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Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems
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We investigate the applicability of a mesoscale modeling approach, lattice Boltzmann simulations, to the
problem of contact line motion in one and two component, two phase fluids. In this, the first of two papers, we
consider liquid-gas systems. Careful implementation of the thermodynamic boundary condition allows us to fix
the static contact angle in the simulations. We then consider the behavior of a sheared interface. We show that
the contact line singularity is overcome by evaporation or condensation near the contact line which is driven by
the curvature of the diffuse interface. An analytic approximation is derived for the angular position of a sheared
interface.
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I. INTRODUCTION

When a droplet comes into contact with a solid surfa
capillary forces drive it towards equilibrium. The equilibriu
state may be a droplet with a finite contact angle~known as
partial wetting! or a thin film covering the surface~known as
complete wetting! @1#. The process of the droplet reachin
equilibrium is known as spreading and corresponds to
three phase line, or contact line between gas, liquid,
solid, moving over the surface. Wetting and spreading p
nomena are important to many industrial processes whe
thin coating of a given substance is required for a spec
use~e.g., a lubricant, a paint, or ink! or where wetting prop-
erties may inhibit or enhance a desired fluid flow~e.g., ex-
tracting oil from porous media, the design of microfluid
devices!.

The equilibrium properties of partial wetting have be
understood for many years. The contact angle can be ca
lated from a balance of forces at the contact line. The surf
tensions between pairs of phases balance to determine
contact angleuw via Young’s law

cosuw5
ssg2ssl

s
, ~1!

where s, ssg, and ssl are the liquid-gas, solid-gas, an
solid-liquid surface tensions@2#.

The nonequilibrium situation of a droplet moving over
surface~or a solid object being withdrawn from a liquid! is
not so well understood. A fluid mechanical treatment o
contact line moving relative to a solid surface, under
usual no slip boundary conditions for the fluid velocit
shows that an infinite drag force is exerted upon the so
the solid is thus dragged with the fluid and no movemen
the contact line, relative to the solid, is permitted@3–5#.

Since the posing of this problem there have been m
ways suggested to overcome the classical paradox. One
proach is to relax the no-slip condition at the surface wit
a distances, the slip length, of the contact line. The Navie
Stokes equations are solved by means of a matc
asymptotic expansion in two small parameters@6–9#. For a
droplet of viscosityh, macroscopic radiusR, surface tension
1063-651X/2004/69~3!/031602~14!/$22.50 69 0316
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s, moving relative to a surface with velocityU, the two
small parameters areCa(5hU/s), called the capillary
number, ande(5s/R). The inertial terms of the Navier
Stokes equations are neglected~the slow flow approxima-
tion! and the resulting Stokes equations are solved wit
either two or three regions. The outer solution, valid at d
tances far from the contact line, is matched to the inner
lution, which is valid at distances of orders from the contact
line. The matching procedure may also require an additio
region, known as the intermediate region. The interfa
shapes and flow fields predicted have been confirmed
experiments at length scales of order 1026 m @10–15#. How-
ever, while these solutions give the interface shapes and
fields on macroscopic scales, the slip introduced is phen
enological and the physics in the immediate vicinity of t
contact line is no clearer. Furthermore, the macroscopic
dictions of different slip models are the same@5#, meaning
that no macroscopic measurement can be used to infer
croscopic properties.

Molecular dynamics simulations have been used to pr
the immediate vicinity of the contact line@16–18# and to
evaluate the no-slip boundary condition@19–21#. These stud-
ies suggest that some slip of fluid molecules takes place
variety of situations. Recent work by Denniston and Robb
@20# examines the flow near solid walls of a miscible bina
fluid with concentration gradients driving diffusion. They r
port a breakdown in one slip model which is often used,
which the difference between the fluid and solid velocities
proportional to the viscous shear stress at the contact p
The results of these molecular dynamics simulations offe
possible explanation of contact line motion, namely, that
no-slip condition breaks down at very small distance fro
the contact line.

Alternative explanations of contact line motion exi
which do not rely on the breakdown of the no slip conditio
Effective slip of the interface relative to the wall may b
generated by mechanisms missing from sharp interface tr
ments and recently diffuse interface models have been
plied to the contact line problem@22–24#. Examining a one
component system, Seppecher found that curvature of
interface near the contact line leads to mass transport ac
©2004 The American Physical Society02-1
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the interface@22#. In a binary fluid system, Jacqmin@23# and
Chenet al. @24# demonstrated that diffusive transport of flu
can lead to effective slip of the interface at the contact li

With the advent of mesoscopic simulation methods
seems timely that a mesoscale modeling method be app
to the problem of contact line motion to gain new persp
tives on solutions offered in the literature. The first steps
applying lattice Boltzmann to this problem have already
peared@25–27#. Grubert and Yeomans@25# used a binary
lattice Boltzmann approach to measure contact angles
small droplets. More recently Desplatet al. @26# and Briant
et al. @27# described how wetting boundary conditions m
be implemented in the lattice Boltzmann method.

The aim of this and the following paper is to apply th
lattice Boltzmann approach to modeling partial wetting a
contact line motion in one and two component, two pha
fluids. Thus we elucidate the mechanisms available for c
tact line motion in diffuse interface treatments subject
strict no slip boundary conditions on the fluid velocity.
this paper, we examine the contact line motion in a o
component system, showing how interfacial curvature dri
evaporation or condensation near the contact line. In a c
panion paper we consider binary systems, where a dyna
length scale emerges which controls diffusion near the c
tact line. In contradiction to the work of Chenet al. @24# we
find that diffusive effects do not increase as the contact
speed is reduced.

