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Phase behavior of liquid crystals confined by smooth walls
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Monte Carlo simulations for a simple model liquid crystal are presented. The influence of flat walls on the
phase behavior is analyzed for two different anchoring mechanisms, one favoring homeotropic alignment and
one simulating a twisted nematic cell without external fields, e.g., two walls with different homogeneous planar
alignment. The simulations are performed in the constant pressure ensemble. The box volume may change in
the directions perpendicular to the wall normal. The isotropic-nematic phase transition in the bulk system is
first studied for different isobars. For the weak first order transition we do not observe any hysteresis down to
a temperature accuracy AfT=0.001. The isotherrii =1 is then studied in the bulk as well as in the confined
geometries. The walls stabilize the positional order in the systems due to the formation of layers. The orien-
tational order is weakly stabilized.
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[. INTRODUCTION angles at the walls. The nematic phase is then characterized
by an inhomogeneous director field, the physics is that of a
Liquid crystals are very useful for many applications duetwisted nematic cell without any orienting field.
to their dual nature and easy response to surface fgides  This paper proceeds as follows. In Sec. Il we briefly re-
In 2002, liquid crystal displays became the most producediew the interaction potential for the model liquid crystal
display type world wide. Therefore, the physics of confinedfluid and give insight in the fluid-wall interaction, which
liquid crystals is an important subject from the technologicalmodels a smooth wall. Some details of the Monte Carlo
point of view. Furthermore, the influence of confinement onsimulations, which were carried out each with constant pres-
the phase behavior of liquid crystals is of high academicsure and constant temperature, as well as remarks about the
interest. The interplay between bulk and surface forces give@bservables, for which average values are obtained are given
rise to a complex phase behavior. In experiments the corh Sec. lll. In Sec. IV results of the computer simulations are
finement is found to induce capillary condensatj@h presented and discussed. The isotropic-nematic phase transi-
Until now, there have been many theoretical studies ofions are studied for two different fluid-wall interactions,
liquid crystals in restricted geometries with help of both mo-eading to different alignments, and are compared with the
lecular simulationg3—15 and density functional theories bulk transition.
[16—22 or combinations of both23—-25. Often used inter-
action potentials are the Gay-Berng6,27 potential Il. MODEL SYSTEM

4-6,8,11, hard particles with cylindrical symmetr . . . .
%10 16 2?3]2$ or a ?(ind of LebwohIYLasher{zs] ymodel y We consider a fluid composed @ffectively) axisymmet-
[3 9 12’ 13; 15 ric particles whose orientation is characterized by a unit vec-

or U parallel to the figure axis. The interaction potential
etween two particles located at the positiopgndr, with

d. orientations; and 0, depends on the three vectarsr,
ol 04, andl,. The interaction energy for two fluid par-
icles is written ag§29]

For a recently presented simple interaction potential, th
bulk phase behavior was determined analyticd®@]. In
Monte Carlo simulation$30] these results were confirme
A nematic phase was observed and the isotropic-nemati
phase transition was studied in greater detail for some dert
sities. Here, further Monte Carlo studies of this model are N 12— I
carried out. Simulations with confining flat walls reveal the Cyr(r.0y,0p) =4{r=r 1AW (0,01 (D)
influence of different kinds of substrates on the phase behayynhere r=r7. Standard Lennard-JonékJ) units are used,
ior and alignment effects of this model liquid crystal. We US€j o the lengttr and the energyb are expressed in LJ “di-

two different kinds of substrates. The first one is modeled, yater ” and potential depth, respectivéBL]. The anisot-
without an orientation dependent wall-particle interactionropy in,the attractive term is ’described by

which results in homeotropic alignment. The second is mod-
eled such that both walls prefer homogeneous planar align-w (¢,a, ,0,) =5, P,(0; - () + 5& 5[ Po(ly - F) + Py(0y-7)].
ment, but with 90 degrees difference between the azimuthal

