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Stochastic heart-rate model can reveal pathologic cardiac dynamics

Tom Kuuseld
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A simple one-dimensional Langevin-type stochastic difference equation can simulate the heart-rate fluctua-
tions in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a
stochastic part typical of Gaussian noise, and both parts can be directly determined from measured heart-rate
data. Data from healthy subjects typically exhibit the deterministic part with two or more stable fixed points.
Studies of 15 congestive heart-failure subjects reveal that the deterministic part of pathologic heart dynamics
has no clear stable fixed points. Direct simulations of the stochastic model for normal and pathologic cases can
produce statistical parameters similar to those of real subjects. Results directly indicate that pathologic situa-
tions simplify the heart-rate control system.
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[. INTRODUCTION 7 is the fixed delay parameter. Since the trajectory of the
system passes each bin several times, we can calculate the
Mathematical analyses of many physiological rhythms,distribution of the future values for each bin. By assuming
including long-term heart-rate fluctuations, have shown thathat the noise is Gaussian, we can fit a Gaussian function on
the underlying mechanisms are nonlinear, since linear sysach distribution. The mean of this distribution is equal to
tems cannot produce the observed complex behdvipr X+ g(X), and the deviation is equal to(X) [11,12. When
Nonlinear purely deterministic models can display chaoticfitting the Gaussian function to the distribution we also cal-
dynamics and generate apparently unpredictable oscillationsulated the correlation agl—Ss/S;o; Where S,¢s is the
However, in practice it has not yet been possible to extrackum of the squared residuals aBg; is the variance. The
such models directly from real experimental dé2d An-  only values ofg(X) andh(X) accepted were those associ-
other possibility is that the underlying system is stochasticated with a correlation higher than 0.8.
and that its time evolution is influenced by a noise source. In our analysis we have use®-R interval time series
There is also evidence that noise is an integral part of theovering 22-24 h, corresponding to 80000-100000 data
dynamics of various biological systeni8—5|, where this  points. The data are actually interval data, i.e., they consist of
noise originates from the system itself or is a reflection ofa sequence dR-R interval values. Therefore it is more con-
external influences. venient to count the delay in terms of heart beats than sec-
Recently it has been shown that the long-term dynamicgnds. Since the functiorgsandh are quite insensitive to the
of the human heart rate can be modeled by a onetime delay, using a beat index as a variable does not signifi-
dimensional difference equatigf]: cantly change their functional forf6]. The value of the

delay parameter was 500 beats, and 100 bins were used to
X(t+7)=X(t) +g(X(t);7)+h(X(t);I(t), (1)  construct local distributions.

whereX(t) represents thR-R interval at timet, 7 is the time
delay, functiong gives the nonlinear deterministic change,
and in the last ternm is the amplitude of the stochastic con-
tribution andI’(t) presents uncorrelated Gaussian noise with |n order to discover if there are differences in the deter-
vanishing mean. In the limit— 0 [if g(X(t);7) is approxi-  ministic and stochastic parts of the model between normal
mated asrg(X(t))] we obtain the normal Langevin differen- and heart-failure subjects, we analyzed Holter recordings
tial equatior{7,8]. However, it has been shown that Efj) is  from 15 healthy subjects and from 15 patients with conges-
valid only if the delay parameter is in the range 2—20 min tive heart failure(CHF; NYHA classification 1l or I\) of
[6], since it is only within this range that the functiogend  various ages and gender. The recordings are available in
h do not depend significantly on the delay PhysioBank(MIT-BIH Normal Sinus Rhythm Database and
A simple method can be used to determgnandh from  BIDMC Congestive Heart Failure Databagé3]. The only
the measured time serig8,10]. First we divide the range of recordings accepted were those with clear sinus rhythm and
R-R intervals into equal-size bins. By scanning the wholewhere the proportion of non-normal beétsostly ventricular
time series we check when tiieRinterval value is inside a or supraventricular ectopic beatsas less than 5%.
bin, e.g.,|X(t;) —x|<AXx, wherex is the middle value of the In Fig. 1, we have presented typidaiR interval record-
bin andAx is the half width of the bin. When the valugt;) ings of 80 min of healthy and CHF subjects. In the case of a
occurs in the bin we look at the future valdét; + 7), where  normal subjecithe upper panglthe variability of theR-R
interval is larger and the mean interval clearly higher than in
the case of a CHF subjetthe lower panel The short-time
*Electronic address: tom.kuusela@utu.fi fluctuations ofR-R interval of the normal subject are mostly

