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Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems
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We investigate the applicability of a mesoscale modeling approach, lattice Boltzmann simulations, to the
problem of contact line motion in one and two component, two phase fluids. In this, the first of two papers, we
consider liquid-gas systems. Careful implementation of the thermodynamic boundary condition allows us to fix
the static contact angle in the simulations. We then consider the behavior of a sheared interface. We show that
the contact line singularity is overcome by evaporation or condensation near the contact line which is driven by
the curvature of the diffuse interface. An analytic approximation is derived for the angular position of a sheared
interface.
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. INTRODUCTION o, moving relative to a surface with velocity, the two
) ) ) small parameters ar€a(=»nU/o), called the capillary
When a droplet comes into contact with a solid surfacenumber ande(=s/R). The inertial terms of the Navier-
capillary forces drive it towards equilibrium. The equilibrium gy as ’equations are neglectétie slow flow approxima-
state may t_)e a dropl_et W'th a f|n|_te contact an(seown as tion) and the resulting Stokes equations are solved within
partial wetting or a thin film covering the surfadénown as either two or three regions. The outer solution, valid at dis-

complete wetting[1]. The process of the droplet reaching Lo . i
equilibrium is known as spreading and corresponds to th ar_lces faf frqm th? contgct line, is matched to the inner so
tion, which is valid at distances of ordsfrom the contact

three phase line, or contact line between gas, liquid, an . : o
solid, moving over the surface. Wetting and spreading phe!ne: The matching procedure may also require an additional

nomena are important to many industrial processes where '§910n, known as the intermediate region. The interface
thin coating of a given substance is required for a specifiShapes and flow fields predicted have been confirmed by
use(e.g., a lubricant, a paint, or iilor where wetting prop-  €xperiments at length scales of order 10n [10-15. How-
erties may inhibit or enhance a desired fluid floevg., ex-  €Ver, while these solutions give the interface shapes and flow
tracting oil from porous media, the design of microfluidic fields on macroscopic scales, the slip introduced is phenom-
devices. enological and the physics in the immediate vicinity of the

The equilibrium properties of partial wetting have beencontact line is no clearer. Furthermore, the macroscopic pre-
understood for many years. The contact angle can be calcwhctions of different slip models are the saifd, meaning
lated from a balance of forces at the contact line. The surfacthat no macroscopic measurement can be used to infer mi-
tensions between pairs of phases balance to determine tleeoscopic properties.

contact angle,, via Young’s law Molecular dynamics simulations have been used to probe
the immediate vicinity of the contact lingl6—18 and to
_ Osg™ 0| evaluate the no-slip boundary conditigi®—21]. These stud-
cosf,=————, (1) ) . . .
o ies suggest that some slip of fluid molecules takes place in a

variety of situations. Recent work by Denniston and Robbins

where o, 04, and oy are the liquid-gas, solid-gas, and [20] examines the flow near solid walls of a miscible binary
solid-liquid surface tension]. fluid with concentration gradients driving diffusion. They re-

The nonequilibrium situation of a droplet moving over a port a breakdown in one slip model which is often used, in
surface(or a solid object being withdrawn from a liquits ~ which the difference between the fluid and solid velocities is
not so well understood. A fluid mechanical treatment of aproportional to the viscous shear stress at the contact point.
contact line moving relative to a solid surface, under theThe results of these molecular dynamics simulations offer a
usual no slip boundary conditions for the fluid velocity, possible explanation of contact line motion, namely, that the
shows that an infinite drag force is exerted upon the solidno-slip condition breaks down at very small distance from
the solid is thus dragged with the fluid and no movement othe contact line.
the contact line, relative to the solid, is permit{ed-5|. Alternative explanations of contact line motion exist

Since the posing of this problem there have been manwhich do not rely on the breakdown of the no slip condition.
ways suggested to overcome the classical paradox. One aRffective slip of the interface relative to the wall may be
proach is to relax the no-slip condition at the surface withingenerated by mechanisms missing from sharp interface treat-
a distances, the slip length, of the contact line. The Navier- ments and recently diffuse interface models have been ap-
Stokes equations are solved by means of a matcheplied to the contact line problefl22—24. Examining a one
asymptotic expansion in two small parametgs-9]. For a  component system, Seppecher found that curvature of the
droplet of viscosityn, macroscopic radiuB, surface tension interface near the contact line leads to mass transport across
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the interfacg 22]. In a binary fluid system, Jacqmi@3] and  density at positionx and timet moving with velocitye,;
Chenet al.[24] demonstrated that diffusive transport of fluid Both time and space are discretized such that in a imthe
can lead to effective slip of the interface at the contact linemass with velocitye,; advects to a neighboring lattice site
With the advent of mesoscopic simulation methods, itx+e_At. In this paper we use a two-dimensional square
seems timely that a mesoscale modeling method be appliggttice with N, andN, lattice sites in thex andy directions.
to the problem of contact line motion to gain new perspec-The |attice sites are labeled by coordinatesj)( with i
tives on solutions offered in the literature. The first steps of=1 23 . N, andj=1,2,3 ... N, . The lattice spacing is
applying lattice Boltzmann to this problem have already ap-Ax and we use a square lattice with nine velocity vectors
peared[25-27. Grubert and Yeomanf25] used a binary  (the so-called D2Q9 lattideThe velocity vectors are labeled
lattice Boltzmann approach to measure contact angles Qfy the subscripto=¢?,/c2, where c=Ax/At, the lattice
small droplets. More recently Desplat al. [26] and Briant  gneeq For=1 and 2 the label runs from 1 to 4(this label
et al. [27] described how wetting boundary conditions mayj s gistinct from the coordinateas clear from the context