This paper breaks down as follows. In Sec. II we brie
present the lattice Boltzmann scheme used. In Sec. III
describe the boundary conditions needed to model wet
properties within the lattice Boltzmann framework and t
shear boundary conditions used for the velocity field. Sec
IV presents simulation results for sheared liquid-gas syst
which show that the velocity perpendicular to the liquid-g
interface is proportional to its radius of curvature. Section
presents a simple scaling argument for the constant of
portionality. In Sec. VI we derive a partial differential equ
tion for the angular position of a sheared interface and he
discuss the emergence of a dynamic contact angle. We c
in Sec. VII with a discussion of the results.

II. THE LATTICE BOLTZMANN MODEL

In this section we review the free energy approach for
lattice Boltzmann method, first introduced by Swiftet al. in
1995 @28#. We describe the basic scheme in Sec. II A
showing the lattice Boltzmann equation used, detailing
collision term and equilibrium distribution, presenting th
Navier-Stokes level equations and finally introducing t
collision and streaming steps needed for numerical comp
tion. In Sec. II B we show how the free energy for the liqui
gas system can model two bulk phases at different dens
and interfaces of finite width between the phases. We de
the precise form of the free energy used and calculate
surface tension of the interfaces.

A. Free energy lattice Boltzmann

The lattice Boltzmann method simulates the time evo
tion of density functionsf s i(x,t) which represent the mas
03160
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density at positionx and timet moving with velocityes i .
Both time and space are discretized such that in a timeDt the
mass with velocityes i advects to a neighboring lattice sit
x1es iDt. In this paper we use a two-dimensional squa
lattice with Nx andNy lattice sites in thex andy directions.
The lattice sites are labeled by coordinates (i , j ) with i
51,2,3, . . . ,Nx and j 51,2,3, . . . ,Ny . The lattice spacing is
Dx and we use a square lattice with nine velocity vect
~the so-called D2Q9 lattice!. The velocity vectors are labele
by the subscripts5es i

2 /c2, where c5Dx/Dt, the lattice
speed. Fors51 and 2 the labeli runs from 1 to 4~this label
i is distinct from the coordinatei as clear from the context!.
The zero speed vector is labelede0,0. Physical quantities are
related to moments off s i . The fluid densityn and velocityu
are defined at each site by

(
s,i

f s i5n, ~2!

(
s,i

f s ies ia5nua , ~3!

wherees ia is the a component of the vectores i and a is
either of the lattice directions,x or y.

The distributionsf s i are evolved according to a lattic
Boltzmann equation assuming a single relaxation time
proximation

f s i~x1es iDt,t1Dt !2 f s i~x,t !52
1

t f
~ f s i2 f s i

eq!, ~4!

wheret f is the nondimensional relaxation time andf s i
eq is an

equilibrium distribution function. The right-hand side of E
~4! is the Bhatnagar-Gross-Krook collision operator@29#
which was first proposed for use in lattice Boltzmann mod
by Qianet al. @30#. This form of the collision operator rep
resents a simplification over early models and dictates
f s i relaxes towards the local equilibrium distributionf s i

eq

with a single characteristic timet f . The equilibrium distri-
bution determines the physics inherent in the simulation
power series in the local velocity is assumed@31#

f s i
eq5As1Bses iaua1Csu21Dses iaes ibuaub

1Gsabes iaes ib , ~5!

where summation over repeated Cartesian indices is un
stood.

The coefficientsAs , Bs , Cs , Ds , andGsab are deter-
mined by placing constraints on the moments off s i

eq . In or-
der that the collision term in Eq.~4! conserves mass an
momentum the first two moments off s i

eq are constrained by

(
s,i

f s i
eq5n, ~6!

(
s,i

f s i
eqes ia5nua . ~7!
2-2
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The next moment off s i
eq is chosen such that the con

tinuum macroscopic equations approximated by the ev
tion scheme~4! correctly describe the hydrodynamics of
one component, nonideal fluid. This gives

(
s,i

f s i
eqes iaes ib5Pab1nuaub1nvisc@ua]b~n!1ub]a~n!

1ug]g~n!dab#, ~8!

wherenvisc5c2(t f21/2)Dt/3 is the kinematic shear viscos
ity and Pab is the pressure tensor. The first formulation
the model omitted the third term in Eq.~8! and was not
Galilean invariant. Holdychet al. @32# showed that the addi
tion of this term led to any non-Galilean invariant term
being of the same order as finite lattice corrections to
tio
rd

in
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po
th

e
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Navier-Stokes equations. In order to fully constrain the c
efficientsAs , Bs , Cs , Ds , andGsab a fourth condition is
needed@33#, which is

(
s i

f s i
eqes iaes ibes ig5

nc2

3
~uadbg1ubdag1ugdab!.

~9!

The values of the coefficients can be determined by a w
established procedure@33#. For completeness we give th
coefficients in Appendix A.