II. TYPICAL RESULTS FROM NORMAL AND HEART-
FAILURE SUBJECTS
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healthy case and a CHF case. As reported previd@g)yfor
healthy subjects it is most typical for thggX) function to
cross the zero line three times, each representing a fixed
point of the system, as shown in the top-left panel of Fig. 2.
The left and right fixed points are stable: without any noise
term these points attract all nearby states because the control
function g(X) is locally decreasing. In contrast, the middle
fixed point is repulsive. This kind of “pitchfork” configura-
tion of the fixed points is typical for systems exhibiting
bistable behavior. The system has a tendency to jump be-
tween the stable points if the amplitude of the noise is suffi-
ciently high. Far from the stable points tlggX) function
increases or decreases strongly, and this forces the system
back to oscillate around stable points. It is possible for the
g(X) function to have more than three zerd@bat always an

odd number there@f indicating a multiple-pitchfork system

[6]. In contrast, the deterministic part of the CHF case has no
clear fixed points since thg(X) function is practically zero

and flat over a rather large range R{R interval values, as

generated by the respiratigperiods normally couple of sec- can be seen in the top-right panel of Fig. 2. Again, at the

ondg and blood pressure regulatigso called Mayer waves

lowest and highest values of tieR interval theg(X) func-

with periods of about 10 s¢cThese oscillations are rather tign increases or decreases rapidly, forcing the system back

small in the CHF subject. For normal subject large abrupt, the flat part. However, within the flat part the system ex-
changes in th&k-R interval are obvious but not evident for piits jittle control since there are no distinct stable fixed

CHF case. Spikes in the-R interval time series of the CHF
subject are ectopic beats usually consisting of a pair of sho

and long beat.

Figure 2 presents typical analysis results obtained from
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FIG. 2. Typical results derived froiR-R interval time series for
normal subjectsleft panelg and CHF subject&ight panel$, show-

I[%oints—the system can wander freely.

The deterministic parts of a collection of CHF subjects
are shown in Fig. 3. All of them have a clear flat segment,
hich distinguishes them from the pitchfork type of deter-
ministic part of the normal subjectsee Fig. 5 in Ref[6]).

The length of the flat segment varies but in most cases it is
around 200 ms, which represents a remarkably large part of
the total range of th&k-R interval, and hence the effect of
this part on the dynamics of the system is not marginal. The
mean level of the stochastic pdr{X) for normal subjects
was 70-110 m$6], and there was a maximum hn(X) be-
tween the stable points, as evident in the example shown in
the bottom-left panel of Fig. 2. The mean levelqiX) was
slightly less for CHF subjects, at 40-90 ms. Moreover, no
obvious common structure was evident hi(X), although
sometimes the stochastic part appeared to have a complex
structure, as can be seen in the example case in Fig. 2. The
mean noise level, however, is large enough to force the sys-
tem to explore also the rapidly increasing and decreasing
parts of theg(X) function.

CHF subjects normally exhibit considerably more ectopic
beats (both ventricular and supraventriculathan normal
subjects, and it is possible that these are totally or partially
attributable to the form of the deterministic part. We there-
fore performed our analysis before and after editing out ec-
topic beats, as shown in Fig. 4. In this example of a CHF
subject the total number of beats was 85 000, of which 1700
(2%) were classified as ectopic. All the ectopic beats were
removed by the editing process. Figure 4 shows that the de-

ing the deterministic parg(X) (upper panelsand the stochastic ~terministic partg(X) after editing(open dotsis practically
parth(X) (lower panels In the normal case the deterministic part identical to the original onésolid dots, from which we can
crosses the zero level three times: the first one and the last one ag@nclude that the increased number of abnormal beats itself

stable fixed points and the middle one is unstable. The deterministicannot explain the altered shape of the deterministic part for
part of the CHF subject exhibits no clear stable points.