be implemented in the lattice Boltzmann method. The zero speed vector is labeleg,. Physical quantities are
The aim of this and the following paper is to apply the yo|aeq to moments df,; . The fluid densityn and velocityu

lattice B(_)Itzmanr_1 ap_proach to modeling partial wetting and, .o qefined at each site by

contact line motion in one and two component, two phase

fluids. Thus we elucidate the mechanisms available for con-

tact line motion in diffuse interface treatments subject to 2 foi=n, 2

strict no slip boundary conditions on the fluid velocity. In !

this paper, we examine the contact line motion in a one-

component system, showing how interfacial curvature drives > fie,,=NU,, 3

evaporation or condensation near the contact line. In a com- ol

panion paper we consider binary systems, where a dynamic ) ]

length scale emerges which controls diffusion near the conwheree,;, is the « component of the vectag,; and « is

tact line. In contradiction to the work of Chet al.[24] we  €ither of the lattice directionsc or'y.

find that diffusive effects do not increase as the contact line The distributionsf ,; are evolved according to a lattice

speed is reduced. Boltzmann equation assuming a single relaxation time ap-
This paper breaks down as follows. In Sec. Il we briefly Proximation

present the lattice Boltzmann scheme used. In Sec. Il we

describ_e the' bpundary c_onditions needed to model wetting foilX+e At t+At) —f (X, t)=— i(f(ri_fe?)’ @)

properties within the lattice Boltzmann framework and the T v

shear boundary conditions used for the velocity field. Section

IV presents simulation results for sheared liquid-gas systemeherer is the nondimensional relaxation time affff is an

which show that the velocity perpendicular to the liquid-gasequilibrium distribution function. The right-hand side of Eq.

interface is proportional to its radius of curvature. Section V(4) is the Bhatnagar-Gross-Krook collision opera{@9]

presents a simple scaling argument for the constant of prowhich was first proposed for use in lattice Boltzmann models

portionality. In Sec. VI we derive a partial differential equa- by Qianet al. [30]. This form of the collision operator rep-

tion for the angular position of a sheared interface and henceesents a simplification over early models and dictates that

discuss the emergence of a dynamic contact angle. We clodg; relaxes towards the local equilibrium distributidij!

in Sec. VIl with a discussion of the results. with a single characteristic time;. The equilibrium distri-

bution determines the physics inherent in the simulation. A
Il. THE LATTICE BOLTZMANN MODEL power series in the local velocity is assuméd]

In this section we review the free energy approach for the feI=A,+B,e,iU,+ C,u?+D, e, «0i Ul g
lattice Boltzmann method, first introduced by Swéttal. in
1995 [28]. We describe the basic scheme in Sec. Il A by +GrapCsiaoip )
showing the lattice Boltzmann equation used, detailing the
collision term and equilibrium distribution, presenting the Where summation over repeated Cartesian indices is under-
Navier-Stokes level equations and finally introducing thestood.
collision and streaming steps needed for numerical computa- The coefficientsA,,, B, C,, D,, andG,,z are deter-
tion. In Sec. Il B we show how the free energy for the liquid- mined by placing constraints on the moments iff. In or-
gas system can model two bulk phases at different densitieder that the collision term in Eq4) conserves mass and
and interfaces of finite width between the phases. We detaihomentum the first two moments 6§ are constrained by
the precise form of the free energy used and calculate the

surface tension of the interfaces.
2, fol=n, ®)
o
A. Free energy lattice Boltzmann
The lattice Boltzmann method simulates the time evolu- S fe%, . .=nu @
ol Cola a*

tion of density functiond ,;(x,t) which represent the mass o
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The next moment off&7 is chosen such that the con- Navier-Stokes equations. In order to fully constrain the co-
tinuum macroscopic equations approximated by the evoluefficientsA,, B, C,, D,, andG,,,z a fourth condition is
tion scheme(4) correctly describe the hydrodynamics of a needed33], which is
one component, nonideal fluid. This gives 2

nc
; fi?eaiaeaiﬁeaiﬁ?(ua%ﬁ UglyaytU,dup)-
”E’i fg?erriae(riﬁz Paﬁ+ nu ug+ Vvisc[ua&[,(n) + uﬁaa(n) ©

FUL0L(N) S, ] ®) The values of the coefficients can be determined by a well
vy apb established procedur83]. For completeness we give the

where .= c3(7;— 1/2)At/3 is the kinematic shear viscos- Coefficients in Appendix A.
ity and P, is the pressure tensor. The first formulation of ~ The analysis of Holdyckt al.in Ref.[32] shows that the
the model omitted the third term in E¢8) and was not evolution schemé4) approximates the continuity equation
(_Balilean invariant. Holdyclet al.[32] sh_owed _that Fhe addi- gn+d,(nu,)=0 (10)
tion of this term led to any non-Galilean invariant terms
being of the same order as finite lattice corrections to thend the following Navier-Stokes level equation:

Vvisc

3
&t(nua) + &B(nuau'[g) = &BPQB-F VV|sc‘95[n{‘9BUa+ &aUﬁ'i" 5a587U7}] - ?6B[Uaﬁypﬁy+ Uﬁa,ypay'i" &y(nuaulgu,},)]

2
3vyisc 3 Pyisc

2 gl (9P ap)d,(Nuy)]— 2 dglu,d,(Ugd,n+u,dgn+6,.uU,d,n)]

2 2
Pyisc

3Vvisc
_ 7(9,3[uﬁ(7y(ua<9yn+ U, dgN+ ,,Up0\N) |+ ?%[at(uaﬁﬁnnt Ugd N+ S,5UydyN)].