The analysis of Holdychet al. in Ref. @32# shows that the
evolution scheme~4! approximates the continuity equation

] tn1]a~nua!50 ~10!

and the following Navier-Stokes level equation:
] t~nua!1]b~nuaub!52]bPab1nvisc]b@n$]bua1]aub1dab]gug%#2
3nvisc

c2
]b@ua]gPbg1ub]gPag1]g~nuaubug!#

2
3nvisc

c2
]b@~]nPab!]g~nug!#2

3nvisc
2

c2
]b@ua]g~ub]gn1ug]bn1dgbul]ln!#

2
3nvisc

2

c2
]b@ub]g~ua]gn1ug]an1dagul]ln!#1

3nvisc
2

c2
]b@] t~ua]bn1ub]an1dabul]ln!#.

~11!
ond
n-

d in

s

-
-

The top line is the compressible Navier-Stokes equa
while the subsequent lines are error terms, which are of o
Mach number squared.

For the purposes of computation the evolution Eq.~4! is
split into two distinct steps, which can be thought of as
collision step and a streaming step. To facilitate this we
troduce~purely for numeric convenience! a new field at each
lattice sitef s i* (x,t), so that the collision step is defined by

f s i* ~x,t !5 f s i~x,t !1
1

t f
~ f s i

eq2 f s i ! ~12!

and the streaming step by

f s i~x,t1Dt !5 f s i* ~x2es iDt,t !. ~13!

One lattice Boltzmann step is considered to be one collis
step and one streaming step at each site.

We have, then, described a framework for a one com
nent free energy lattice Boltzmann. The properties of
fluid are determined by the choice of pressure tensorPab
which we now go on to describe.

B. Thermodynamics of the fluid

The equilibrium properties of a system with no surfac
can be described by a Landau free energy functional
n
er

a
-

n

-
e

s

Cb5E dVFc~T,n!1
k

2
~]an!2G ~14!

subject to the constraint

M5E dVn, ~15!

wherec(T,n) is the free energy density of bulk phases,k is
a constant related to the surface tension,M is the total mass
of fluid, and the integrations are over all space. The sec
term in Eq.~14! gives the free energy contribution from de
sity gradients in an inhomogeneous system.

The free energy density can be conveniently expresse
terms of an excess free energy densityW(n,T) via

c~T,n!5W~n,T!1mbn2pb , ~16!

wheremb(5]ncun5nb
) is the bulk chemical potential andpb

is the bulk pressure. We chooseW to be the simplest exces
free energy function

W~n,t!5pc~n22bt!2, ~17!

wheren5(n2nc)/nc andt5(Tc2T)/Tc are a reduced den
sity and temperature.Tc , pc , andnc are the critical tempera
ture, pressure, and density, respectively, andb is a constant.
2-3
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This simple choice of excess free energy~rather than the
traditional van der Waals free energy, for example! enables
us to calculate the wall-fluid surface tensions in closed fo
later~see Sec. III A!. For reference the free energy density
the model is

c5pc~n11!2~n222n1322bt!, ~18!

the bulk chemical potential is

mb5
4pc

nc
~12bt! ~19!

and the bulk pressure is

pb5pc~12bt!2. ~20!

For T,Tc there are two bulk phases, with densitiesnl and
ng equal tonc(11Abt) andnc(12Abt), respectively.

In addition to uniform phasesn5ng or nl , the free energy
also allows an interface of the formn5nc$1
1Abt tanh@x/(A2j)#% between two phases with widthj and
surface tensions. It can be shown that

j5A knc
2

4btpc
, ~21!

s5 4
3 A2kpc~bt!3/2nc . ~22!

Thus the equilibrium properties of the model are determin
by the choice of free energy.

The free energy enters the lattice Boltzmann algorithm
the pressure tensorPab . Since the free energy function an
total mass constraint are independent of position, it follo
from Noether’s theorem that in equilibrium conservation
momentum takes the form

]bPab50 ~23!

for a pressure tensorPab given by

Pab5
]F

]~]an!
~]bn!2Fdab , ~24!

where F5c2mbn1k(]gn)2/2 @34#. For our choice ofc
this gives

Pab5p~x!dab1k~]an!~]bn! ~25!

with

p~x!5p02kn¹2n2
k

2
~]gn!2, ~26!

wherep05n]nc2c is the equation of state of the fluid.

III. BOUNDARY CONDITIONS

A. Partial wetting boundary conditions

In his paper on critical point wetting, Cahn showed ho
by including short ranged surface-fluid interactions, the s
03160
f

d

a

s
f

,
r-

face tensionsssg and ssl may be calculated@35# within a
mean field framework. Cahn assumed that the fluid-solid
teractions are short ranged such that they contribute a sur
integral to the total free energy of the system. The total f
energy becomes

C5E
V
dVFc~T,n!1

k

2
~]an!2G1E

S
dSF~ns!. ~27!

Here,F(ns) is a surface free energy density function whi
depends only on the density at the surfacens and S is the
surface boundingV.

Minimizing subject to natural boundary conditions~an ex-
planation of natural boundary conditions may be found
for example, Ref.@36#! ~sincens is unknown! gives an equi-
librium boundary condition on the surfaceS. The boundary
condition is

k ŝ•“n5
dF

dns
, ~28!

where ŝ is the unit normal toS pointing into the fluid. Fol-
lowing Cahn and de Gennes we choose to expandF as a
power series@1,35#: a linear term only is sufficient for ou
purposes so we writeF(ns)52f1ns where f1 is a con-
stant, which we call the wetting potential. Thus Eq.~28!
becomesk]'n52f1.