2
Here B(x)=(3x?—1)/2 is the second Legendre polynomial.
*Electronic address: haiko@physik.tu-berlin.de Note that(; is equivalent to—-(;, so the head-tail symmetry
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is satisfied. In the calculations the potential was cut off at gateral pressureP|. If P is the pressure tensor, the?
be £;=0.04 ande,=—0.08. In this case the side-side con- wa|is, In bulk simulations for isotropic phases, the scalar
figuration is energetically favored, since the side-side interprassyrep =1 (P, + P,,+P,,) equals the lateral pressure
; ; ide-sid . ' X
action potential ®F(r) =®dy¢(e,r,e,,e,) has a much p, . For an observabld which depends on the configuration
deﬁﬁg minimum than, for example, the end-end potentiahnly, i.e., A=A(I"®), we can obtain average values in the
dErren) =dy(er e 8). NPT ensemble through
We consider our system both in a bulk state and with
walls forming a confined geometry. The boundary conditions
for our system without walls are periodic in all three direc- (A)~ MM
. . . . . 2 1i=M;+1
tions. This means, that a particle at the margin of the simu-
lation box can interact with a particle at the opposite side. The set of configuration&l'®}, _,

) . . M. is produced as fol-
In simulations with walls we have to change the boundaryI ) s’ al 2. h hich i
condition in one direction. If the simulation box has the 'OWS according to Metropolis’ algorithni34], which is

edgesd,, d,, andd,, we place two flat walls at the planes adapted for the constant pressure enserfBie35: At the
2=27,,=+d,/2 parallel to thexy plane. Therefore we do not beginning we randomly choose a starting configurali§nn
apply periodic boundary conditions in tiedirection. The @ box of volumeVv,=d,d,d,. The z length must bed,
walls consist of particles interacting with fluid particles with =Zw=2"2w=1. For a given particle we randomly change
orientationd at distantr according to a Lennard-Jones type elther.the onentanop or the position. Then we calculate the
potential ¢b;,,(r,0) = 4[r ~—r g, (01)] with the anchoring e_lssom_ated c_hange in gnergyl?mt and accept the new con-
function g, (0). It is chosen to model the desired alignment. figuration with probability mifil,exp(-A®,/kgT)]. The
For g,,(0) = (0-4,)2 we get homogeneous planar alignment@nge qf the changes_ in positions is adjusted durllng'the simu-
at the wall with orientations parallel to the unit vecy, Iatlor_13 in order to gain fast convergence to e.qwhbnum..The
for g,,(0) = 1 we get homeotropic alignment. A twisted nem- rotation angle range for the change of the orientations is set
w . . . . .
atic cell can be modeled using the anchoring functiond® 7/10. The particles are organized in boxes and neighbor
9,(0) =02 andg,(0) = 2. The fluid-wall potential is cut off lists to save time for calculating particle distances. Neighbor
atl distanéer :32 v lists must be updated in certain intervals on account of par-
Now we Ccould put particles on a lattice in the solid wall ticle diffusion. After all particles have been taken into ac-
(discrete wallg and let our particles interact pairwise with count we try to change the volume. Thereby we keep the

PR ; distanced, between the walls constant and only chaiige
them[8]. Another possibility is much easier and handles the -z .
walls continously[4,32,33. We follow the latter way and aﬂgvdy with thengﬁme random fa?‘_@fe (0'995’1'_005)' 1.e.,
assume a smooth wall with a particle density @f. By dy"=cdy andd,""=cd,. The positions of the fluid particles

integrating the wall-fluid potential over the wall we get are scaled accordinglk"™"=cx andy"*"=cy. The accep-
tance probability of this volume chandeV=V o~ Voq iS

given through

M
A(TY). ()

Dy (r,0) :oww¢fw(”r - rw” vﬂ)dzrw

N
min[ 1,( Vnew) exp( — w) ] : (6)
4 3 B Voud KgT
:prw( E(Z_Zw) 10_(2_ zy) 4gw(0) ,
The factor ¥pey/ Vo)V =c?" comes from substitutions;,
(3) :=r;,/d, and d3rj=Vdasj in the partition function which
has to be done in order to handle the scaling of the positions
wherer =(x,y,2) is the position of the fluid particle. [36,37). Without this substitution the positions would implic-
itly depend on the other integration variable, namely, the
Ill. DETAILS ON THE NPT MONTE CARLO METHOD volume. The change of potential enerdyb,,, must be cal-
FOR THE CONFINED FLUID culated with some caution. The cut off at distamgeshould

o o ) not lead to the artificial effect that one pair of particles may
A system consisting oN uniaxial particles, where the pe considered for one volume but not for the ottteigges
fluid-fluid pair potential is given by Eq1) and the fluid-wall e Therefore, we cut off each pair interaction according to

