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Efficient phase field simulation of a binary dendritic growth in a forced flow
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Efficient quantitative phase field simulation using an adaptive finite volume method with an antisolutal
trapping scheme is presented for a binary dendritic growth in a forced flow. For the case of no convection, the
calculated results with different interface thickness are examined. It is found that with a proper antisolutal
trapping flux, a thick interface, but smaller than the diffusion boundary layer, could be used and the solution
could approach to the sharp-interface Gibbs-Thompson equation limit in almost all aspects quantitatively.
Based on the concentration driving force obtained from the sharp-interface limit of the Wheeler-Boettinger-
McFadden(WBM) model, the calculated results are in good agreement with the classic Oseen-lvantsov solu-
tion for the concentration-driven growth in a forced flow. And the selection scaling factor also increases with
the external flow as the theoretical prediction.
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[. INTRODUCTION tive effects, which have much larger length scales, are taken
into account.

The development of alloy microstructures is important in ~ Very recently, Karmg13] proposed an antisolutal trap-
solidification processing for metallic systems, and its predicfing scheme for the binary phase field simulation. He
tion has become an important research topic in physics anghowed that with the antitrapping scheme the dendrite tip
materials science. The phase field model has emerged assaeed as well as the solute profile in the solid for a thin
powerful tool to simulate such a structure evolutjds-12.  interface can be achieved by using a thick interface thick-
However, limited by computation and inherent numerical na-ness. Although there are no extensive illustrations and ex-
ture, the phase field model has encountered many difficultie@minations, the idea of using antisolutal trapping seems to
One of the most important limitations in the phase fieldshed a light on an efficient and quantitative phase field simu-
simulation is the interface thicknegsThe choice ofs needs lation of alloys.
to be small enough so that the sharp-interface limit can be In this paper we adopt Karma's idea and implement the
achieved. However, such a value, which is usually in theantitrapping scheme in the Wheeler-Boettinger-McFadden
order of the microscopic capillary lengthy, is several or- (WBM) model[3] using an adaptive finite volume method
ders smaller than the scale of microstructures. On the othéd1,12. We take the dendritic growth of a Cu/Ni alloy in an
hand, the length scale of solutal and thermal boundary layeri§othermal environmeri5] as examples. The results of dif-
is also several orders larger than that of microstructures. As tgrent interface thickness are examined first for the dendrite
result, such a sharp interface limit is too stringent in a reallip radius, tip speed, solute concentrations, and morphology.
istic simulation, even with today’s supercomputers. The comparison with the sharp-interface solution and the

Significant progress has been made by Karma and Rapp@IaSSiC Ivantsov solution is made. Then, the antitrapping is
[6] for the thin-interface limit thats can be chosen in the considered for the thickest interface and the calculated re-
same order of the scale of microstructure. In addition, thesults are further examined showing a good approximation to
interface kinetic effects can play no role on the solution.the thin-interface solution. By applying the antitrapping to
With such an implementation, efficient numerical simula-the growth in a forced flow using a thick interface, we ob-
tions have been reported to the solution even at low supetained results having good agreement with the Oseen-
coolings[8,11]. The effect of convection has been consideredvantsov solution. This seems to be quite promising for a
[10,17 and the results agree very well with the Oseen-quantitative phase field modeling.
lvantsov solution for the temperature-driven growth of a In Sec. Il the model and the adaptive method used are
pure material. However, with solutal effects for alloy solidi- described briefly. Section Il is devoted to results and discus-
fication, the thin-interface limit cannot be adopted due tosion, where detailed comparisons of the solutions from dif-
significant solutal trapping. Moreover, the degree of superferent interface thickness and antitrapping are made. Further-
cooling, which is decided by liquid and solid tip concentra-more, the effect of convection is discussed and the
tion, is not a given parameter. Therefore, so far the phasg@uantitative comparison with the Oseen-lvantsov solution is
field simulations for alloys can only provide qualitative re- made before drawing the conclusion in Sec. IV.
sults. Solutions with a small enoughare scattered, and no
guantitative comparison has been made. The problem be-

. - Il. MATHEMATICAL FORMULATION
comes particularly difficult when therm@l2] and convec-

AND NUMERICAL SOLUTION

The dendritic growth from a small circle seed in a large
*Corresponding author. FAX: 886-2-2363-3917. Email addresssupercooled Ni/Cu melt at compositiay and temperature
cwlan@ccms.ntu.edu.tw To under a forced flow, as shown in Fig. 1, is simulated here.