The results for the surface tensions are

ssg52f1nc1
s

2
2

s

2
~12V!3/2, ~29!

ssl52f1nc1
s

2
2

s

2
~11V!3/2, ~30!

whereV5f1 /btA2kpc is the dimensionless wetting poten
tial @22,35,37#.

The wetting angle is found by substituting Eqs.~29! and
~30! into Young’s law@Eq. ~1!#. The result is

cosuw5
~11V!3/22~12V!3/2

2
. ~31!

Equation 31 is an equation foruw given a wetting poten-
tial V. A suitable inversion for the range 0,uw,p is

V52 sgnS p

2
2uwD FcosS a

3 D H 12cosS a

3 D J G1/2

, ~32!

where a5arccos(sin2 uw) and sgn(x) gives the sign ofx
@37#. Therefore, by choosing a desired angleuw we can cal-
culate the required wetting potentialV.

The problem of incorporating wetting into a lattic
Boltzmann scheme is in essence finding a way to include
boundary condition~28!. Our algorithm can be thought of in
three basic steps as follows. First we choose the desired
ting properties of a surface~i.e., the wetting angleuw). Next
we calculate the required value of]'n using Eqs.~32! and
~28!. Lastly we use this value of]'n rather than a numerica
2-4
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FIG. 1. The wall before and after streaming. Partial densities are shown by arrows: Dashed open headed arrows represent po
values at timet, solid arrows precollision values at timet1Dt. The dashed lattice sites to the left of the wall are fictitious. After stream
f 1,3* , f 2,2* , and f 2,3* are outside the domain, whilef 1,1, f 2,1, and f 2,4 are undetermined~denoted ‘‘?’’!.
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derivative when calculatingf eq at the wall. The details of the
scheme can be found in Refs.@27# and@38#, which show that
the correct equilibrium angle is obtained within the ran
30°,uw,150° to within 2°.

B. Shear boundary conditions

In this paper we will be interested in sheared syste
where a velocity is required at the lattice edges. In orde
close the lattice with walls rather than periodic bounda
conditions we have developed a closure scheme which a
us to implement a no-slip conditionat the last lattice site
rather than between lattice sites. This is helpful because
wetting boundary conditions of Sec. III A are most eas
imposed at a lattice site. The length of the system in thx
direction,Lx , is (Nx21)Dx.

Closing the lattice with flat walls leads to a problem
undetermined densities after the streaming step. For a
along the linex50 and fluid occupyingx.0, Fig. 1 shows
the problem at one lattice site: After streamingf 1,3* , f 2,2* , and
f 2,3* have streamed out of the domain, whilef 1,1, f 2,1, and
f 2,4 are undetermined. To overcome this difficulty we choo
the undetermined densities such that the fluid obeys a no
condition at the wall after the streaming step. Since we w
to impose shear, we take the wall velocity to beuwallŷ. Re-
calling that (s i f s ies ia5nua , the no-slip conditions give
two equations for the three unknowns. The system is clo
by making the choicef̄ 1,15 f 1,3. Solving the no-slip condi-
tions for f̄ 2,1 and f̄ 2,4 then leaves us with

f̄ 2,15
1

2
~ n̄uy

wall1 f 1,412 f 2,32 f 1,2!, ~33!

f̄ 2,45
1

2
~2n̄uy

wall2 f 1,412 f 2,21 f 1,2!, ~34!

where
03160
s,
o
y
w

he

all

e
lip
h

d

n̄5 f 0,01 f 1,21 f 1,412~ f 1,31 f 2,21 f 2,3!. ~35!

One difficulty remains with this closure scheme: if th
sum of f̄ 1,1, f̄ 2,1, and f̄ 2,4 at timet1Dt is not equal to that of
f 1,3* , f 2,2* , and f 2,3* at timet, then the streaming step does n
conserve mass. To restore mass conservation on the sy
we note thatf 0,0 is not present in the no-slip conditions. W
can therefore adjustf 0,0 to conserve mass without affectin
the imposed wall velocity. We therefore make a small adju
ment to f 0,0:

f 0,0~x,t1Dt !5 f 0,0* ~x,t !2 f̄ 1,1~x,t1Dt !2 f̄ 2,1~x,t1Dt !

2 f̄ 2,4~x,t1Dt !1 f 1,3* ~x,t !1 f 2,2* ~x,t !

1 f 2,3* ~x,t ! ~36!

which restores mass conservation to the system.

IV. SIMULATIONS OF A SHEARED LIQUID-GAS SYSTEM

The simulations we report here use a droplet held betw
two parallel plates of lengthLy separated by a distanceLx .
The system is closed by periodic boundaries in they direc-
tion. The wetting conditions at the plates are chosen to
uw590°. We half fill the system with liquid (n5nl) and half
with gas (n5ng). Equilibrium is a simple stripe pattern
Once equilibrium is achieved, the plates are moved with
locities1V0ŷ and2V0ŷ at x50 andLx . The system comes
to a nonequilibrium steady state~as sketched in Fig. 2!. The
profiles of the two interfaces were recorded by measur
u1(x) and u2(x), the angles that the tangents to the tw
interfaces atx make with the wall atx50 ~see Fig. 2!.