(12)

The top line is the compressible Navier-Stokes equation K
while the subsequent lines are error terms, which are of order Vy= J dV[ ¢(T,n)+§(r9an)2
Mach number squared.
For the purposes of computation the evolution E.is  gypject to the constraint
split into two distinct steps, which can be thought of as a
collision step and a streaming step. To facilitate this we in-
troduce(purely for numeric convenienga new field at each M= f dvn, (15
lattice sitef*;(x,t), so that the collision step is defined by
wherey(T,n) is the free energy density of bulk phasess

(14)

. 1 o eq a constant related to the surface tensidnis the total mass
fai(x’t):fvi(x’t)“L?f(fai_fvi) (12 of fluid, and the integrations are over all space. The second
term in Eq.(14) gives the free energy contribution from den-
and the streaming step by sity gradients in an inhomogeneous system.
The free energy density can be conveniently expressed in
foi(xt+At)=f*(x—e,At,t). (13)  terms of an excess free energy densifyn, T) via
One lattice Boltzmann step is considered to be one collision $(T,n)=W(n,T)+ pupn—pp, (16)

step and one streaming step at each site. . . .

We have, then, described a framework for a one compo¥hereus(=dniln=n,) is the bulk chemical potential an,
nent free energy lattice Boltzmann. The properties of thds the bulk pressure. We choo¥¢to be the simplest excess
fluid are determined by the choice of pressure terf3gg free energy function
which we now go on to describe.

W(v,7)=pc(v*—B7)?, 17)

wherev=(n—n;)/n, andr=(T.—T)/T, are a reduced den-
The equilibrium properties of a system with no surfacessity and temperaturd.., p., andn, are the critical tempera-
can be described by a Landau free energy functional ture, pressure, and density, respectively, gnd a constant.

B. Thermodynamics of the fluid
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This simple choice of excess free energgther than the
traditional van der Waals free energy, for exammeables
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face tensionsrsy and o5 may be calculatedi35] within a
mean field framework. Cahn assumed that the fluid-solid in-

us to calculate the wall-fluid surface tensions in closed fornteractions are short ranged such that they contribute a surface
later (see Sec. Il A. For reference the free energy density of integral to the total free energy of the system. The total free

the model is
y=p(v+1)3(v*—2v+3-287), (18)
the bulk chemical potential is
Mb=4n—F:°(l—BT) (19
and the bulk pressure is
Pb=Pc(1-B7)% (20

For T<T, there are two bulk phases, with densitigsand
ny equal tony(1+ A7) andn.(1—\B7), respectively.

In addition to uniform phases=nq or n;, the free energy
also allows an interface of the formn=n./1
+ \/E-tank[x/(\/ﬁf)]} between two phases with widthand
surface tensiomw. It can be shown that

B Kng
¢ Nagm, &
0—:% \/ZKpc(BT)3/2nc- (22

energy becomes

\I'=JdV
v

Here,®(n,) is a surface free energy density function which
depends only on the density at the surfageand S is the
surface boundingy.

Minimizing subject to natural boundary conditiofan ex-
planation of natural boundary conditions may be found in,
for example, Ref[36]) (sinceng is unknown gives an equi-
librium boundary condition on the surfa& The boundary
condition is

¢(T,n)+g(aan)2 +f dsd(ny). (27)
S

- g d?
KS- n—d—ns,

(28)
wheres is the unit normal toS pointing into the fluid. Fol-
lowing Cahn and de Gennes we choose to exp&nés a
power serieg1,35]: a linear term only is sufficient for our
purposes so we writé(ng) = — ¢1ng Where ¢, is a con-
stant, which we call the wetting potential. Thus E@g8)
becomescd, n=— ¢;.
The results for the surface tensions are

Thus the equilibrium properties of the model are determined
by the choice of free energy. g o 32

The free energy enters the lattice Boltzmann algorithm via Tsg= ~ 1Nt 2 2 (1-Q) (29
the pressure tensdt,;. Since the free energy function and
total mass constraint are independent of position, it follows o o 3
from Noether’s theorem that in equilibrium conservation of Os1= ~ 1Nt 5 —5 (1+ Q)™ (30

momentum takes the form

for a pressure tensd?,,; given by
P.s= i ) Fé 24
aﬂ_a(aan)( ﬁ’n) aB ( )

where F= y— pyn+ x(3,n)?/2 [34]. For our choice ofy
this gives
Pap=P(X) 8apt k(d,N)(pN) (25)

with
K
P(X)=Ppo=KkNVZN=Z(3,0)% (26

wherepy=nd,— ¢ is the equation of state of the fluid.

I1l. BOUNDARY CONDITIONS

A. Partial wetting boundary conditions

whereQl = ¢,/ B7\2kp. is the dimensionless wetting poten-
tial [22,35,31.