CHF subjects.
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FIG. 3. Deterministic functiong(X) derived from different CHF subjects. In all cases the functions exhibit a flat section near the
zero line.

Ill. MODEL FOR NORMAL AND PATHOLOGIC

DYNAMICS

We used two forms of the control functia(X): both were
third-order polynomials but they had different coefficients.

The function used to mimic normal subjects has two stable

We generated simulated time series in order to investigat . :
. . .~ Tixed points and one unstable one, as shown in the left panel
the effects of different functional forms of the deterministic : : . )
of Fig. 5. Also, the heights of the local minima and maxima

part of our stochastic model on various statistical parameters

routinely used to analyze long-term heart-rate time series.
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420 520 620 720 FIG. 5. Left panel shows the model functions used in simula-
X (ms) tions. The “pitchfork” type of deterministic functiog(X) has two

stable fixed pointgsolid dotg and one unstable poirfbpen do},

FIG. 4. The deterministic functiog(X) of one CHF subject whereas the “flat” type of function exhibits only one unstable point.
before (solid dotg and after(open doty editing out the ectopic The deterministic parts derived from the simulated time series using
beats. The deterministic function is practically unaltered by the edpitchfork and flat model functions closely resemble the original
iting process. ones(right pane).

031916-3



TOM KUUSELA PHYSICAL REVIEW E 69, 031916 (2004

|
12 12 E
1
; ! Ritchfork|
1
08 | 08 r :
= 1 1
- o ) )
=] 1 1
04 | ' )
04 ! !
| normalrange |
0 | ) !
0 20 45 70 95 120
Normal CHF Pithfak Fht Noise level (ms)

FIG. 6. The long-range scaling exponent calculated by DFA for normal and CHF subjects, and from the simulated time series using
the pitchfork and flat deterministic functiofieft pane). Results are shown as means and standard deviations for 15 subjects or simulations.
The right panel shows the scaling exponent as a function of the noise level used in simulations with pitchfork and flat deterministic functions.
The normal range of the noise levgharked with dashed vertical linesorresponds to mean levels of the stochastic parts found in real
subjects.

were adjusted to resemble the typical features of the functiossted only ina; . We calculatedv, for our database of nor-
g(X) extracted from real normal subjects. The model func-mal and CHF subjects, and the results are shown in the left
tion simulating CHF subjects has no local minima orpanel of Fig. 6. Typicallyx, is close to one in the case of a
maxima; it instead has a flat segment near the zero(liree healthy subject, as we also found (= 1.08+0.06, mean
call this function “flat”). It should be noticed that both types + Sp). For CHF subjects the results in the literature are more
of model functions are centered on BrR interval of 1000  giverse. It has been reported that increases in pathologic
ms. In the case of CHF subjects the me&R interval i sitations, but in practice the situation is more varizelg.,

normally much shorter, but since we are not interested ige Ref[15]: the range ofy, values for normal subjects was
absolute values of thR-R interval (which our model cannot 0.7-1.2 and for CHF subjects was 0.6—1.5 with a rather flat
predici) put me_rely in_ the variability and complexity of the distribution; and hence the change in the mean values of
time series, this choice does not affect our results. For th oes not describe the real effect very welh our CHF

stochastic parh(X) we simply used a constant value since T
we could not identify any common features in this part, es_databasea,_ was 0.88-0.09, which is significantly lower

pecially in CHF subjects. than that in normal subjectp&0.001 byt-test for indepen-