1063-651X/2004/6@)/03160110)/$22.50 69 031601-1 ©2004 The American Physical Society



C. W. LAN AND C. J. SHIH PHYSICAL REVIEW E69, 031601 (2004

W Input Boundary (a)
R EREE RN
U: Co j: I FHH ot
Supercooled melt ] - T
T
194 " : :_:d-
z
8 5
2 3 (b)
3 c
no:) 3 e i nn
o P X m g S
= >
‘.ﬂ-,; \ 2 &:mw:: :m‘;:: + ras
£ Pure nickel seed at ¢=0 "5 EE L e
§, Zz EHEH ;; + j—#_
% i siiny H
i HHH s
T it -
-W E - T
0  OutputBoundary W
FIG. 1. Computational domain and physical boundary condi- FIG. 2. Adaptive mesh refinement grid structures (@
tions for a binary dendritic growth in a forced flow. diffusive growth ©=2x10°m); (b) convective growth

(6=4.9x10 8 m).
Due to the symmetry, a half domain is considered. For the
case of no convection, one can further reduce it into a quarterhe velocityw is rescaled by, /I to »*. Then, the govern-
domain, while setting the far field condition &g andT, on  ing equations used ii5] can be represented in dimensionless
the right boundary. In this study, for comparison purposes weorm
have used the isothermal approximation, which is the same
as that used by Warren and Boettin§gl, and the growth is V. v =0, (1)
mainly driven by concentration. Because the crystallographic . 2
directions have been aligned with the coordinate axes, a half Jdv
domain is adequate for simulation. A sample mesh for the S TV =Scv? *_VP*_Scﬁh(l_‘P)z"*'
case without convection having the smallest interface thick- (2)
ness =2x10°m) is shown in Fig. 2a), where local
magnifications of the dendrite tip are illustrated. For the d
cases with a forced flow in a half domain, a typical mesh is ot*
shown in Fig. 2Zb). Again, it is shown with three different
viewing scales. For comparison purposes, the WBM model d d
[3] is also adopted here, but the antitrapping scheme due to + W( ”’75&)
Karma [13] is included. Without antitrapping, the WBM
model was proposed by Wheeler, Boettinger, and McFadden Jc*
[3] using the minimization of a Gibbs free energy function. o TV Vet =V {D*[Vetc*(1-coc™)
Based on an entropy function, Penrose and Fif¢] and
Warren and Boettingef5] derived the WBM model for X(SE—Sh)Vp]+is}. (4)
nonisothermal growth. In order to present the governing
equations in dimensionless form, the variables are rescale@he first two equations are the equation of continuity and the

=M3z*2

g p)
V~(772V¢)—5(m73(9—j)

— M43 @3

The concentratiofatomic fraction c is rescaled by, to c*, equation of motion, respectively. In the equation of motion,
wherecy is the far field concentration. The length, in terms Sc=»/D| is the Schmidt number, whenme is the melt vis-
of the coordinatex andy, is rescaled by to x* andy*, cosity and assumed to be constant here. The source term is

respectively, and timeéby 12/D, to t*, wherel is a charac- related to the fluid/solid interaction for the two-phase region
teristic length and?/D, is a characteristic timeD, is the  for the diffusive interface, which was proposal by Becker-
solute diffusivity in the liquid. The phase field variabfeis ~ mannet al.[15]. In the rest of equations, the variable with a
set to be 1 in liquid and 0 in solid, while 0.5 at the interface.tilde is the concentration-weighted average. Inside the diffu-
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sive interface, the properties are weighted by a functiorsolution. Also,h(®)= ¢ is used such that the condition of
p(¢) from a double-well functiom(¢), which is defined by  conservation of mass is guaranteed; other selections are also
g($) = $2(1— ¢)2. The weighting functiomp(¢) for the av-  possible[13]. Although there are some differences between
eraged physical properties of the solid/liquid mixture is cho-Karma’s model and the WBM model, the choice tufeo)
sen such thap’(¢)=30g(¢) [5]. For example, the normal- here seems to work quite well in our simulation.
ized diffusivity of the solution is given by The boundary conditions are straightforward for the
above equations. The symmetry condition is used at the cen-
D*=D/D(co)=[Dst+p(¢)(D.—Dg)/D., (5 terline. On the right side, the velocity is by the stress-free
o e condition and the concentration constantgt the zero-flux
where the individual d|ffu5|V|ty has been assumed not af-njition can also be used for concentration, but the result is
fected by the solute concentration, e@('CO)f Di; bothDs e same due to the large domain used. The inlet velocity is
andD_ are assumed constant here, i@=D. In addition,  gjven to beU and the concentratiory,. The outflow bound-
S andSg are the normalized entropy @ (solven) andB  ary condition is further set by the overall mass balance. The
(solute, respectively, being scaled bR/V,, i.e., S pressure at boundary is then obtained by linear extrapolation
=SVn,/R (i=A or B); V,, is the molar volume an® the from the interior points.
gas constant. The entropies Afand B are defined as the We start the simulation from a pure nickel seed with an
following: initial radius 2. During growth, the mesh is adapted along
the interface and high concentration-gradient regions; 0.05
<¢$<0.95 and 0.X|Vc| are chosen for mesh refinement.
For the time integration, all variables are treated by the first-
order fully implicit Euler method, while a second-order finite
1 volume scheme is applied to the space domain. For the cases
Se(,T)=Wgg'(¢)+ p’(d’)AHB(T_ -I—_B>! (7)  with fluid flow, SIMPLE scheme based on pressure correla-
m tion used[16]. The finite volume method is simple and
where W, and Wy are constants and@®, and TZ, are the straightforward. For a domain, one can generate a number of
melting points ofA and B, respectivelyAH, andAHg are ~ Sduare finite volumes with faces in conjunction to its neigh-