The wetting angle is found by substituting E¢89) and
(30) into Young's law[Eq. (1)]. The result is

(1+Q)3/2— (1_9)3/2
2

cosf,,= (32

Equation 31 is an equation fak, given a wetting poten-
tial ). A suitable inversion for the range<06,, < is

cof 5| 1-eod 3]

where a=arccos(sif6,) and sgnk) gives the sign ofx
[37]. Therefore, by choosing a desired anglgwe can cal-
culate the required wetting potenti@l.

The problem of incorporating wetting into a lattice
Boltzmann scheme is in essence finding a way to include the
boundary conditior{28). Our algorithm can be thought of in
three basic steps as follows. First we choose the desired wet-
ting properties of a surfacge., the wetting anglé,,). Next

112
, (32

v
Q=259r{§—0\,\,)

In his paper on critical point wetting, Cahn showed how,we calculate the required value 8fn using Egs.(32) and
by including short ranged surface-fluid interactions, the sur{28). Lastly we use this value of, n rather than a numerical
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FIG. 1. The wall before and after streaming. Partial densities are shown by arrows: Dashed open headed arrows represent post collision
values at time, solid arrows precollision values at time- At. The dashed lattice sites to the left of the wall are fictitious. After streaming
13, f3,, andf; ; are outside the domain, whifg ;, f,,, andf, 4 are undetermine¢denoted “?”).

derivative when calculatin® at the wall. The details of the N=fa b frootfr b 2(Fr ot footf 35
scheme can be found in Ref&7] and[38], which show that oot fiztfiat2(fugh oot fag). 39
the correct equilibrium angle is obtained within the range One difficulty remains with this closure scheme: if the

30°< 6 <150° to within 2°. sum offy 1, f,, andf, ,at timet+ At is not equal to that of
I3, 3,5, andf; s at timet, then the streaming step does not
B. Shear boundary conditions conserve mass. To restore mass conservation on the system

: . . . we note thatf, o is not present in the no-slip conditions. We
In this paper we will be interested in sheared systems B . :

o . . ¢an therefore adjudt, , to conserve mass without affecting
where a velocity is required at the lattice edges. In order t '

close the lattice with walls rather than periodic boundarﬁhe imposed wall velocity. We therefore make a small adjust-

conditions we have developed a closure scheme which aIIovr\pent tofoo:

us to implement a no-slip conditioat the last lattice site e s s

rather than between lattice sites. This is helpful because the fo X, tHAD =15 oX1) =1 1(X,THAD = f5 (X, t+AL)
wetting boundary conditions of Sec. Ill A are most easily o Xt AD D)+ FE(x t
imposed at a lattice site. The length of the system inxhe 24 L RRREEA
direction,L,, is (N,—1)AX. +154(X,1) (36)

Closing the lattice with flat walls leads to a problem of
undetermined densities after the streaming step. For a wallhich restores mass conservation to the system.
along the linex=0 and fluid occupying>0, Fig. 1 shows
the problem at one lattice site: After streamiifg, f5,, and V. SIMULATIONS OF A SHEARED LIQUID-GAS SYSTEM
f§]3 have streamed out of the domain, whilg;, f,,, and
f, 4 are undetermined. To overcome this difficulty we choose,
the undetermined densities such that the fluid obeys a no-sli he system is closed by pefiodic boundaries in yrrec-
condition at the wall after the streaming step. Since we wisqion 'the wetting condit)i/oﬂs at the plates are chosen to be
to impose shear, we take the wall velocity to@&'y. Re- o _qq° " \e half fill the system with liquidr(=n;) and half
calling th"’_‘tEfrifﬂievia:nua' the no-slip condltlons_ 9IVe  \yith gas (1=ng). Equilibrium is a simple stripe pattern.
two equations for the three unknowns. The system is closeg)nce equilibrium is achieved, the plates are moved with ve-
by making the choicd, ,=T, 3. Solving the no-slip condi- |5ities + vy and— VY atx=0 andL, . The system comes

The simulations we report here use a droplet held between
o parallel plates of length, separated by a distants;, .

tions forf,; andf; 4 then leaves us with to a nonequilibrium steady statas sketched in Fig.)2The
1 profiles of the two interfaces were recorded by measuring
f_zl:_(ﬁuwallJrfMJr 2f 55— f15), (33 01(x) and 6,(x), the angles that the tangents to the two
20 ' ' ' interfaces ak make with the wall ak=0 (see Fig. 2

We variedL,, keeping other parameters constant, to see

1 how and if a dynamic contact angle could be defined. The
f2'4=§(—nu‘>’,va”—flv4+ 2f 50t f12), (34 results are shown in Fig. 3, with the parameter sets given in
the caption. We see that the interfaces are effectively pinned

to 6, at the walls and are almost flat in the center of the

where system. Ad., increases the interface profiles appear to con-
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L, therefore no condensation/evaporation is required to main-
tain the steady state.

Figure Gc) shows the interface and velocity field around
the contact point ak=L,, which is a region of high nega-
tive curvature[again on the same scale as Figa) The
column i=400 shows the no-slip condition ax=L,
[(uy,uy)=(0,—Vy)]. Here we see mass transfer from liquid
to gas which we interpret as evaporati@ignaled byV -u
>0). The stationary interface occurs due to the balance of

L, advection with the flow and evaporation moving the inter-
face in the opposite direction.