In simulations we used the difference equatignto di- ~ dent samples _ , _ _
rectly compute thd&R-R interval time series. Since the model TO compare the scaling properties of thg S|mula.ted tlrr_1e
is based on analyses from real data with the delay paramet&ffies Wwith the real ones we generated time series using
value of 500 beats, the simulated time series is not a beat-t®itchfork and flat model functions for several different noise
beat series—instead, the time variabde indey is in units  levels. The range of the noise level, 40-100 ms, was ap-
of 500 beats. To check that our approach is self-consistent wroximately the same as that found from the analysis of real
analyzed the simulated time serig®w with a time delay of Subjects. The mean values af over these 15 different
1); the results are shown in the right panel of Fig. 5. Thesimulations are also shown in the left panel of Fig. 6. Inter-
extracted deterministic partg(X) for the pitchfork and flat estingly, the meany_ from simulations with the pitchfork
types of model function closely resemble the original ones.control function is very close to that of normal subjects, and
simulations with the flat function are close to those for CHF
subjects.a, is plotted as a function of the noise level in the
right panel of Fig. 6. Within the noise range of 40-120 ms
the pitchfork model gives clearly higher, values than the
A. Detrended fluctuation analysis flat model. However, if the noise amplitude is very low,
of the pitchfork model drops since the system can no longer
jump between the stable points—it instead merely oscillates
around one point. With large noise levels both models gives
almost equaly, values, and the details of the deterministic
function g(X) are no longer important.

IV. STATISTICAL ANALYSIS OF REAL AND SIMULATED
DATA

Detrended fluctuation analysi®FA) is widely used to
characterize the long-range correlation behavioReR in-
terval time serie$14,15. DFA can be used to quantify self-
similar properties of a signal. In the case of ReR interval
the power-law scaling exponent of DFA is normally deter-
mined in two regions(1) the short-range scaling exponent
ag covers the time range from 0 to 10 dec beat$, and(2)
the long-range scaling exponeat covers from 10 sec to It is well known that the total variability of the heart rate
tens of minutes or even hours. For totally uncorrelated sigis significantly lower in CHF subjects. We calculated the
nals (e.g., white noisethe scaling exponent takes the value spectral power of the real and simulatBeR interval time
0.5, 1f noise has a value of 1.0, and Brownian nojdee  series over the lowest frequency bands—ultralow frequency
integral of white noise or random walkippas the value 1.5. (ULF) band (0—-0.003 Hz and very low frequencyVLF)
Since our stochastic model cannot cover correlations shortérand(0.003—0.04 Heg—using fast Fourier transformatidas
than the time delay (500 beats in our analysige are inter- explained earlier, our model cannot explain faster oscilla-

B. Spectral power
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FIG. 7. The spectral power in ULF and VLF frequency bands for normal and CHF subjects, and from the simulated time series using the
pitchfork and flat deterministic functiorifeft pane). Results are shown as means and standard deviations for 15 subjects or simulations. The
right panel shows the spectral power as a function of the noise level used in simulations with pitchfork and flat deterministic functions.

tions). The results averaged over 15 real normal and CHHA-or small scales, we can assume tf2ii|
subjects, and 15 pitchfork and flat types of simulation are @
presented in the left panel of Fig. 7. Again the pitchfork Z(a,q)~a'?v. 4
system closely resembles normal subjects, and the flat sys- . . .

; tice(q) can be determined by plotting[ld(a,q) ] as
tem resembles CHF subjects. The spectral power as a fun@l pract " ) : i
tion of the noise level is displayed in the right panel of Fig. 2 funcU?n Ofl In@ t?]nd :‘|tt|ng ?tﬁtr?.'ght l.'n: ove\rNsmtaIbIe
7. It is remarkable that with the same level of noise the'@1d€ ofa values; the slope of the line givegq). We cal-

power of the pitchfork system is several-fold that of the flatculatedl(a) for momentsq=—5 to 5, and obtained the
system, with a maximum at a noise level of 50 ms. In conSIOP€ in the region 28a=<500. The singularity spectrum is
trast, the spectral power of the flat system is quite insensitiv@iVen froml(q) through the Legendre transform
to the noise amplitude.

