and Brownian noise~the
integral of white noise or random walking! has the value 1.5.
Since our stochastic model cannot cover correlations sho
than the time delay (500 beats in our analysis!, we are inter-
03191
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ested only inaL . We calculatedaL for our database of nor
mal and CHF subjects, and the results are shown in the
panel of Fig. 6. TypicallyaL is close to one in the case of
healthy subject, as we also found (aL51.0860.06, mean
6SD!. For CHF subjects the results in the literature are m
diverse. It has been reported thataL increases in pathologic
situations, but in practice the situation is more variable~e.g.,
see Ref.@15#: the range ofaL values for normal subjects wa
0.7–1.2 and for CHF subjects was 0.6–1.5 with a rather
distribution; and hence the change in the mean values oaL

does not describe the real effect very well!. In our CHF
databaseaL was 0.8860.09, which is significantly lower
than that in normal subjects (p<0.001 byt-test for indepen-
dent samples!.

To compare the scaling properties of the simulated ti
series with the real ones we generated time series u
pitchfork and flat model functions for several different noi
levels. The range of the noise level, 40–100 ms, was
proximately the same as that found from the analysis of r
subjects. The mean values ofaL over these 15 differen
simulations are also shown in the left panel of Fig. 6. Int
estingly, the meanaL from simulations with the pitchfork
control function is very close to that of normal subjects, a
simulations with the flat function are close to those for CH
subjects.aL is plotted as a function of the noise level in th
right panel of Fig. 6. Within the noise range of 40–120 m
the pitchfork model gives clearly higheraL values than the
flat model. However, if the noise amplitude is very low,aL
of the pitchfork model drops since the system can no lon
jump between the stable points—it instead merely oscilla
around one point. With large noise levels both models gi
almost equalaL values, and the details of the determinis
function g(X) are no longer important.

B. Spectral power

It is well known that the total variability of the heart rat
is significantly lower in CHF subjects. We calculated t
spectral power of the real and simulatedR-R interval time
series over the lowest frequency bands—ultralow freque
~ULF! band ~0–0.003 Hz! and very low frequency~VLF!
band~0.003–0.04 Hz!—using fast Fourier transformation~as
explained earlier, our model cannot explain faster osci
6-4
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FIG. 7. The spectral power in ULF and VLF frequency bands for normal and CHF subjects, and from the simulated time series
pitchfork and flat deterministic functions~left panel!. Results are shown as means and standard deviations for 15 subjects or simulatio
right panel shows the spectral power as a function of the noise level used in simulations with pitchfork and flat deterministic func
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tions!. The results averaged over 15 real normal and C
subjects, and 15 pitchfork and flat types of simulation
presented in the left panel of Fig. 7. Again the pitchfo
system closely resembles normal subjects, and the flat
tem resembles CHF subjects. The spectral power as a f
tion of the noise level is displayed in the right panel of F
7. It is remarkable that with the same level of noise t
power of the pitchfork system is several-fold that of the fl
system, with a maximum at a noise level of 50 ms. In co
trast, the spectral power of the flat system is quite insensi
to the noise amplitude.

C. Multifractal analysis

It has been shown previously that the time series
healthy humanR-R intervals exhibits multifractal propertie
@16,17#. Monofractal signals can be indexed by a single g
bal Hurst exponent@18#, whereas multifractal signals can b
decomposed into many subsets characterized by differen
cal Hurst exponentsh which quantify the local singular be
havior related to the local fractal properties of the time se
@19#. The statistical properties of the different subsets can
quantified by the singularity spectrumD(h), which is the
fractal dimension of the subset as a function of the lo
Hurst exponent. Monofractal signals exhibit a narrow ran
of h values, whereas for multifractal signals the functi
D(h) is broad.

We calculated the singularity spectrum in the followin
manner @20#. First we constructed theL1-norm wavelet
transform of theR-R interval time series

WT~a,t !5
1

aE2`

`

X~ t8!CS t82t

a Ddt8, ~2!

where theC(t) is the wavelet analysis function. We used t
second derivative of the Gaussian function as an anal
function. The next phase involved detection of the lo
maximatk of the modulusuWT(a,t)u at a given scalea. The
partition function is the sum of theq moments of the wavele
transform modulus over the local maxima,

Z~a,q!5 (
$tk(a)%

uWT„a,tk~a!…uq. ~3!
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For small scales, we can assume that@20#

Z~a,q!'al (q). ~4!