To illustrate the behavior of the velocity field more
clearly, we plot both the parallel and perpendicular compo-
nents ofu at the interface, as a function &fL,, in Fig. 7.
The perpendicular componemt behaves qualitatively in the
same way as the curvatureRl/To illustrate how closely
and 1R are related we ploR™Y/max® 1) andu, /max(u,)
againstx/L, in Fig. 8. From this figure we postulate that the

FIG. 2. The system in the steady state. The walls are sheared lyurvature of the interface is proportional to the perpendicular
applying velocities+Voy and —Voy at x=0 andL,. Thus the component of velocity through it. We write
interfaces are stationary. The system is characterizeg, py) and
0,(x), the angular profiles of the two interfaces. Neutral wetting 1
conditions are applied at both walls, so th&i(0)=6.(L,) ﬁZCUL (37)

introducingc as the constant of proportionality.
verge toward a value, in the center of the system. To illus- We have performed extensive simulations to determine
trate this, we p|o119'1/"d= 6,(x/L,=0.5) againsL, in Fig. 4. how ¢ depends on system parameters. By measuring the ex-
We now examine the system in FiggBin more detail, as Ponents of each parameter separately we concludecthat
a precursor to an approximate analytic treatment for the avZ 7cAN*/éon; where 7= pyjsdc _An=n|—gg- Fizgure 9
erage interface shapd@j=(0,+ 6,)/2. Observing that the S1OWS the observed value ofagainstz.An/¢ong, and
curvature of the interface is highest at the walls, we plot thes 10WS that constant of proportionality is approximately 0.75.

interfacial curvature R againstx for the system withN, ith ¢ determined Eq(37) can be written as
=400 in Fig. 5.(The curvature is defined asR#d#,/ds 1 U [An\2
wheres is the coordinate along the interfac&he curvature — =g et (—) ,
is approximately an odd function aboxti_,= 0.5, dropping R o \ N
(rising) from a maximum (minimum) value atx=0 (x
=L,) and effectively flattening in the center.

It is enlightening to observe the way in which both the
interface shape and fluid velocity are linked with this behav-
ior of the curvature. We plot the velocity field in three re- V. A SCALING ARGUMENT FOR ¢
gions of the system in Fig. 6. Figuréa shows the interface
and velocity field around the contact pointat 0, which is
a region of high positive curvature. The coluim 1l shows
the no-slip condition whereu(,u,)=(0,V,). The interface
is stationary(the system is in the steady stataut fluid is ndV-uly_, =—[u-vnl,_,. (39)
being continuously advected in the positiyelirection. The ¢ =" =M
mechanism whereby the interface is not advected with th
fluid is found in the converging velocity fieldW(-u<0),

(39

with «=0.75. In the following section we present a scaling
argument to justify Eq(38).

To motivate the functional form foc we begin by con-
sidering the steady state continuity equation evaluated at the
center of the interfacen=n,):

On the right-hand side of E¢39) the dot product picks out
which we interpret as condensation. The rate of advection otlhe component of perpendicular 0 the mt_erfaceﬂ » and .
we approximatéVn as the change in density across the in-

the interface with the fluid is balanced by condensation . . . ; ;
which moves the interface in the opposite direction. This‘terface divided by the interface width, i.é\n/¢. Equation

condensation is signaled by mass transfer across the interfa&%g) then becomes

from a region of low densitygag to a region of high density AN

(liquid). . o N[V U~ — U (40
Figure Gb) shows the interface and velocity field around ¢ &

the center of the system, which is the region of essentially

zero curvature. The velocity field is on the same scale as Fig. We next want to find an approximation oV - u],—n . In

6(a). Here there is no mass transfer across the interface arfélg. 10 we plotd,u, andd,u, for a typical system. From it,
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(a) N, = 150 (b) N, = 200 (c) Ny = 250 (d) N, =275
(¢) Ny = 300 (f) N, = 350 (g) N, = 400

110

105

01(hoo |
95 -
%0.0 02 04 0.6 0.8 1.0
T
L,

FIG. 3. Top, real space configurations for simulations with increadlpg The parameters used welg =150, 7;=0.8, V;=2.5
X10™4 k=0.0025,n.=3.5, p.=0.125, and8r=0.03. Bottom, corresponding interface profilegx) againstx/L,. The symbols are
N,= 150, [J; N,=200, O; N,=250, ¢; N,=275, A; N,=300, X; N,=350, +; N,=400, *.

120 T T T T 0.010
0.005 -
1o - o o
gMid ° 1
1 o R 0000
100 -
-0.005 1
%0 1 200 30 20 500 %8 02 0.4 06 08 10
.
L, Ly
FIG. 4. The midpoint angl@’}"id: 0,(x/L,=0.5) against, for FIG. 5. The curvature of the interfaceRLAgainstx/L, for the
the seven systems in Fig. 3. system in Fig. &).
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1301
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FIG. 7. The parallel[J) and perpendicular®) velocities(nor-
malized byV,) in the interface plotted againstL, .

oa

ﬁ ~ — VViSCA nﬁyUy [ (42)

which will serve as an approximation fayu, .
i i i P Integrating the left-hand side of E41) gives (see Ap-
190 195 200 205 210 pendix B for details

(o
(b) f dy[ 9xPyxtdyPyy]= R +Apg, (43

where Ap,=p,—pg, the pressure difference across the in-
terface.