dl(q)
Dh=a—, ~1@- ()
C. Multifractal analysis q

It has been shown previously that the time series ofThe results from this multifractal analysis of the simulated
healthy humarR-R intervals exhibits multifractal properties time series are shown in Fig. 8. At a noise level of 60 ms,
[16,17. Monofractal signals can be indexed by a single glo-D(h) from the pitchfork systensolid dots, the curve labeled
bal Hurst exponenitl8], whereas multifractal signals can be 60) has nonzero values for a broad range of the local Hurst
decomposed into many subsets characterized by different l@xponents, with the maximum &t=0.16 indicating the ac-
cal Hurst exponentd which quantify the local singular be- tual multifractal behavior of the system. These kind of fractal
havior related to the local fractal properties of the time serieglimensions have been observed in healthy subjects: the
[19]. The statistical properties of the different subsets can benaximum ofD(h) has been found to be 0.34€.04 and the
quantified by the singularity spectrum(h), which is the  width of the D(h) spectrum 0.1§16,17. If 0<h=<0.5 the
fractal dimension of the subset as a function of the locafluctuations in theR-R interval dynamics exhibit anticorre-
Hurst exponent. Monofractal signals exhibit a narrow rangdated behavior, as reported several times in the case of
of h values, whereas for multifractal signals the function

D(h) is broad. 1.25
We calculated the singularity spectrum in the following
manner [20]. First we constructed thé.'-norm wavelet 1
transform of theR-R interval time series
WT(a,t 1ijt’\Ift,_t dt’ 2 30.75
where the¥ (t) is the wavelet analysis function. We used the 0.25
second derivative of the Gaussian function as an analysis :
function. The next phase involved detection of the local 0 . H . .
maximat, of the modulugWT(a,t)| at a given scal@. The 05 025 0 02 05 075
partition function is the sum of thg@ moments of the wavelet h

transform modulus over the local maxima, ) ) _
FIG. 8. The fractal dimensio®(h) as a function of the Hurst

exponenth derived from the simulated time series using pitchfork
Z(a,q)= E |WT(a,tk(a))|q. (3) (solid dotg and flat(open doty deterministic functions. Two noise
{te(a)} levels were used in the simulations: 60 and 80 ms.
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healthy subjectsH=0 corresponds to 1/behavior,h=0.5 mal and pathologic heart-rate dynamics. Our model cannot
to random walking, anti>0.5 to correlated behaviprSince  predict beat-to-beat oscillations of tReR interval but it can
for monofractal signals the Hurst exponénand the scaling simulate long-term behavior up to delays of 500 beats. Our
exponenta, from DFA are related by the equatidi=a_  observations indicate that uncorrelated Gaussian noise—
—1, we can see that our result from DFA is consistent withoriginating either from the system itself or externally—can
multifractal analysis; it should be noticed that for real mul- produce complex and even multifractal behavior when af-
tifractal signals we can approximately relate the Hurst expofecting the system through a simple but nonlinear control
nent corresponding to the maximumB{h) and the scaling function, the deterministic part of the model. If the control
exponentx . If the noise level is increased to 80 r®lid  function has a pitchfork configuratiofie., two stable fixed
dots in Fig. 8, the curve labeled “80; the maximum of the points and one unstable oneghe system produces a time
D(h) is shifted to the left and the corresponding Hurst ex-series that resembles the dynamical properties of the heart
ponent is slightly negative but the singular spectrum is stillrate of normal healthy subjects, at least when comparing
rather wide. some fundamental statistical parameters used to characterize
When using the flat type of control function in simula- heart-rate dynamics. Surprisingly the control function of a
tions, theD(h) spectrum is narrow and the maximum is heart-failure subject has no clear stable points, which allows
found on a negative Hurst expondste Fig. 8, curves with the system to wander rather freely. It has been suggested that
open dots For totally uncorrelated white noise the local certain real pathologic situations simplify the heart-rate con-
Hurst exponent is- 0.5, and at a noise level of 80 ms the trol system by weakening or completely removing some of
system almost reaches this situation. With both levels ofhe feedback loops, and the resulting time series behaves
noise the flat control function produces an almost monofracmore like a random walk. Our stochastic model supports this
tal signal. In previous studies it has been observed that thielea, since the control function of CHF subjects lack all com-
statistically dominant Hurst exponents for heart-failure sub-plex features. In contrast, our model predicts that the patho-
jects are confined to a narrower range, as we have found witlogic dynamics produces white-noise-like behavior, and not
the flat control function; but, in contrast, the maximum of random walking. However, variations in DFA measurements
D(h) shifts towards higheh values indicating that fluctua- of pathologic data suggest that the underlying clinical condi-
tions in R-R interval are less anticorrelatddnd more like tions vary among heart-failure patients, and our model can
random walking [16]. However, our observations based on perhaps cover only part of them. We found that in some
multifractal analysis are consistent with our DFA results: thecases the stochastic part can have a rather complex structure,
meana, of CHF subjects from our database is clearly lessand it is possible that a more complicated stochastic part
than 1.0, corresponding to negative Hurst exponents, and thgould produce different dynamics. In summary, we can con-
system dynamics produces a signal that is indistinguishablelude that distinguishing the shapes of the deterministic parts
from white noise. It is therefore obvious that different CHF of the R-R interval time series of normal and heart-failure
databases can produce apparently contradictory findings, asibjects provides a diagnostic tool for the prediction of some
we have discussed already in the context of DFA. pathologic conditions.