potential is given by Eq(3), is considered. _ .. acommon criterion 0.5+ new) >T . Finally we arrive at
- The total potential energy for a configuratiol® 5 ney configuratiod™s at volumeV,. After M, Monte Carlo
=(ry,0, .. .1y, 0y) is given as steps of this kind we find that our observables fluctuate

around some average value. Typical numbers in our simula-
tions wereM ;=10 000 andM,=100000 with higher num-
bers in the vicinity of phase transitions.
(4) Quantities calculated are the internal enegyhe energy
fluctuationAE as well as the nematic and smectic order pa-
whererj;=r;—r;. In the simulations up td&N=1000 par- rametersS, andg,, respectively. For the internal energy one
ticles were studied at a given temperatdreand a given has

N N 2
q)totzz 2 q)ff(rij10i10j)+vvzl Dy(ry,0p) |,

j=1li=j+1
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E=3NKkgT+ (D). (@)
The fluctuation of the internal energy can be cast as
AE= (%) —(Po?, ®
becauseéN andT are fixed in our simulations.

A. Nematic order parameter

Nematic order is characterized by the so-called Maier-

Saupe order paramet8s}'S [38—40 which is the largest ei-
genvalue of the alignment tensg¥l] S:=3(Q), where

for a homogeneous system. The symbol a, %(am-l-a )
-3 am\é denotes the symmetrlc traceless part of a tensor

. For 1s0troplc phases S 5 vanish. In our Monte Carlo
s1mulat10ns an isotropic phase is typically characterized by a
nematic order parameter below 0.1. The nematic order pa-
rameter does not completely vanish due to the finite size of
the s1mulat10n system. Perfect alignment @;=n corresponds
to §¥ 2 =1. For the nematic phase we expect typical values
of § 12” $20.4. For uniaxial phases S, is equal to the quantity

=< \@Qn>,

which we use as nematic order parameter.

(10

B. Smectic order parameter
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FIG. 1. N=800 particle at temperatur€=1.4. (a) Average
pressure for &V T run atV=1000. (b) Average volume for NPT

run atP=3.0168.
< > 12

This was also use2] as a positional order parameter, mo-
tivated through the static structure factor. The remaining

Eex

27TIZ>

A smectic order parameter should be sensitive to the forProblem of achieving the periodicity can be solved by just
mation of layers. Of course, layers may also occur in soligcalculatinge;(d) in the expected range dfand then taking

phases. Any periodicity of the particle densigyr) should

the maximum[43]. Here the range for the expected period-

lead to a high smectic order parameter. Usually, the smectiiity is chosen to bel€[0.7,1.3.

order parametep is the first coefficient of the Fourier sum

of the particle density

2wkn-r
- ¢) (12)

e(r=go+ >, QkC05< 5
k=1

The periodicityd, the layer normah and the offsety are

unknown. For¢=0 one layer should lie in the origin of the
coordinate system. For a smecficphase the layer normal
should be equal to the director and can therefore be extracted

from the alignment tensor. But the dependencygfonn is

very critical so that these results are not very satisfactory. whereF;;=—

C. Test of algorithm

To test ourNPT algorithm in the bulk we first simulate
N=800 particles at temperatufe=1.4 in a cubic box of
fixed volumeV=10° (NVT ensemblg The result is shown
in Fig. 1(a). The average pressure tensor is calculated with
help of

Nk
PYH=

Too1
R DIRGEH (13
|

i<i

alar®¢¢(rj—r;,0;,G;) is the force acting on

In the case of walls parallel to they plane, however, we particlej due to particld. In the NV T simulation the scalar

already know the expected layer normat e,. Next we can

pressureP is found to beP~3.02. Now we run a simulation

get rid of the offset¢ by calculating the Fourier coefficient with variable volume and fixed pressue=3.02. This re-
of the complex exponential function rather than that of thesults in a average volume &f~1000.4. The constant pres-