We variedLx , keeping other parameters constant, to s
how and if a dynamic contact angle could be defined. T
results are shown in Fig. 3, with the parameter sets give
the caption. We see that the interfaces are effectively pin
to uw at the walls and are almost flat in the center of t
system. AsLx increases the interface profiles appear to c
2-5
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BRIANT, WAGNER, AND YEOMANS PHYSICAL REVIEW E69, 031602 ~2004!
verge toward a value, in the center of the system. To ill
trate this, we plotu1

Mid5u1(x/Lx50.5) againstLx in Fig. 4.
We now examine the system in Fig. 3~g! in more detail, as

a precursor to an approximate analytic treatment for the

erage interface shape,ū5(u11u2)/2. Observing that the
curvature of the interface is highest at the walls, we plot
interfacial curvature 1/R againstx for the system withNx

5400 in Fig. 5.~The curvature is defined as 1/R5du1 /ds
wheres is the coordinate along the interface.! The curvature
is approximately an odd function aboutx/Lx50.5, dropping
~rising! from a maximum ~minimum! value at x50 (x
5Lx) and effectively flattening in the center.

It is enlightening to observe the way in which both t
interface shape and fluid velocity are linked with this beh
ior of the curvature. We plot the velocity field in three r
gions of the system in Fig. 6. Figure 6~a! shows the interface
and velocity field around the contact point atx50, which is
a region of high positive curvature. The columni 51 shows
the no-slip condition where (ux ,uy)5(0,V0). The interface
is stationary~the system is in the steady state! but fluid is
being continuously advected in the positivey direction. The
mechanism whereby the interface is not advected with
fluid is found in the converging velocity field (“•u,0),
which we interpret as condensation. The rate of advectio
the interface with the fluid is balanced by condensati
which moves the interface in the opposite direction. T
condensation is signaled by mass transfer across the inte
from a region of low density~gas! to a region of high density
~liquid!.

Figure 6~b! shows the interface and velocity field aroun
the center of the system, which is the region of essenti
zero curvature. The velocity field is on the same scale as
6~a!. Here there is no mass transfer across the interface

FIG. 2. The system in the steady state. The walls are sheare

applying velocities1V0ŷ and 2V0ŷ at x50 and Lx . Thus the
interfaces are stationary. The system is characterized byu1(x) and
u2(x), the angular profiles of the two interfaces. Neutral wetti
conditions are applied at both walls, so thatu1(0)5u1(Lx)
5u2(0)5u2(Lx)5p/2.
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therefore no condensation/evaporation is required to m
tain the steady state.

Figure 6~c! shows the interface and velocity field aroun
the contact point atx5Lx , which is a region of high nega
tive curvature@again on the same scale as Fig. 6~a!#. The
column i 5400 shows the no-slip condition atx5Lx

@(ux ,uy)5(0,2V0)#. Here we see mass transfer from liqu
to gas which we interpret as evaporation~signaled by“•u
.0). The stationary interface occurs due to the balance
advection with the flow and evaporation moving the inte
face in the opposite direction.

To illustrate the behavior of the velocity field mor
clearly, we plot both the parallel and perpendicular comp
nents ofu at the interface, as a function ofx/Lx , in Fig. 7.
The perpendicular componentu' behaves qualitatively in the
same way as the curvature 1/R. To illustrate how closelyu'

and 1/R are related we plotR21/max(R21) andu' /max(u')
againstx/Lx in Fig. 8. From this figure we postulate that th
curvature of the interface is proportional to the perpendicu
component of velocity through it. We write

1

R
5cu' ~37!

introducingc as the constant of proportionality.
We have performed extensive simulations to determ

how c depends on system parameters. By measuring the
ponents of each parameter separately we conclude thc
}hcDn2/jsnc

2 where hc5nviscnc , Dn5nl2ng . Figure 9
shows the observed value ofc againsthcDn2/jsnc

2 , and
shows that constant of proportionality is approximately 0.7
With c determined Eq.~37! can be written as

1

R
5a

hcu'

sj S Dn

nc
D 2

, ~38!

with a50.75. In the following section we present a scali
argument to justify Eq.~38!.

V. A SCALING ARGUMENT FOR c

To motivate the functional form forc we begin by con-
sidering the steady state continuity equation evaluated at
center of the interface (n5nc):

nc@“•u#n5nc
52@u•“n#n5nc

. ~39!

On the right-hand side of Eq.~39! the dot product picks ou
the component ofu perpendicular to the interface,u' , and
we approximate“n as the change in density across the
terface divided by the interface width, i.e.,Dn/j. Equation
~39! then becomes

nc@“•u#n5nc
'2u'

Dn

j
. ~40!

We next want to find an approximation for@“•u#n5nc
. In

Fig. 10 we plot]xux and]yuy for a typical system. From it,

by
2-6
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FIG. 3. Top, real space configurations for simulations with increasingNx . The parameters used wereNy5150, t f50.8, V052.5
31024, k50.0025, nc53.5, pc50.125, andbt50.03. Bottom, corresponding interface profilesu1(x) againstx/Lx . The symbols are
Nx5150, h; Nx5200, s; Nx5250, L; Nx5275, n; Nx5300, 3; Nx5350, 1; Nx5400, *.
FIG. 4. The midpoint angleu1
Mid5u1(x/Lx50.5) againstLx for

the seven systems in Fig. 3.
03160
FIG. 5. The curvature of the interface 1/R againstx/Lx for the
system in Fig. 3~g!.
2-7
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we conclude that, apart from exactly at the walls, an appro
mation for ]yuy will serve as an approximation for“•u in
the interface.