V. CONCLUSION

. . . . ACKNOWLEDGMENT
We have shown that a one-dimensional stochastic differ-

ence equation can explain some fundamental features of nor- This work was supported by the Academy of Finland.

[1] L. Glass, NaturgLondon 410, 277 (2001). [9] J. Gradigk, S. Siegert, R. Friedrich, and |. Grabec, Phys. Rev.
[2] L. Glass and M. C. MackeyFrom Clocks to Chaos: The E 62, 3146(2000.
Rhythms of Lif¢Princeton Univ. Press, Princeton, 1988 [10] S. Siegert, R. Friedrich, and J. Peinke, Phys. Let24B 275
[3] J.J. Collins, T.T. Imhoff, and P. Grigg, J. Neurophysit8, 642 (1998.
(1996. [11] J. Timmer, Chaos, Solitons Fractdls, 2571(2000.
[4] 1. Hidaka, D. Nozaki, and Y. Yamamoto, Phys. Rev. L&s, [12] R. Friedrich, S. Siegert, J. Peinke, St.dku M. Siefert, M.
3740(2000. Lindeman, J. Raethjen, G. Deuschl, and G. Pfister, Phys. Lett.
[5] D.J. Mar, C.C. Chow, W. Gerstner, R.W. Adams, and J.J. Col- A 271, 217(2000.
lins, Proc. Natl. Acad. Sci. U.S.A6, 10 450(1999. [13] A.L. Goldberger, L.A.NN. Amaral, L. Glass, J.M. Hausdorff,
[6] T.A. Kuusela, T. Shepherd, and J. Hietarinta, Phys. Re&7,E P.Ch. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng,
061904(2003. and H.E. Stanley, Circulatioh01, €215(2000.
[7] N.G. van KampenStochastic Processes in Physics and Chem-{14] N. lyengar, C.-K. Peng, R. Morin, A.L. Goldberger, and L.A.
istry (North-Holland, New York, 1981 Lipsitz, Am. J. Physiol271, R1078(1996.
[8] H. Risken, The Fokker-Planck EquatioriSpringer, Berlin, [15] C.-K. Peng, S. Havlin, H.E. Stanley, and A.L. Goldberger,
1984). Chaos5, 82 (1995.

031916-6



STOCHASTIC HEART-RATE MODEL CAN REVEA . .. PHYSICAL REVIEW E 69, 031916 (2004

[16] P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin,M.G. Rev. Lett.86, 6026(2001).
Rosenblum, Z.R. Struzik, and H.E. Stanley, Nat(itendon [18] H.E. Hurst, Trans. Am. Soc. Civ. En16, 770(1951.
399 461(1999. [19] T. Vicsek and A.L. Barabasi, J. Phys.24, L845 (1991).

[17] L.A.N. Amaral, P.Ch. Ivanov, N. Aoyagi, I. Hidaka, S. To- [20] J.F. Muzy, E. Bacry, and A. Arneodo, Phys. Rev. L6, 3515
mono, A.L. Goldberger, H.E. Stanley, and Y. Yamamoto, Phys. (1991).

031916-7