. S ~ bor cells. Then, the integration of the conservation equations
k )
the heats of fusion per volume. Again, in E§), S° is the over each finite volume, with Gauss theorem, flux balance

1 1
SA(¢1T):WA9I(¢)+p’(d))AHA(?_ T—A>, (6)

concentration-averaged value, i.8%=(1—-c)S;+cS;. equations can be obtained for each cell.
The anisotropic function; in Eq. (3) is defined for the In order to have a large domain for calculation, while
fourfold symmetry as keeping the cells near the interface to be small enough, adap-
tive mesh refinemerAMR) is necessary. Provatas, Golden-
n=1+ycod4p), ®  field, and Dantzig[8] proposed an efficient adaptive finite

element method for simulation, and the ratio of the largest to
smallest cell size was up'2 Their computing cost scales
with domain size (?). Adaptive meshes were also consid-
ered by Brau17] and Amberd9,18]. Recently, Jeongt al.
further developed a three-dimensioitaD) AMR [19] for a

where y is the intensity of the anisotropy angB
=tan Y (d¢lay)l(d4lax)] determining the growth orientation
of the dendrite. In this study we have purposely chad€)
is in thex direction and010) is in they direction, so that the

fourfold symmetry allows us to take a half domain for Simu_dendrt'c rowth of a pure material at hiah ercooling. We
lation, which saves computational effort significantly. Fi- IC grow pu ateri Igh sup Ing.
) ) . o ) have also developed an efficient AMR scheme based on the

nally, the d|me2r1$|onless mobility functidd 3, , being scaled  finite volume method for dendritic growtf1,16. The de-
by D Vw/(RF), is taken from the average oM;  tajis of the adaptive finite volume method can be found else-
=T,,Bi/(6V2AH;5;), i=A or B, where g; is the kinetic where[16]. The scheme has also been applied to a noniso-
coefficient ands, the interface thickness, which are assumedthermal diffusive  growth (without convection and
to be the same foA andB here. Similarlyz*? is a dimen-  antitrapping as well[12]. In our AMR scheme, or simplicity,
sionless parameter being rescaled |By For each compo- we have adopted a simple way to do refinement using quad-
nent,s2=6v20,5,/T! , whereo; is the interfacial energy. rilateral cells. Sample meshes are shown in Fig. 2. In short,
All the parameters chosen are the same as thdgsg,iwhich for the refinement, the parent cell is subdivided into four kid
are similar to the ones used in the WBM mof{g]. cells, while for coarsening, the kid cells are deleted. Con-

The only difference comparing with the WBM model Structing the data structure is straightforward by using point-
[3,5] is in the last term of the concentration equation, whichers and derived data types BORTRAN 9a Detailed descrip-
is the antitrapping current introduced by Karrf3]. By tion of the adaptive data structure and a sample programming
following Karma’s papef13], j* can be defined as can be found elsewhefé6].