In order to find the value of]yuy in the interface, we write
the y component of the Stokes equation out in full:

]xPyx1]yPyy5nvisc]x@n~]yux1]xuy!#

1nvisc]y@n~]xux13]yuy!#. ~41!

By integrating Eq.~41! across a gently curved interface an
examining the dominant terms, we will show that

FIG. 6. The interface and fluid velocity field in three regions
one interface for the largest sheared system in Fig. 3. We remind
reader that dark~light! shading represents liquid~gas! and that the
lattice coordinates arei and j.
03160
i-

s

R
'2nviscDn]yuy , ~42!

which will serve as an approximation for]yuy .
Integrating the left-hand side of Eq.~41! gives ~see Ap-

pendix B for details!

E dy@]xPyx1]yPyy#5
s

R
1Dp0 , ~43!

whereDp05pl2pg , the pressure difference across the
terface.

We now want to find the dominant viscous terms wh
the right-hand side of Eq.~41! is integrated with respect toy,
from the gas phase to the liquid phase. Numerical exam
tion of the seven viscous terms arising in Eq.~41! shows that
three terms give the dominant contributions to the integ
These are

v15E dy 3nvisc~]yn!~]yuy!, ~44!

FIG. 8. The curvature (s) and perpendicular velocity (h) at
the interface, both normalized by their maximum value.

he

FIG. 7. The parallel (h) and perpendicular (s) velocities~nor-
malized byV0) in the interface plotted againstx/Lx .
2-8
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v25E dy nviscn~]xxuy!, ~45!

and

v35E dy 3nviscn~]yyuy!. ~46!

Figure 11 showsv1 , v2, andv3 as a function ofx/Lx and
alsos/R againstx/Lx , the dominant term from the pressu
tensor integration. From Fig. 11 we see that none of th
viscous terms dominates over the others. However, to a g
approximationv152v252v3. Choosing to work withv1
for later convenience, we set the sum of the three main
cous terms equal to the largest term from Eq.~43!, which
gives

2v152E dy 3nvisc~]yn!~]yuy!5
s

R
. ~47!

FIG. 9. The measured values ofc againsthcDn2/jsnc
2 . The

straight line is the fit to the data, givinga50.75.

FIG. 10. Terms of“•u at the interface againstx/Lx . The sym-
bols are]xux h and]yuy s.
03160
e
od

s-

To show that Eq.~47! holds, we plot2v1 ands/R in Fig.
12. To complete the argument, we now find an approxim
tion for ]yuy by estimating the integralv1. The integrand is
sharply peaked at the interface due to the factor of]yn, over
which distance we may consider]yuy to remain constant a
@]yuy#n5nc

. By approximating]yn to Dn/j and takingj to
be proportional to the width of the integration, we write

j3nvisc

Dn

j
@]yuy#n5nc

}2
s

R
. ~48!

We now substitute Eq.~48! into Eq.~40! and rearrange to
get

s

R
5a

hcu'

j S Dn

nc
D 2

, ~49!

FIG. 11. The integrated viscous terms from the Stokes equat
The symbols arey5v1 , n; y5v2 , L; y5v3 , h. For compari-
son, the dominant pressure terms/R is also shown (y5s/R,s).

FIG. 12. The terms of Eq.~47! againstx/Lx (s andn denote
s/R and2v1 , respectively!. We conclude that Eq.~47! is a good
approximation, with the errors increasing very close to the wall
2-9
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wherehc5ncnvisc anda is a numerical factor. In words, Eq
~49! says that the perpendicular component of fluid veloc
through a curved interface is proportional to its curvatu
R21. Equation~49! is none other than Eq.~38! rearranged
and completes our motivation for Eq.~38!.

VI. STRESS FORMULA

In this section we present an approximate analytic tre
ment of the system described in Sec. IV, based on consi
ing the stresses in the system.

The system is in a steady state which implies that the t
force per unit area alongy direction acting on a thin fluid
element whose normal is in thex direction, i.e., the totalyx
stress,*dy syx , is constant across the system~see Fig. 13!.
The yx component of the stress tensor is

syx52Pyx1h~]yux1]xuy!. ~50!

Multiplying syx by Dx and summing over they direction
~i.e., the coordinatej ) gives

2(
j 51

Ny

DxPyx1(
j 51

Ny

Dx~h]xuy1h]yux!5L1 , ~51!

whereL1 is a constant. Figure 14 shows the terms of E
~51! for a typical system. We see that(Dxh]yux'0 and so
this term in Eq.~51! is neglected.

To proceed, we now relate the two remaining terms of
~51! to the angular positions of the interfaces. Combini
this with Eq. ~38! will lead to a differential equation forū
which we will solve.

From Appendix B we use Eq.~B5! to write the pressure
tensor term as

2(
j 51

Ny

DxPyx5s~cosu11cosu2!. ~52!

FIG. 13. We consider the total force per unit area along thy
direction acting on thin fluid elements such as the one shown. A
visual reminder the direction of“n is indicated on the two inter-
faces.
03160
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We next make an approximation thatuy is a function ofx
alone, so that the viscous stress term in Eq.~51! becomes

(
j 51

Ny

Dxh]xuy5h̄Ly

d

dx
uy , ~53!

where h̄5(( j 51
ny Dxh)/Ly . For the systems with equa

amounts of gas and liquidh̄5hc5nviscnc .
Using Eqs.~52! and ~53!, Eq. ~51! for the balance of

stress becomes

2s cosū cosDu1Lyh̄
d

dx
uy5L1 , ~54!

where we have used a double angle formula for (cosu1

1cosu2). In doing so, we have definedū5(u11u2)/2 and
Du5(u12u2)/2. The asymmetry between the interfaces
small so thatDu'0 and cosDu'1.