cosine. Finally we have

sure simulations with a desired lateral pressBjeare ex-
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pected to fulfill P,,=P,,=P|. The component,, may 0.95 ;—
differ in the inhomogeneous system with walls. For all our 0.9 -
NPT calculations we found this expectation to be fulfilled in )
the limit of accuracy, which can be estimated from fluctua- 085 |
tions of P,, and Py, .
= 0.8
D. Boundaries 075 |
Because of the wall influence the system is no longer
. 0.7 r
homogeneous. Therefore we have to define some local ob-
servables. For example, we define the denpitg) or the 0.65 :
local order parametes,(z) in the following way. The box is 0 80-8 0.85 09 0.95 1
uniformly cut into layers parallel to the wall. Such a layer B =T
may typically have the widthz= 0.2 in Lennard-Jones units 0.7 ¢
leading to a layer volume of, =V(Az/d,). Then we count 0.6 ¢
the particles for each lay&i(z), which leads after averaging 05 1
to the density profile(z) =(N(z)/V\, ). The particles in each A 04
layer can be used to define a local alignment ter(3(x). 03 |
We average its norm to get 02 | \
3 01 | S
Sz(Z):< §|Q<z>||>. 0 - - -
0.8 0.85 09 0.95 1

In order to compare the results for the bulk system with these T

numbers for the confined systems we should be able to mea- FIG. 2. Isotropic-nematic phase transition through cooling for
sure the bulk density even in the simulation box with walls.different isobars. The number densityand the nematic order pa-
We do this by taking into account for the density measurefameterS, are plotted vs the temperatutefor different pressure
ment only particles near the middle of the simulation box,valuesP.

which is far from the walls. The relevant region is chosen to

be half of the whole box volume. pending on the pressure, at which the cooling procedure was
performed. We also simulated the heating procedures back
IV. RESULTS into the isotropic phase and were not able to observe any

hysteresis in the accuracy of temperature steps we chose,
even if we loweredAT to 0.001. This can be understood
because of the weakness of the first order phase transition,
which is typical for thelN transition[44]. The main result of
these simulations is that for lower pressure values we get a
lower Ty -

We gain deeper insight into the phase behavior by study-
ing, in addition, an isotherm. By choosifig=1 we will have

A. The bulk system to compress our system quite strongly to force a transition to

For the bulk system it would not be necessary to restricen anisotropic phase. For this temperature we will present
the NPT volume changes to theandy directions. However similar isotherms in a restricted geometry and compare them
we want to have the bulk behavior only as a reference for thavith the bulk results in order to gain insight into the influ-
restricted geometries and therefore we perform the bullence of confinement on the phase behavior. Some results for
simulations in the same manner as the simulations withthe isothermT=1 are shown in Fig. 3. We start with an
walls, namely, let the volume breath only in tlheandy isotropic fluid at low pressur®;=0.1. NPT runs for which
directions. Py=0 are notoriously difficult on account of a dramatic in-

The isotropic-nematiclN) phase transition is first stud- crease of volume fluctuations Bsgoes to zero. The nematic
ied for different isobars with pressure valuBg=0.1, P,  order parameteB, as well as the smectic order parameger
=0.3, P=0.5, Pj=0.7, andPj=1.0. Each simulation was are small in the isotropic phase, that is, lower than 0.1 for the
done withN= 1000 particles in a box with length,=15 and finite-size system we observe. The average values for small
variabled, andd, . In Fig. 2 we show the density and nem- pressured® <1 confirm the results from the isobaric calcu-
atic order parameter as functions of temperature, which waktions forT=1 (Fig. 2). The isotropic-nematic phase tran-
lowered until one enters the regime of nematic phases. Dussition takes place aP,y=1.7, indicated through a peak in
ing a cooling series we start a new r(with a slightly low-  the energy fluctuatiod E, which is proportional to the heat
ered temperatujewith an initial configuration and volume capacity. The phase transition is accompanied by a hardly
taken from the end of the former simulation. The transitionvisible jump in the number density around-0.85 and by a
temperaturer,y is found to be between 0.88 and 0.96 de-remarkable jump in the nematic order param&gr 0.4. At

Monte Carlo results from th& PT simulations will be
presented for the bulk and the confined systaith homeo-
tropic anchoring and with twisted homogeneous planar an
choring. For all simulations the length of the simulation
box is set tod,=15 and the number of particles td
=1000.
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order parameter

FIG. 4. Snapshots of bulk configurationsRjt=6 (top), where
the system is in a nematic phase andPat 8 (bottom), where the
system is in a solid state.

021 P=3. We observe a strong hysteresis due to solidification,

reflecting a pronounced first-order phase transition. The
solid-nematic and nematic-isotropic transitions occur almost
at the same pressure arouRg-=1.4.