2c* dp Vo
1+k—(1—K)h(¢)|ot* [V’

j§=a|—6(1—k) 9) lll. RESULTS AND DISCUSSION

For comparison purposes, the Ni/Cu system used by War-
wherea is the antitrapping coefficient and needs to be ad+en and Boetting€l5] is considered here. The physical prop-
justed to fit the solid concentration of the sharp-interfaceerties and the system related parameters, unless otherwise
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FIG. 4. Calculated solute distributions for different interface
thickness along the centerline of the dendrite tip. The sharpe inter-
face concentrations are obtained by E)).

dendrite grows slower when the interface thicknéss re-
duced. The concentration buildup also increases with the de-
creasings. Moreover, the concentration profiles along the tip
for different §’s are shown in Fig. 4. As shown, with the
decrease of the interface thickness, the sharp interface limit
can be approached, where the tip concentrations are obtained
from the asymptotic limit of the WBM modéB,5]:

A " A
FIG. 3. Growth morphologies and solute fields at different in- \ ko [n(0)+7"(0)] Ty

+

terface thickness for diffusive growtlia) 6=4.9x10 8 m; (b) & BAn(6) LA
=2x10"°m; (0 §=1x10"°m; (d 6=5%10°m; (¢ & Ao Ao s
=2X10"° m. The calculations stop &t =100. _ ( (Tin) A) Rg(Trm) n 1-C¢

T M VLA T1-cg
stated, are the same as those[H];, T.=1594.5K, Tq B " B
=1574 K, c,=0.4083, y=0.04, and time step\t*=0.2, \ ko [n(0)+7"(0)]Ty
etc., as well as those parameters used in the WBM model; Bn(6) L®
Ba=0.33x102 m/(Ks), Bg=0.39x10"2 m/(Ks), La (T8)2 R(TE)? C
=2350x 10° J/n?, Lg=1728<10° Jin?, 0,=0.37 J/n, :( m _TB) ol =k, (10
and 05=0.29 J/m. Different interface thickness 8t 2 T m Vb Cs

X 10 °~4.9x 10 8 m) are chosen for comparison for diffu- _ o A 5 o
sive growth, and the adaptive mesh for the smallest interfac@hereV is the dendrite tip spee@” and 8* are tr;e kinetic
thickness §=2x10"° m) is shown in Fig. ). The char- Ccoefficients of the solvent and the solut, andL® are the

acteristic length =4.606< 108 m and the smallest cell size TABLE | Calculated interf rat q i
AXpin=1.497X10"° m are chosen here; the smallest cell - Lacuiated inferlace concentraions and segregation

size used here is also much smaller than that used befoﬁgefﬁcients for various_ir;terface thickness; the antitrapping results
[5,9]. For 6=2x10"° m, the domainV=10d is the small- based o@=4.910 ~ m.

est one and the simulation stopst&t=100, which corre- 5(m) cS' 8 ¢ Ce G /CS cucs Kk
sponds to 0.212 ms in real time. In all cases, the tip speed L s - STt s
reaches to a steady state whgn-30. For other casedy 49x10°8 1.108 0.945 1.035 0.976 0.934 0.881 0.943
=750 has been used. Due to the use of the small interface2.0<10°8 1.105 0.942 1.049 0.969 0.949 0.877 0.924
thickness, the computation time increases with the decreasi.0<10°® 1.104 0.941 1.065 0.963 0.965 0.872 0.904
ing . For the smalless, the calculation takes about a week, 5.0x10°° 1.104 0.940 1.080 0.958 0.978 0.868 0.887
which will be discussed shortly. The calculated morphologies 2.0x10°° 1.105 0.941 1.093 0.953 0.989 0.862 0.872

using different interface thickness are shown in Fig. 3. Asantitrapping 1.110 0.946 1.058 0.940 0.953 0.847 0.888
shown, the calculated morphologies are very different, and
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FIG. 5. The calculated segregation coefficients, with solute trap- FIG. 6. Various normalized concentration driving forces as a
ping, as a function of the diffusion velocityy [21] and the com-  function of the interface thickness.
parison with the results by Aziet al. [20].