We now want to find the dominant viscous terms when
the right-hand side of Ed41) is integrated with respect i
from the gas phase to the liquid phase. Numerical examina-
tion of the seven viscous terms arising in E4fl) shows that
three terms give the dominant contributions to the integral.
These are

380 385 3
' v1= f dy 3wyisd(dyn)(dyuy), (44)

395 400

FIG. 6. The interface and fluid velocity field in three regions of
one interface for the largest sheared system in Fig. 3. We remind the
reader that darklight) shading represents liquigjas and that the
lattice coordinates areandj.

we conclude that, apart from exactly at the walls, an approxi-
mation for d,uy will serve as an approximation fov -u in
the interface.

In order to find the value ofyu, in the interface, we write
they component of the Stokes equation out in full:

ﬁxpyx'l' ﬁypyyz Vvisc&x[n(o')yux'l' &xuy)]

0.0 02 04 06 08 1.0
+ vyiscdy[ N(dxUx+3dyuy) ]. (41) Ll
By integrating Eq.(41) across a gently curved interface and  FIG. 8. The curvature®) and perpendicular velocity({) at
examining the dominant terms, we will show that the interface, both normalized by their maximum value.
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%0 02 0.4 06 0.8 1.0

T
FIG. 9. The measured values ofagainstnCAnzlfcrnﬁ. The Iz

straight line is the fit to the data, giving=0.75. ) ] )
FIG. 11. The integrated viscous terms from the Stokes equation.

The symbols arg=vq, A; y=v,, ¢; y=v3, . For compari-
Vp= j dy Vviscn(ﬁxxuy), (45) son, the dominant pressure tetmR is also shown y=o¢/R,0).

To show that Eq(47) holds, we plot—v, ando/R in Fig.
and 12. To complete the argument, we now find an approxima-
tion for gyu, by estimating the integral,. The integrand is
sharply peaked at the interface due to the factat,of over
03:J dy 3vyisd(dyyUy). (46)  which distance we may considéyu, to remain constant at
[&yuy]n:nc. By approximatingdyn to An/§ and takingé to

Figure 11 shows;, v,, andus as a function of/L, and be proportional to the width of the integration, we write

alsoo/R againstx/L,, the dominant term from the pressure

tensor integration. From Fig. 11 we see that none of these 3w, ﬂ[a Uyl o — a (48)
viscous terms dominates over the others. However, to a good vise g LIYTyAn=ne T R
approximationv ;= —v,= —v3. Choosing to work withv;

for later convenience, we set the sum of the three main vis- We now substitute Eq48) into Eq. (40) and rearrange to
cous terms equal to the largest term from E4B), which  get

gives

(49

neu, [An)?
nic 1

_Ulz_f dy3yvisc(ayn)(ayuy):%' e

x 1073

2.0

025 | °
g
—VL,R  o00f

-025

20 . . : .
0.0 0.2 0.4 0.6 0.8 1.0 x
xr L x

Lz
FIG. 12. The terms of Eq47) againstx/L, (O andA denote
FIG. 10. Terms ofV -u at the interface againgiL,. The sym-  o/R and —v, respectively. We conclude that Eq47) is a good

bols ared,u, O anddyuy, O. approximation, with the errors increasing very close to the walls.
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Y

x107¢

1.0

00 @

81, 82, 83—1.0 |

v ;
and Al -30 b

0.0 02 0.4 0.6 0.8 1.0

2z
Ly

FIG. 13. We consider the total force per unit area alongythe ~ FIG. 14. The total stress terms arising from E8fl). The sym-
direction acting on thin fluid elements such as the one shown. As Bols are: O, s;=—3AXPy; ¢, s;=ZAxnpduy; 0, s3
visual reminder the direction d¥n is indicated on the two inter- =ZAXndyu,. A denotes the sum of these three tefiins, A, in
faces. Eq. (51)].

where 7.=n.v,isc and a is a numerical factor. In words, Eq. We next make an approximation thaf is a function ofx
(49) says that the perpendicular component of fluid velocityalone, so that the viscous stress term in €4) becomes
through a curved interface is proportional to its curvature N

R™1. Equation(49) is none other than Eq38) rearranged b4 — d

and completes our motivation for E(B8). 121 AxmdxUy= Ly Uy, (53

VI. STRESS FORMULA where ;:(E;’ilen)/Ly. For the systems with equal

In this section we present an approximate analytic treatamounts of gas and liquig= 7= vyisdc .
ment of the system described in Sec. IV, based on consider- Using Egs.(52) and (53), Eq. (51) for the balance of
ing the stresses in the system. stress becomes

The system is in a steady state which implies that the total

force per unit area along direction acting on a thin fluid _ _d

element whose normal is in thedirection, i.e., the totayx 20 oS COSA 0+ Ly 7~ uy=Ay, (54)

stress,Jdy oy, is constant across the systésee Fig. 13

The yx component of the stress tensor is where we have used a double angle formula for @os
Tyx=— Pyxt n(dyUx+ d,Uy). (500  tcosb,). In doing so, we have defined= (6, + 6,)/2 and

AO=(6,—0,)/2. The asymmetry between the interfaces is
Multiplying oy, by Ax and summing over thg direction  small so thatA /~0 and co\o~1.
(i.e., the coordinatg) gives We now relateu, to the curvature of the interfaces using
Eg. (38). Recalling (from Appendix B that R™!