We now relateuy to the curvature of the interfaces usin
Eq. ~38!. Recalling ~from Appendix B! that R21

5d(2cosuI)/dx we can write

u'
(I )52

j

ahc
S nc

DnD 2 d

dx
~s cosu I !, ~55!

where the superscriptI (51 or 2) refers to the interface with
angleu I . We approximateuy by the average perpendicula
fluid velocity through both interfaces

uy5
u'

(1)1u'
(2)

2
52

js

ahc
S nc

DnD 2 d

dx
~cosū cosDu!.

~56!

Substituting Eq.~56! into Eq. ~54! gives a second order dif
ferential equation for cosū:

a

FIG. 14. The total stress terms arising from Eq.~51!. The sym-
bols are: s, s152(DxPyx ; L, s25(Dxh]xuy ; h, s3

5(Dxh]yux . n denotes the sum of these three terms@i.e., L1 in
Eq. ~51!#.
2-10
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d2

dx2
cosū2

2a

Lyj
S Dn

nc
D 2

cosū5L2 , ~57!

whereL2 is a constant absorbingL1 and system parameter
The solution to Eq.~57! is

cosū52
L2

k2
1A~e2kx1e2k(Lx2x)!, ~58!

wherek5A2a/Lyj(Dn/nc) andA is an integration constan
to be determined from the boundary conditions.@Only one
integration constant is present in Eq.~58! since we have built
the solution to respect thex→Lx2x symmetry of the sys-
tem.#

Recalling that atx50, uy5V0, Eq. ~56! gives us the
constantA:

V052
js

ahc
S nc

DnD 2

~2k!A@e2kx2e2k(Lx2x)#x50 . ~59!

Rearranging Eq.~59! gives

A5
hcV0

s

Dn

nc
AaLy

2j
@12e2kLx#21. ~60!

We can deduce the constantL2 by using the fact thatū
5p/2 at x50. This procedure gives

L25A2a3

Lyj
3S Dn

nc
D 3 hcV0

s

11e2kLx

12e2kLx
. ~61!

Putting Eqs.~60! and~61! into Eq.~58! gives the solution
for ū as

ū5arccosFhcV0

s

Dn

nc
AaLy

2j S e2kx1e2k(Lx2x)

12e2kLx

2
11e2kLx

12e2kLx
D G . ~62!

Equation ~62! is an equation for the average angle (u1
1u2)/2. The only fit parameter,a, has been determined ove
a large range of data to be 0.75. The comparison betwe
simulation profile and Eq.~62! has no remaining free param
eters.

We choose the system withNx5300 from the simulation
in Fig. 3~e!. In Fig. 15 we plotū from this simulation and
Eq. ~62!, with a50.75, againstx/Lx . The fit is good with
the largest deviation being less than 1°. Some error is
surprising given the approximations inherent in the deri
tion.

To compare the formula forū further, in Fig. 16 we plot
numerical data forūMid@5 ū(x/Lx50.5)# againstLx

21 . The
results approach a constant value asLx→` which we may
identify as a dynamic contact angle. This corresponds to
angular position of the interface in the region where there
03160
a

ot
-

e
is

no evaporation or condensation, i.e., where the curvatur
zero. Results from the analytic approximation Eq.~62! are
also plotted in Fig. 16. Equation~62! predicts a dynamic
contact angle

ū`5arccosF2
hcV0

s

Dn

nc
AaLy

2j G ~63!

which, for the parameters in Fig. 3 givesū`5108° @40#.
The treatment presented here does not offer any ins

into the behavior ofDu ~i.e., the difference betweenu1 and
u2). The asymmetry in the interface profiles can reasona
be expected on the basis of the velocity fields observed n
the contact line~Fig. 6!. This limitation means that the ana
lytic approximation is applicable only to the case of neut
wetting.

VII. DISCUSSION

In this paper we have described a lattice Boltzma
scheme for the simulation of contact line motion in liqui

FIG. 15. Observedū (h) and theoreticalū (s) againstx/Lx ,
for the system in Fig. 3~e!. The maximum difference between th
result from Eq.~62! and the data is less than 1°.

FIG. 16. Values ofūMid @5 ū(x/Lx50.5)# (s) against 1/Lx , for
the systems in Fig. 3. The line is the result of Eq.~62!, which takes
the value 108° atLx

2150. The maximum difference between E
~62! and the data is less than 1°.
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gas systems. Careful implementation of the thermodyna
boundary condition allowed us to fix the static contact an
in the simulations. We then considered the behavior o
sheared interface. Under no-slip boundary conditions on
fluid velocity the interface moves via evaporatio
condensation. The fluid velocity perpendicular to the int
face is proportional to its curvature. Near the contact line
high curvature allows evaporation/condensation while in
center of the system the curvature is essentially zero an
mass transfer takes place. We exploited this proportiona
and the constancy of the stress in the steady state to deriv
analytic approximation for the angular position of the inte
face.