With Pc andA 4, the comparison with the classic Ivantsov

latent heato” ando® are the interfacial energy, andis the  solution[22] is possible. If we have &, the driving force
tip curvature. In Fig. 4 the shape-interface concentration proa , based on the Ivantsov solution can also be obtained:
file in the melt is obtained by an exponential function. In Eq.  ©
(10), if the kinetic coefficients are infinity, the equation is —
precisely the Gibbs-Thomson equation. However, in Eq. Apc=VmPcexp(Pclerd VPc). 1D
(10), if we want to calculate the concentrations for the sharp
interface limit in addition to the tip speed, an accurate However, this equation is correct only for*=¢®=0 and
estimation of the local tip radius (or 1/k) is necessary. To 8" andg® are infinity. Similarly, based on E¢10), which is
do so, we have adopted a fourth-order polynomial to fit thethe sharp-interface solution of the WBM model, one can cal-
tip within 31, the calculated tip radii and other values ex- culate another driving force, which can be denotedA&s
tracted from the simulation for variouss are listed in Table = (CJ'—C[")/(CP'—C2"); Sl stands for the sharp interface.
| for comparison. The calculated segregation coefficients forhe comparison of these three driving forces is illustrated in
different 6’s also follow nicely with the model by Aziet al.  Table II, as well as in Fig. 6. As shown, the maximum in-
[20], ie., k,=(k+V/Vp)/(1+VIVp), where Vp  consistency betweeAp and AS'" with the Ivantsov model
=0.207D, In(1k)/5(1—Kk)] [21], as shown in Fig. 5. for the smallest interface thicknes=2x 102 m) is only

With the tip speed, radiugocal ong, and concentrations, about 8%, while the agreement betwetep,qandAS' is also
the growth Peclet numbé?c=pV/2D_ and the normalized reasonable. Furthermore, the results in Table Il are consistent
growth driving forceA ,,¢=(C_—C[)/(C_—Cs) based on with those obtained by Warren and Boettingit, but they
the phase field model can be evaluated, witgreandCsare  were not be able to solve the whole dendrite by using the
the tip concentrations at the liquid and solid sides, respecsmallest interface thickness. We also put the overall tip ra-
tively, and C;” is the concentration at infinity in the melt. dius in Table Il for comparison. In general, the overall den-

TABLE Il. Calculated tip radii, Peclet numbers, and normalized concentration driving forces for various
interface thickness; the antitrapping results are basef-o04.9x 108 m.

5 (m) Overall p(1) p() V(D /) Pc Ap, Amod AS! Errof
4.9x10°8 14.793 3.817 0.656 1.252 0.788 0.593 0.661 19.19%
2.0x10°8 9.091 2.839 0.669 0.950 0.751 0.613 0.643 16.78%
1.0x10°8 6.954 2.464 0.621 0.765 0.720 0.637 0.637 13.05%
5.0x10°° 5.097 2.393 0.579 0.693 0.705 0.656 0.635 11.02%
2.0x10°° 4.690 2.349 0.545 0.640 0.694 0.664 0.640 8.32%

Antitrapping 4,921 2.447 0.500 0.612 0.687 0.492 0.671 2.38%

“The relative error is obtained faxp_ by usingA®' as the reference, i.e., errofAp_—AS)/AS!
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TABLE Ill. Computational comparison for various interface thickness and the antitrapping cése at
=100.

8 (m) Domain size ()  Axpa(D/level  Axp, (1) At (12/D.) Total grids CPU timghn)

4.9x10°8 750X 750 10/5 0.625 0.2 8004 0.21
2.0x10°8 750X 750 10/6 0.3125 0.1 15915 0.65
1.0x10°8 750X 750 10/7 0.15625 0.05 21033 3.92
5.0<107° 750X 750 10/8 0.078125 0.02 42510 23.82
2.0x107° 100x 100 10/9 0.0390625 0.005 113485 175.75
Antitrapping 75750 10/6 0.3125 0.2 14325 0.43