e} e} =d(—cos6)/dx we can write
—le AXPy,+ 121 AX(7dxuy+ ndu)=Ay, (51) ( )

o & [ne 2d
where A, is a constant. Figure 14 shows the terms of Eq. ur'= anc|An &(UCOS‘Q')' (59)
(51) for a typical system. We see thatAx»d,u,~0 and so
this term in Eq.(51) is neglected. where the superscript(=1 or 2) refers to the interface with

To proceed, we now relate the two remaining terms of Eqangle 6, . We approximatei, by the average perpendicular
(51) to the angular positions of the interfaces. Combiningfiuid velocity through both interfaces

this with Eq. (38) will lead to a differential equation fo

which we will solve. u{M+uf® éo [ne\?d —
From Appendix B we use EqB5) to write the pressure W= T T aglan gx (COSO COSAD).
tensor term as (56)
Ny . . . .
E Eq.(54 f-
Y AXP, = (0SB, + COSy). (52) Subst!tutlng g(56) into Eq. (54) gives a second order di
=1 ferential equation for co&
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d? v 2a (An)z T A 57
—C0SO——| —| cosf=A,,
dx? Lyélne ?
whereA, is a constant absorbingy; and system parameters. 110 F
The solution to Eq(57) is _
0
- Az —kx4 a—K(Ly—X)
cosez—FJrA(e +e 7)), (58 100 -
wherek=y2a/L,&(An/n;) andA is an integration constant
to be determined from the boundary conditiof®nly one
integration constant is present in E§8) since we have built 5o 02

the solution to respect the—L,—Xx symmetry of the sys-
tem)

04

0.6
T

L,

0.8 1.0

Recalling that atx=0, u,=Vo, Eqg. (56) gives us the FIG. 15. Observed ([J) and theoreticab (O) againstx/L,,

constantA: for the system in Fig. @). The maximum difference between the
¢ o2 result from Eq.(62) and the data is less than 1°.
__ ST e\ —kx_ a—k(Ly—x)
Vo= aﬂc(A”) (—kAle e k-0 59 g evaporation or condensation, i.e., where the curvature is

zero. Results from the analytic approximation E62) are

Rearranging Eq(59) gives

contact angle

_ Vo An Jaly —KL—1
A= o n—c 2—5[1 e ] . (60)

We can deduce the constafit by using the fact that
= /2 atx=0. This procedure gives

0,= arcco% —

770V0 A n

also plotted in Fig. 16. Equatiof62) predicts a dynamic

/aLy

ne V 2&

(63

which, for the parameters in Fig. 3 givés = 108° [40].
The treatment presented here does not offer any insight

203 | An\3 » V14 e Kix into the behavior oA § (i.e., the difference betweefy and
Ayr= / / _) i . (61  62). The asymmetry in the interface profiles can reasonably
Ly§3\ Ne o 1-e K be expected on the basis of the velocity fields observed near

) ) ) ) the contact lingFig. 6). This limitation means that the ana-
Putting Eqs(60) and(61) into Eq. (58) gives the solution  |ytic approximation is applicable only to the case of neutral

for 6 as wetting.
e 7V AN \/a\Ly/ e kx4 g klLx=x)
=arcco o n—c 28 \ 1—e Ko
1+e K
_m . (62 120

Equation (62) is an equation for the average anglé; (
+6,)/2. The only fit parametery, has been determined over
a large range of data to be 0.75. The comparison between a
simulation profile and Eq62) has no remaining free param- 7]
eters.
We choose the system witk, =300 from the simulation
in Fig. 3(e). In Fig. 15 we plot# from this simulation and
Eq. (62), with «=0.75, againsk/L,. The fit is good with
the largest deviation being less than 1°. Some error is not

Mid

surprising given the approximations inherent in the deriva- %,

tion.
To compare the formula fop further, in Fig. 16 we plot

110 |

VIl. DISCUSSION

In this paper we have described a lattice Boltzmann
scheme for the simulation of contact line motion in liquid-

00000

o

0.002 0.004

0.006

L
L

0.008 0.01

numerical data fo?™[ = (x/L,=0.5)] again;tL;l. The FIG. 16. Values o™ [ = 9(x/L,=0.5)] (O) against 1L, , for
results approach a constant valuelgs-c which we may the systems in Fig. 3. The line is the result of E8), which takes
identify as a dynamic contact angle. This corresponds to thehe value 108° at ,*=0. The maximum difference between Eq.

angular position of the interface in the region where there i$62) and the data is less than 1°.
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gas systems. Careful implementation of the thermodynamicondensation on the droplet motion and then comparing to
boundary condition allowed us to fix the static contact angleexperiment may be a way to assess the importance of each
in the simulations. We then considered the behavior of @nechanism in a given physical system.

sheared interface. Under no-slip boundary conditions on the

fluid velocity the interface moves via evaporation/ ACKNOWLEDGMENTS

condgnsaﬂon._The flu!d velocity perpendicular to the' Inter- We thank P. Papatzacos and C. Pooley for helpful discus-
face is proportional to its curvature. Near the contact line the

. . . . Sions. A.B. acknowledges EPSRC and Unilever plc. for fi-
high curvature allows evaporation/condensation while in thehancial support

center of the system the curvature is essentially zero and no
mass transfer takes place. We exploited this proportionality
and the constancy of the stress in the steady state to derive an
analytic approximation for the angular position of the inter-

face. The coefficients are

The moving contact line of the diffuse interface liquid-gas
model in a different geometry has been previously studied Po
analytically by Seppechdi22]. The author matched an ex- Ar=—
ternal flow (appropriate to a wedge of one fluid displacing a 8c
secondl to an inner solution, where the diffuse interface
model was used. Seppecher showed that the curvature of the
interface in the inner region drives a mass flux across the
interface. The author also measured an apparent contact B :L B.—4B (A3)
angle as the angle defined by the interface when the curva- 22 TV T
ture was effectively zero.