The moving contact line of the diffuse interface liquid-g
model in a different geometry has been previously stud
analytically by Seppecher@22#. The author matched an ex
ternal flow~appropriate to a wedge of one fluid displacing
second! to an inner solution, where the diffuse interfa
model was used. Seppecher showed that the curvature o
interface in the inner region drives a mass flux across
interface. The author also measured an apparent con
angle as the angle defined by the interface when the cu
ture was effectively zero.

The system studied in this paper has similarities to a
differences from that studied by Seppecher. The most not
able difference is that, in the geometry employed here,
wedge flow exists far from the contact lines. The veloc
fields and interface shapes are therefore qualitatively dif
ent between the studies. The principal similarity is the way
which the curvature and mass flux allow the interface
relax and remain stationary under no-slip conditions on
fluid velocity.

Recently, interest in sheared interfaces has gro
Travassoet al. @39# solved a similar geometry to that de
scribed here for the Ising model with a non-conserved or
parameter~i.e. model A! and found a delocalization trans
tion for the interface above a critical shear rate. Jacqmin@23#
and Chenet al. @24# have published work for model H~bi-
nary fluids!, which we consider in the companion pap
Chenet al. also considered model B. To the authors’ know
edge, this is the first study of a liquid-gas system under
shear boundary conditions of Fig. 2.

We have shown how a diffused interface model can ov
come the contact line problem, even under strict no-slip c
ditions on the fluid velocity. However, a central question
contact line motion remains: what is the physical mechan
which generates the slip of the contact line? Mesocale m
eling techniques, and the lattice Boltzmann method in p
ticular, allow a wide choice of boundary conditions for th
density and velocity fields. They do not, however, offer
formation on the validity of those boundary conditions. Th
must be obtained from microscopic simulation and exp
ment. Molecular dynamics simulations, which have started
investigate this question, show that slip of the fluid veloc
can occur in certain circumstances around the contact
@16–20#. Experimental work may also help resolve the qu
tion if techniques can be used to probe the interface on s
length scales. Indeed using lattice Boltzmann simulation
investigate the relative effects of slip and evaporati
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condensation on the droplet motion and then comparing
experiment may be a way to assess the importance of e
mechanism in a given physical system.

ACKNOWLEDGMENTS

We thank P. Papatzacos and C. Pooley for helpful disc
sions. A.B. acknowledges EPSRC and Unilever plc. for
nancial support.

APPENDIX A: COEFFICIENTS FOR THE
LIQUID-GAS MODEL

The coefficients are

A25
p0

8c2
1

nvisc

4c2
~ux]xn1uy]yn!, ~A1!

A152A2 , A05n212A2 , ~A2!

B25
n

12c2
, B154B2 , ~A3!

C252
n

16c2
, C152C2 , C0512C2 , ~A4!

D25
n

8c4
, D154D2 , ~A5!

G2xx5
k

16c4
@~]xn!22~]yn!2#1

nvisc

8c4
~ux]xn2uy]yn!,

~A6!

G2xy5G2yx5
k

8c4
@~]xn!~]yn!#1

nvisc

8c4
~ux]yn1uy]xn!,

~A7!

G2yy52G2xx , ~A8!

G1ab54G2ab for all a,b. ~A9!

APPENDIX B: CURVATURE, SURFACE TENSION,
AND LAPLACE’S LAW

We derive some useful results concerning the surface
sion and curvature of the interface.

The surface tension of the liquid-gas interface is given

s5kE dg~]gn!2. ~B1!

Here,g is the coordinate perpendicular to the interface a
the limits of the integration are across an interface.

In Sec. VI we needed to calculate the surface tens
when the interface lies at an angleu I to they direction and
the integration is overy ~see Fig. 17!. In this case Eq.~B1!
becomes
2-12
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s5kE dy~“n!2 sinu I . ~B2!

To make the connection with the pressure tensor we note
“n makes an angleu I2p/2 with the y direction ~see Fig.
17!. Therefore we may write

sinu I5
]yn

u“nu
~B3!

and

cosu I52
]xn

u“nu
. ~B4!

Multiplying Eq. ~B2! by 2cosuI and using Eqs.~B3! and
~B4! gives

2s cosu I5kE dy~]yn!~]xn!5E dy Pyx . ~B5!

FIG. 17. Contours of the interface between gas and liquid. T
line ab show the path of integration. The direction of“n is con-
stant alongab provided thatR@j. The angle of the interfaceu I is
measured from they axis.
03160
at

Thus the relation between surface tension and the
diagonal term of the pressure tensor is clear.

We now show that differentiating Eq.~B5! leads tos/R,
where R is the radius of curvature of the interface. Recall
that the definition of curvature of a line is the rate of chan
of angle with coordinate along the line, we have

1

R
5

du I

ds
, ~B6!

wheres is the coordinate along the interface. In terms ofdx
(5dssinuI) this may be rewritten as

1

R
5

du I

dx
sinu I5

d

dx
~2cosu I !. ~B7!

Differentiating Eq.~B5! now leads to

s

R
5

d

dxE dy Pyx . ~B8!

Equation ~B8! makes the link between curvature and t
pressure tensor.

To derive Laplace’s law, we recall that in equilibrium th
divergence of the pressure tensor vanishes

]xPyx1]yPyy50. ~B9!

SincePyx is zero on the limits of integration in Eq.~B8! the
order of integration and differentiation can be interchang
Equation~B8! becomes

s

R
5E dy ]xPyx52E dy ]yPyy5pgas2pliquid .

~B10!

Equation~B10! is Laplace’s law.
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