drite tip radius is about twice larger than the local one. Be-Tables | and Il also show that the results obtained from the
cause the solutal boundary layer is only a fevand the tip  antitrapping scheme gives good consistency in the driving
concentration is affected by the local tip radius, the use of théorces with the thin-interface solution, except, 4. Besides,
local tip is found to be more reasonable for the Ivantsovthe CPU time for calculating the antitrapping flux is quite
solution as a whole. Furthermore, as shown in Fig. 6, withtrivial. Interestingly enough, as we have seen the large dif-
the decreasing interface thickness, the normalized drivinderence in the dendrite morphology for differefs in Fig. 3,
forces seem to converge to a range near 0.67. Similarly, thithe difference at later time, say =500, is even larger, as
is consistent with Fig. 3 that the dendrite tip shape and speeitlustrated in Fig. 8 for the ones with and without the anti-
converge with the decreasing interface thickness. Howevetrapping current; the one with antitrapping is assumed to
the computation time for this case with the smallest interfacéhave a similar morphology as the one wifk=2x 10 ° m.
thickness =2x10°m) is tremendously long already, The more morphological features of the antitrapping solution
and further reducing the interface thickness is unrealisticare believed to be the cause of the larger solutal driving
The domain size, maximum cell size/level of mesh, mini-force. Again, in both cases, no noise has been introduced.
mum cell size, time step size, the total cell number used at Nevertheless, if we examine the concentration profile
t* =100, and the CPU time used are listed in Table Il foralone the dendrite center in Fig. 4, this antitrapping scheme
comparison. As shown, the number of total cells and thdails to give a good concentration distribution in front of the
CPU time increase rapidly as the interface thickness is redendrite tip. The maximum tip concentration is pumped up
duced. Also, the time step size needs to be reduced for ly the antitrapping current, while the whole profile is pushed
smaller é to ensure numerical stability. forward to the melt side as well. As a result, is,,q, as
In order to reduce the CPU time, while showing the pos-shown in Fig. 6, is the worst among all cases. Indeed, its
sibility of obtaining a reasonable solution, we have chosemmaximum tip concentration is too low for a reasonable pre-
the largest for the simulation with the antitrapping current. diction of the driving forceA,,q. However, other features,
The antitrapping coefficierd= 12, which is twice of Kar-  such as the tip speed and radius, seem to be good enough for
ma’s choice[13] in Eq. (9) is picked by matching the solid our needs. Fortunately, since the tip speed and radius can be
concentration obtained by E@L0), i.e., the sharp-interface correctly estimated, getting a right tip concentration is
limit. Surprisingly, the calculated morphology agrees verystraightforward by using Eq10). If we do so, the solution
well with the one obtained by using the smallésh Fig. 3, happens to be quite satisfactory. The agreement with the
as shown in Fig. 7, at*=100. The calculated values in Ivantsov solution seems to be quite good as well, as shown
in Fig. 6. From this, it may be appropriate to conclude that
MR the antitrapping scheme amends the problem due to the thick
i, | interface, while the solution behavior away from the inter-

i : : ;

0.94 G =T
\ O | c* |

i0.94 i0.94

(b)

FIG. 8. Comparison of the growth morphologies and solute
FIG. 7. Calculated growth morphology and solute fieldtat  fields att* =500: (a) without the antisolute trapping currergh)
=100 for 5=4.9x 108 m with the antisolute trapping current. with the antisolute trapping current.
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FIG. 9. Calculated growth morphologies and solute fields* at FIG. 10. Calculated growth morphologies and solute fields at
=500 for various external flow velocities without the antisolute t* =500 for various external flow velocities with the antisolute trap-

trapping currentp=4.9x 108 m. ping current;6=4.9x 1078 m.

face is not much affected. If this argument can be accepted, a
more complicated and realistic problem, such as nonisother-
mal and convective growth, can be solved easily by using the 4
same antitrapping coefficient.

After building the confidence for the diffusive growth, the
antitrapping scheme is applied to study the effect of convec
tion on the growth, which is a much more difficult problem
from the computation point of view. The domain required for
convective growth should be much larger due to the large
momentum boundary layer thicknedg, which can be esti- 06
mated by g M’“‘W‘W“‘W R

08

Forced flow growth LAI*=8

v  6.25x10° 7 m?/s Diffusive growth

Lp_Den Y s -5 04}
S~y 0015 s =4 1X10°° m~1000,
(12)

wherev is the kinetic viscosity an® is the steady-state tip 02

speed. Based on this approximation, the domain size o
8000x 40002 is chosen. A computation using such a large

S . - : : |
domain is formldable_ for a smalb or using a structured 05 0 260 0 T =00
mesh. With out adaptive scheme, the problem can be solve ¢
in 70 000 cells withAx;,;,=0.3125 att=500, but § cannot
be too small §=4.9x 10°° m). Figure 9 shows the mor- FIG. 11. Calculated upstream tip grow speeds in the presence of
phologies and the concentration profiles calculated by thegifferent external flow velocities with the antisolutal trapping cur-
standard WBM model at* =500 under various external rent; the lines from the bottom até* =0, 1, 2, 4, 6, and 8, respec-
flow velocities. A small window of 10085002 is used for tively.
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better illustration in Fig. 9. The flow field around the dendrite sidearm normal to the flow direction is lopsided, and it be-
for U* =8 is also illustrated in the last plot. Figure 10 showscomes more significant with the increasing flow velocity.
similar results, but with the antitrapping flux. Again, both Such a lopsided arm was also observed in experinf@3s

results are quite different, and the solute trapping in Fig. 9 The lopsided arm is also observed in Fig. 10 with the

leads to a much smaller concentration buildup in the growﬂﬁ]ntitrapping_(;:urrent. In ?r?dition 10 t(;'.e slower :grotvvtr:j rate,
front. In both figures, it is clear that the tip growth speed € major side arms In e groves disappear. instead, more