The system studied in this paper has similarities to and n
differences from that studied by Seppecher. The most notice- Co=———, C1=2C,, Cy=12C,, (A4)
able difference is that, in the geometry employed here, no 16c
wedge flow exists far from the contact lines. The velocity
fields and interface shapes are therefore qualitatively differ-
ent between the studies. The principal similarity is the way in
which the curvature and mass flux allow the interface to
relax and remain stationary under no-slip conditions on the « -
fluid velocity. - 2_ 274 _Vvisc _

Recently, interest in sheared interfaces has grown. G 1604[(&)(”) (ym=I+ 8c* (UxdxD = LydyM),
Travassoet al. [39] solved a similar geometry to that de- (AB)
scribed here for the Ising model with a non-conserved order
parameter(i.e. model A and found a delocalization transi- K Vyisc
tion for the interface above a critical shear rate. Jacd@ih Gaxy= Gzyx:Q[(éxn)(ﬁyn)] +g(ux&yn+ Uydyn),
and Cheret al. [24] have published work for model bi- (A7)
nary fluidg9, which we consider in the companion paper.

Chenet al. also considered model B. To the authors’ knowl- Goy=—G, (A8)
edge, this is the first study of a liquid-gas system under the v o
shear boundary conditions of Fig. 2. G1ap=4Gy,s forall a,B. (A9)

We have shown how a diffused interface model can over-
come the contact line problem, even under strict no-slip con-
ditions on the fluid velocity. However, a central question of
contact line motion remains: what is the physical mechanism

which generates the slip of the contact line? Mesocale mod- we derive some useful results concerning the surface ten-
eling techniques, and the lattice Boltzmann method in parsjon and curvature of the interface.

ticular, allow a wide choice of boundary conditions for the  The surface tension of the liquid-gas interface is given by
density and velocity fields. They do not, however, offer in-

formation on the validity of those boundary conditions. This 2
must be obtained from microscopic simulation and experi- ":"J dg(dgn)*.
ment. Molecular dynamics simulations, which have started to

investigate this question, show that slip of the fluid velocityHere, g is the coordinate perpendicular to the interface and
can occur in certain circumstances around the contact linthe limits of the integration are across an interface.
[16—20. Experimental work may also help resolve the ques- In Sec. VI we needed to calculate the surface tension
tion if techniques can be used to probe the interface on smallhen the interface lies at an angle to they direction and
length scales. Indeed using lattice Boltzmann simulations tehe integration is ovey (see Fig. 1Y. In this case Eq(B1)
investigate the relative effects of slip and evaporationbecomes

APPENDIX A: COEFFICIENTS FOR THE
LIQUID-GAS MODEL

Vyisc

+ —(ud,n+u,d,n), (A1)
ac2 " vy

Al:2A2, A0: n— 12A2, (AZ)

n
Dp=— 5+ Di=4Ds, (A5)

APPENDIX B: CURVATURE, SURFACE TENSION,
AND LAPLACE'S LAW

(B1)
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Thus the relation between surface tension and the off-
diagonal term of the pressure tensor is clear.

We now show that differentiating E4B5) leads too/R,
where R is the radius of curvature of the interface. Recalling
that the definition of curvature of a line is the rate of change
of angle with coordinate along the line, we have

1 de,

R ds’ (B6)

wheres is the coordinate along the interface. In termsigf

FIG. 17. Contours of the interface between gas and liquid. The(=dssin 6) this may be rewritten as

line ab show the path of integration. The direction ¥h is con-
stant alongab provided thatR>¢. The angle of the interfac, is
measured from thg axis.

a=KJdWVann@. (B2)

To make the connection with the pressure tensor we note that

Vn makes an angl#®,— /2 with they direction (see Fig.
17). Therefore we may write

dyn
gnmzr%ﬂ (B3)
and
dyn
cosf, = — ﬁ (B4)

Multiplying Eq. (B2) by —cos6, and using Egqs(B3) and
(B4) gives

—acoséhzxf dy(ayn)(&xn)zf dy Pyy (B5)

1 do ~ d B7

R asm 0,= d—x( cosé,). (B7)
Differentiating Eq.(B5) now leads to

c_d f dy P, B8

ﬁ_ & Y Fyx ( )

Equation (B8) makes the link between curvature and the
pressure tensor.
To derive Laplace’s law, we recall that in equilibrium the

divergence of the pressure tensor vanishes
dxPyyxt+ dyPyy=0. (B9)

SincePy, is zero on the limits of integration in EGB8) the
order of integration and differentiation can be interchanged.
Equation(B8) becomes

o
R~ f dy dyPyy=— f dy 9yPyy=Pgas™ Pliquid
(B10)

Equation(B10) is Laplace’s law.
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