B. The confined system with homeotropic alignment

To study the effect of confinement on the phase transitions
observed, we now restrict the geometry by two flat walls
(slab geometry We begin by focusing on particle-wall in-
teractions favoring homeotropic alignment. This can be mod-

FIG._S. IsothermT=_1 for the bulk system. For compressiqn and gled by setting the anchoring functiog(0)=1 thereby
expansion processésdicated by the arrowshe number densit,  ejiminating the orientation depending part in the interaction
the order parameterS, and ¢, and the energy fluctuatiodE are  tential(3). Figure 5 shows the particle density, order pa-
plotted as functions of the desired pressije rameters and energy fluctuation for the corresponding iso-

thermT=1. We again start with compressing the system in
Pns= 7.4 the system enters the solid state. This phase trarthe isotropic phase. The smectic order parameter increases
sition manifests itself clearly in the peak ikE and a dis- already for small pressures, but only slightly, indicating the
continuity inn. The order parameters jump to higher valuesformation of layers(see Fig. 6. The IN phase transition is
too. The smectic order parametef~0.3 indicates an in- smoother now and takes place Rfy=1.5, that is, for a
crease in positional order. Snapshots of a configuration in thelightly lower pressurd®, compared with the bulk system.
nematic phase & =6, whereS,=0.74 and a configuration For the slab geometry it is easier to form a nematic phase,
in the solid state aP =8, are shown in Fig. 4. In the solid because at least one layer is formed very eade Fig. 7. In
state configuration, there are no layers perpendicular ta thethis layer the particle-particle interaction favors a side-side
direction. Becaus@; is calculated assuming formation of configuration(all G; paralle), resulting in homeotropic align-
layers perpendicular tg, its value remains small compared ment. A high nematic order in the first layer near the wall is
to 1.0. At Pj=12 compression terminates and pressure iknown for Gay-Berne particles told]. Therefore, the an-
subsequently released in small steps. The system remains ¢horing mechanism is responsible for the shifiéd transi-
the solid state even for small pressuresPAt=3 we observe tion. During this transition we observe a weak density jump
a small increase in order where the pressure increases. Thagsid large peak in the energy fluctuation. Solidification takes
can be explained as a reorganization of crystal structureglace atPys=2.5, which is much lower than in the bulk.
which may happen in finite size and finite “time” Monte Layering turns out to be quite pronounced and causes posi-
Carlo runs. Indicative for this is also the density jump aroundtional order. The mere presence of a surface may, under fa-
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2 4 6 8 FIG. 7. Snapshots of configurationsRj= 1.5 (top), where the
system enters the nematic phase an&at6 (bottom), where the
system is in a solid state.
vorable geometric condition§.e., suitable choice ofl,),

= support solidification ifd, is close to, such that, an un-

strained solid can actually form. The nematic-solid phase
transition is accompanied by a jump of the particle density
and the order parameters. The crystal structure can be seen
from two different perspectives in the snapshots. In Fig. 7
. . . (bottom the perspective is chosen such that the crystalline
2 4 6 8 structure can be viewed in the middle of the cell. Rotations
P around thez axis would reveal the long-ranged positional
order in the regions near the walls. So, the crystal is not
FIG. 5. IsotherniT =1 for the homeotropic aligned system. For perfect, but has some dislocations. To analyze the crystal
compression and expansion procedgedicated by the arrowshe  structure in more detail, we focus on the second and third
bulk number densityn, the order parameterS, and ¢, and the  |ayer near the substrate< —7.5) for the finalPj=6 con-
energy fluctuatiolAE are plotted as functions of the pressie

4t o . |
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FIG. 6. Simulations with homeotropic alignment. Density pro-  FIG. 8. Snapshot of layer configurationsRt=6. The empty
files for P|=0.1, P|=1.0, andP|=2.4. The box indicates the re- circles are particles in the second layer, the filled circles are those of
gion, where the bulk particle density is measured. the third layer.
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FIG. 10. Local nematic order paramey(z) for different pres-
sures. AtP|=3 the system is in a nematic phase.