) ith th ‘ | velocity which is simply due t small side branches are induced with a stronger forced flow
INCreases wi € external velocity which 1S simply due 0along the upstream dendrite primary arms. They are believed

the thinner boundary layer in a stronger flow, and the upyy pe the cause of the larger concentration gradients and
stream tip grow speed reaches steady statetfieall00 be-  faster forced flows that contribute more to the morphological
cause of the fully developed solutal boundary layer as showfhstability. Furthermore, an extension of the Ivantsov solu-
in Fig. 11. Besides, in Fig. 9 we can see that the side branchton to the convective growth is also possible. Similar to that
ings have preferred growth orientations. Near the upstrearderived by Bouissou and Pel¢24], the Oseen-lvantsov so-
arm, the side branches grow upward, and the ones in thigtion for a concentration-driven growth in a forced flow can
downstream side grow transversely. In addition, the primanbe written as

|
)fw exp{— Pcn+ P2+ [ 79(O)/N7de— 7]} .
f 1 \/7—7 n

APCZ PC eXF( PC_ P (13)

whereP; is the flow Peclet number defined bjp/2D, , and

JZ erfo VRe/2) + 217 Re)[exp( — Rel2 —exp( —Rel/2)]
erfo(\/Re/2) ’

where Re=Up/v is the Reynold’s number. The solution of factor o* is a function ofc;” only. In addition, the ratio of
this implicit equation is simple and straightforward. The cal-the scaling factors, i.e.,of*)y/c*, without and with fluid
culated tip velocities, solute concentrations, tip radii, and reflow is a function of a dimensionless groug; x
lated values are shown in Table IV for the cases with and=a(Re)U/(y**pV), where a(Re)=\2 Refrexp(—Re/2)/
without the antitrapping current. Again, because the solut@rfc(/Re/2). It has the form ofd*),/o* =1+by¥14[24],
concentration at the sharp-interface limit cannot be accuwhereb is a constant. I is small enougtithe forced flow is
rately estimated by both calculations, we have to recover thgea), this ratio should be independent of the flow velocity
values using Eq(10). As such, the shape-interface driving as shown in Fig. 13, which is in good agreement with the
force AS'is calculated. Finally, we can compare our calcula-prediction of the linearized solvability theof@4]. Also, in
tions with the Oseen-lvantsov solution in Flg 12. As ShOWﬂ,the cases of strong external ﬂovm-"()o/a-* increases S|0w|y
a much better agreement with the classical theory is obtainefloth in the standard WBM model and our present antitrap-
for the calculations using the antitrapping flux than that byping calculations. The information of scaling factors also
the original WBM model; there is about 40% error for the shows good agreement with the previous theory for the den-
original WBM model without the antitrapping current. Fur- dritic growth of a pure substan¢ao0].
thermore, it should be noticed that unlike the temperature- Furthermore, unlike the temperature-driven groth],
driven growth, the driving force here is not unknoarpri-  the solutal boundary layer is very thin he@bout several)
ori, and it is a part of solution for the concentration-driven and the tip concentration is associated with the local tip ra-
growth. Without a good concentration calculation, the pre-ius. The use of an overall dendrite shape for calculating the
diction of the tip speed and morphology is not possible.  tip radius cannot restore the assumption used in the Oseen-
The Oseen-Ivantsov solution provides the relationship betantsov solution, where a parabolic tip is assumed. There-
tween Pc and the driving forceA. However, the solution  fore, the use of the local tip radius happens to be necessary
alone cannot determine the tip spe¥dand tip radiusp  for getting a good agreement here. The overall dendrite tip
uniquely. According to the stability analysis, Langgral.[1]  radius is about two times larger than the local one. Again, as
found an additional equation showing that the scaling factomentioned previously, the estimation of the local tip radius is
o*=2doD/p?V is a property-dependent constant for thealso not trivial. The fourth order polynomial gives the best
dendritic growth of a pure substance. This criterion postuand consistent fitting to the tip morphology.
lates that a dendrite tip grows at the margin of the stability. A
further analysis by Kessler and Levif25] also pointed out
that the steady state solution is not possible except the an-
isotropy is introduced. Liptoret al. [26] also derived the An efficient and quantitative phase field simulation using
marginal solvability theory for binary alloy, and the scaling an antisolutal trapping scheme is presented for a

IV. CONCLUSIONS
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TABLE IV. Calculated values from the upstream tip in convective growth u&hthe standard WBM model an@) with the antisolute

trapping current.