In practice,l (q) can be determined by plotting ln@Z(a,q)# as
a function of ln(a) and fitting a straight line over suitabl
range ofa values; the slope of the line givesl (q). We cal-
culated l (q) for momentsq525 to 5, and obtained the
slope in the region 20<a<500. The singularity spectrum i
given from l (q) through the Legendre transform

D~h!5q
dl~q!

dq
2 l ~q!. ~5!

The results from this multifractal analysis of the simulat
time series are shown in Fig. 8. At a noise level of 60 m
D(h) from the pitchfork system~solid dots, the curve labeled
60! has nonzero values for a broad range of the local Hu
exponents, with the maximum ath50.16 indicating the ac-
tual multifractal behavior of the system. These kind of frac
dimensions have been observed in healthy subjects:
maximum ofD(h) has been found to be 0.1460.04 and the
width of the D(h) spectrum 0.16@16,17#. If 0<h<0.5 the
fluctuations in theR-R interval dynamics exhibit anticorre
lated behavior, as reported several times in the case

FIG. 8. The fractal dimensionD(h) as a function of the Hurst
exponenth derived from the simulated time series using pitchfo
~solid dots! and flat~open dots! deterministic functions. Two noise
levels were used in the simulations: 60 and 80 ms.
6-5
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healthy subjects (h50 corresponds to 1/f behavior,h50.5
to random walking, andh.0.5 to correlated behavior!. Since
for monofractal signals the Hurst exponenth and the scaling
exponentaL from DFA are related by the equationh5aL
21, we can see that our result from DFA is consistent w
multifractal analysis; it should be noticed that for real m
tifractal signals we can approximately relate the Hurst ex
nent corresponding to the maximum ofD(h) and the scaling
exponentaL . If the noise level is increased to 80 ms~solid
dots in Fig. 8, the curve labeled ‘‘80’’!, the maximum of the
D(h) is shifted to the left and the corresponding Hurst e
ponent is slightly negative but the singular spectrum is s
rather wide.

When using the flat type of control function in simul
tions, theD(h) spectrum is narrow and the maximum
found on a negative Hurst exponent~see Fig. 8, curves with
open dots!. For totally uncorrelated white noise the loc
Hurst exponent is20.5, and at a noise level of 80 ms th
system almost reaches this situation. With both levels
noise the flat control function produces an almost monofr
tal signal. In previous studies it has been observed that
statistically dominant Hurst exponents for heart-failure s
jects are confined to a narrower range, as we have found
the flat control function; but, in contrast, the maximum
D(h) shifts towards higherh values indicating that fluctua
tions in R-R interval are less anticorrelated~and more like
random walking! @16#. However, our observations based
multifractal analysis are consistent with our DFA results:
meanaL of CHF subjects from our database is clearly le
than 1.0, corresponding to negative Hurst exponents, and
system dynamics produces a signal that is indistinguish
from white noise. It is therefore obvious that different CH
databases can produce apparently contradictory finding
we have discussed already in the context of DFA.

V. CONCLUSION

We have shown that a one-dimensional stochastic dif
ence equation can explain some fundamental features of
o

m
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mal and pathologic heart-rate dynamics. Our model can
predict beat-to-beat oscillations of theR-R interval but it can
simulate long-term behavior up to delays of 500 beats. O
observations indicate that uncorrelated Gaussian nois
originating either from the system itself or externally—c
produce complex and even multifractal behavior when
fecting the system through a simple but nonlinear con
function, the deterministic part of the model. If the contr
function has a pitchfork configuration~i.e., two stable fixed
points and one unstable one!, the system produces a tim
series that resembles the dynamical properties of the h
rate of normal healthy subjects, at least when compar
some fundamental statistical parameters used to charact
heart-rate dynamics. Surprisingly the control function of
heart-failure subject has no clear stable points, which allo
the system to wander rather freely. It has been suggested
certain real pathologic situations simplify the heart-rate c
trol system by weakening or completely removing some
the feedback loops, and the resulting time series beha
more like a random walk. Our stochastic model supports
idea, since the control function of CHF subjects lack all co
plex features. In contrast, our model predicts that the pa
logic dynamics produces white-noise-like behavior, and
random walking. However, variations in DFA measureme
of pathologic data suggest that the underlying clinical con
tions vary among heart-failure patients, and our model
perhaps cover only part of them. We found that in so
cases the stochastic part can have a rather complex struc
and it is possible that a more complicated stochastic p
would produce different dynamics. In summary, we can c
clude that distinguishing the shapes of the deterministic p
of the R-R interval time series of normal and heart-failu
subjects provides a diagnostic tool for the prediction of so
pathologic conditions.
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