different for the two walls, namelg, (Q) = 05 for the wall at
z=—-75 andgz(0)=0§ for the wall atz=7.5. This will
favor homogeneous planar alignment at the walls with a di-
rector field, aligned along the axis atz=—7.5 and along
they axis atz=7.5. Therefore the director field is forced to
be inhomogeneous. In the nematic phase, the simulation sce-
: : : nario will be equivalent to a twisted nematic cell without
- external fields. For such optical applications anchoring ef-
fects are very importaril5,24). In Fig. 9, again data for the
isothermT=1 are given, where the system is compressed
02} T from P|=0.1 toP=8 and then expanded back ®y=0.1.
4 During this procedure, isotropic, nematic, and solid phases
are found as before. For low pressuigg<P,y=1.5 the
system is in an isotropic phase. The order parameters in-
01 U T crease with increasing pressure for the same reason as be-
%-«r/4 fore. At P;y= 1.5 the peak in the energy fluctuation indicates
a transition in the nematic phase. Here, the nematic order
parameter seems to remain quite small. The inhomogeneity
of the director field keeps this global order parameter small.
To find out the real value of the nematic order parameter, we
consider local values db,(z), as shown in Fig. 10. In the

cated by the arrowsthe bulk number density, the order param- isotropic phase & =0.2 the nematic order parameter turns

etersS, and ¢, and the energy fluctuatiohE are plotted as func- out to be quite I_argeéalr_nost 0.3. This is du? to the finite
tions of the pressure . extent of layers into which the box was cut in order to mea-

sure local values. In average, each nonempty layer contains
figuration (Fig. 8). The layers are found to consist of a two- about 15 particles. In the nematic phas®gt 3, where the
dimensional hexagonal structure. For Gay-Berne particles i§lobal order parameter was lower than 0.5, we actually find
is already known that the first |ayer forms a tWO'dimenSionaI|oca| Va|ues OSz(Z)~07 Th|s number may be even |arger
lattice even in the bulk nematic phase. It is of importance forgy |ayers in the immediate vicinity of the walls. ARy
the onset of orientational ord¢8]. =4.6 solidification takes place, accompanied by a peak in

For pressure®)>5 we find that the smectic order param- energy fluctuation and jumps of the particle density and
eter is changing its value from time to time. This is |nd|cat|vethe smectic order parameter. Solidification pressure is be-

of a n_oneqwhbrlum situation, where the crystal structure '®iween those observed in the bulk and in the homeotropically
organizes spontaneously. &=8 we start expanding our

Svstem. observing again hvsteresis. In the expansion rc)Cealigned cell. It is more difficult to achieve long-ranged posi-
y T 'g ag y : P P tidnal order if the orientational order is only short ranged due
the nematic regime is quite narrow betweBp=1.5 and

LS A to the inhomogeneous director field. During some reorgani-
Py=1.2, which is very similar to the bulk. zation processges the crystal eventually regches a confci]gura-
] ) ) tion, where even the global nematic order parameter has val-
C. The confined system with twisted homogeneous uesS,>0.6. A snapshot of such a configuraticat P/=6)
planar alignment together with one of the nematic phase is shown in Fig. 11.
Finally, we use the slab geometry again, but with differentThe surprisingly high global nematic order parameggr
anchoring. The anchoring functions are now chosen to be=0.7 can be rationalized as follows: In this crystal the right

order parameter

2 4 6 8
Py

FIG. 9. IsothermT=1 for the twisted homogeneous planar
aligned system. For compression and expansion procésstis
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W ! .l\'\ ‘\‘ vy ¢ A P TABLE I. Comparison of phase transition pressures of the iso-
;‘ ,!0‘\’\ A l;‘, ,\‘:%,', ",:“: 1 thermT=1 for different kind of geometries.
S &% [%4
i \“:\-%-ﬁv' Ny g Ees E—
34 % PER I L B S . wiste
‘* ] ) ),,.;'4“ ‘-;_.‘et 3‘i % Homeotropic homogeneous planar
YA 2 \’4“_{\:{ ‘-:,Q,‘ AR Bulk anchoring anchoring
o ), de _
A 'g o W R e i P 17 15 15
'k o \-T RS 5 é: IN - . )
§ }!‘ Sh D T e s Pxs 7.4 25 46
Ee it g P 1.5 1.5
it N R e UG v L -
Pui 1.3 1.2
P 1.2
£ o Sl
RPFrzoassnsssiig
e BBy > & w
“tﬂ 1«3‘.«-;«, s::*':
B -
*,‘g:é;:ﬁ:{.’.f?:::: V. CONCLUDING REMARKS
=R 7 ° . . .
' i;f ;'.: Zes = a2 We observed compression and expansion processes in
i peeioseravys { y 5 constant pressure Monte Carlo simulations for a bulk system
P PR EY adqga P Lo . . . . . )
i{ edlawgucssarny _{ and in slab geometries with different anchoring mechanisms
Q ;::.‘:';: Sovnere $ at the solid walls. For a summary, we compile in Table |
7. r A el e 3 pressures at which phase transitions occuif &tl. In all