U(D_/1) V(D /) o Cs A mod Overall p(1) p(1)
€Y
0.5 0.651 1.036 0.977 0.610 15.77 3.846
1.0 0.655 1.033 0.977 0.589 15.53 3.820
2.0 0.662 1.035 0.977 0.603 15.63 3.870
4.0 0.677 1.031 0.977 0.574 15.87 3.990
8.0 0.705 1.031 0.977 0.574 17.24 4.181
16.0 0.750 1.026 0.977 0.531 21.28 4.794
UL/ cp cg Pe P, A8 pL
0.5 1.112 0.948 1.252 0.962 0.683 0.609
1.0 1.112 0.948 1.251 1.910 0.683 0.634
2.0 1.111 0.948 1.281 3.870 0.681 0.685
4.0 1.111 0.947 1.351 7.980 0.677 0.786
8.0 1.110 0.946 1.474 16.724 0.671 0.968
16.0 1.109 0.945 1.798 38.352 0.665 1.318
(b)
U/l V(D_/I) C. Cs A mod Overall p(1) p(l)
0.5 0.503 1.062 0.941 0.512 5.94 2.446
1.0 0.505 1.059 0.941 0.500 5.96 2.426
2.0 0.523 1.064 0.941 0.520 5.99 2.456
4.0 0.559 1.061 0.940 0.504 6.05 2.476
8.0 0.617 1.054 0.939 0.470 5.88 2.434
U(D./1) c? cg' Pc Py AS! Pc
0.5 1.112 0.948 0.615 0.612 0.683 0.607
1.0 1.112 0.948 0.613 1.213 0.683 0.620
2.0 1.112 0.948 0.642 2.456 0.683 0.651
4.0 1.112 0.948 0.692 4.952 0.683 0.724
8.0 1.109 0.944 0.751 9.736 0.661 0.775
1.5 2
A s+ Standard WBM model
A
T 4 s * Presentanti-trapping method
1 - 15 -
*
L
Q.O | ] E ,-3
*
] o o
n N’
@- de ®
0.5 linear solvability
4 Standard WBM model 5=4.9x10°m
B QOseen-lvantsov solution using A® (WBM model)
A Present anti-trapping study
00 Oseen-Ivantsov solution using A% (anti-trapping)
] 1 1 1 0.5 | !
0 2 4 6 8 10 0 2 a 6
P, X

FIG. 12. Comparison of the calculated growth Peclet number as FIG. 13. Comparison of the calculated scaling faciet Yo /o™*
a function of the flow Peclet number with the Oseen-Ivantsov soluas a linear dependence of the dimensionless gnodfi* with the
linear solvability theory.

tion.
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concentration-driven growth of a binary Ni/Cu dendrite in athe thin-interface solution. Nevertheless, if one can restore
forced flow. For diffusive growth, several interface thick- the concentration from the sharp-interface limit of the WBM
nesses have been examined and compared with the shafpedel, a good and consistent agreement with the theory can
interface limit and the classic Ivantsov solution, and gooche obtained. Such an agreement is also found for the growth
agreement is obtained. It is clear that due to solutal trappingn a forced flow, which requires a much larger computational
the driving force for the growth is difficult to compute accu- domain. Moreover, the dimensionless scaling factor ratios
rately, so are the dendrite tip radius and speed. Such errogge linear proportional to the flow paramesei/*4 which is
decrease with the decreasing interface thickness, but unfoiy good agreement with previous analytical study. The use of
tunately the computational cost also increases rapidly. Thushe antitrapping scheme indeed reduces computation costs by
for a realistic and quantitative simulation in a Iarge domain,severa| orders and opens a window for a realistic and quan-
it is extremely difficult to use a thin interface. By using an titative alloy phase field simulation.

antitrapping flux, the limitation on the interface thickness can

be much relaxed. The calculated growth speed and solute

concentration in the solid side, as well as the dendrite mor- ACKNOWLEDGEMENT

phology, are in good agreement with those obtained by using

a much thinner interface. However, the tip solute concentra- This research is sponsored by the National Science Coun-
tion in the melt side remains to be small as compared witteil of the Republic of China.
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