_ ) three cases the pressure regime for the nematic phase is very
FIG. 11. Snapshots of configurationsft=3 (top), where the  nparrow in the expansion process or even vanigses Figs.
system is in a nematic phase andRjt=6 (bottom), where the 3 5 and 9. This is because of a large hysteresis, which is
system is in a solid state. typical for first-order phase transitions. The solid state here is
wall has gained control over almost the whole cell There Very stable. The confinement of flat walls forces the phase
fore, apart from the first three layers near the left wall, the;ran:g;%?ﬁg;tg)en S;r:]:jtjedm:rt)irr?pa;'eh(ijs\,\gtahn tgz Bﬁg(érgfgfg"gg
director is homogeneous. Because of a spontaneous break ga{use of the positional ordg.r that the wall brings into the
Z)érrgmzttg;&u; esc; gt)é:: e_pﬁ]iP;t \é\l;rl]l’ z;tlss g nbc eh O;;ngnr?ﬁ CE%nlslngystem. A first layer beside thé wall is formed very early and
where the local azimuthal angle(z) of the directorn(z), in this layer it is easy for the system to achieve highly or-

defined through tarf) =n, /ny, is plotted for different pres-

sures. A value ofp=90° belongs to the left wall az= o0s |
— 7.5, where the particles are anchored alongxthais, and
¢=0° belongs to the anchoring at the right wall. In nematic
phases(see P|=2 or P|=4) we find a linear tilt, so the 06 I
director changes smoothly from one side to the other. Linear o
director profiles are known to occur for a lattice model liquid ? o4t
crystal confined in a hybrid ceflL3]. For P=6 the director
jumps near the left wall and remains homogeneous other- o2l ]
wise. Expanding the simulation box in small pressure steps ey ) bulk ——
back to the isotropic phase we find again a large hysteresis. wisted h°m°geﬁf,f§eso}::§;fi ——
This time, we observe a single solid-isotropic transition at 00 2 4 p s
Ps=1.2. During this transition the peak of the energy fluc- : - -
tuation as well as the jump in the particle density are very 08 | e RO
sharp. The nematic phase only occurs during the compres- e
sion process, such that we have a monotropic nematic phase. 06 - ;“"'* ]
ol = oal } ]
i oo
02t a,a«-x*fﬁﬁ*’“‘"" ) J
=3 _45 x*"”,,,-v
0 . . .
_ 0 2 4 6 8
| Py
FIG. 13. Comparison of nematicS§)) and smectic ¢,) order
z parameters as function of the pressure for the isothEed and
FIG. 12. Twist of azimuthal angle of the directorn(z) along  different kind of geometries. Only the compression process is
the cell for different pressures. shown.
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dered states. Figure 13 shows the nematic and smectic ordgonal diffusion and to compare it with results inferred from
parameter for the compression process each in separate piMR experiment$45]. Nonequilibrium molecular dynamics
tures for better comparison. The isotropic-nematic transitiorsimulations of the viscous properties as calculated previously
is only slightly shifted by the walls towards smaller pres-for ellipsoids and Gay-Berne particl¢46] should be per-
sures, the nematic-solid transition is clearly shifted, espeformed for the model liquid crystal used here. Furthermore,

cially for the homeotropic alignment. In the case of twistedan extension of the present study to fluids of Janus particles
homogeneous planar alignment we found a linear relationf47] is desirable.

ship between the azimuthal angle of the director andzthe

coordinate in the simulation baiig. 12). A detailed analy-

sis of the rotating director alon_g the cell including estimates ACKNOWLEDGMENTS
for the twist elastic constant will be presented elsewhere.
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and the behavior of the liquid crystal in the vicinity of walls Sonderforschungsbereich 448 “Mesoskopisch strukturierte
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