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Self-diffusion in dense granular shear flows
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Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are
the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of
granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-
dimensional Couette geometry. We find that self-diffusivifieare proportional to the local shear ratewith
diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular
direction. The magnitude of the diffusivity B~ ya2, wherea is the particle radius. However, the gradient in
shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements
that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the
mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to
the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that
is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is
suppressed along the direction of the strong force network. A simple random walk simulation reproduces the
key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean
velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the
simulation since the strong force network is not included. Examples of correlated motion, such as transient
vortices, and Ley flights are also observed. Although correlated motion creates velocity fields which are
qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the
system appears simply diffusive.

DOI: 10.1103/PhysRevE.69.031308 PACS nunier45.70.Mg, 45.05tx, 45.70—n

I. INTRODUCTION In this paper, we characterize the self-diffusivity of grains
in a two-dimensional2D) Couette shearing experiment by
studying individual particle trajectories over time. In contrast
Despite the prevalence of granular materials in nature antb most previous results, we focus on quasistatic dense flows.
industry, a coherent understanding of granular flows is stilln this regime, since particles are constantly in contact with
lacking. Particularly in dense systems, features such as jantbeir neighbors, interactions are not collisional and material
ming, shear bands, and the coexistence of solidlike and liglow is largely confined to a shear band with a nominal thick-
uidlike regions make it difficult to offer a simple theoretical Ness on the order of 5 particle diameters. _
description. Fluctuations in both the force network and par- Several observations from the present experiments are

ticle velocities can be of the same magnitude as the meaPteworthy: (1) We find that particle diffusivity is propor-

values and are known to be important aspects of the microt-'onal to the local shear rate, with diffusivities approximately

scopic behavior of dense granular flofts. Due to the com- twice as large along the mean flow direction as the perpen-

. icular direction.(2) We show that unlike rapid flows, the
plexity of.these systems, one of the k(.ay.goals of curren nisotropic force network induces a substantial anisotropy in
research is to develop a statistical description of steady stal

. . i fie diffusivity. This is in addition to the usual anisotropy
behavior, such as a thermodynamic or hydrodynamic mode nduced by the direction of mean floW8) Care must be

Fundamental to statistical approaches is understanding thg,an when calculating diffusivities in a shear gradiga],
mean fluctuating part of particle motion, which is described,g motion can appear to be subdiffusive or superdiffusive due
by a granular diffusivity. _ _ to a gradient in the shear rate or Taylor dispergidh]. We
Sheared granular systems have received considerable @kiow through a simple Fokker-Planck model that apparent
tention recently[1-3] as an important example of granular g hgiffusive or superdiffusive behavior can be attributed to
flow. Diffusion, in particular, has been studied in a variety of gpaqr gradient and boundary effectd) Hence, the grain
granular systems, such as vibrated graiAss], tumblers  mqiion'is statistically consistent with a simple random walk
[6,7], chute flows|8—10], and sheared systerfisl—19, but i, the presence of shear gradier®. Nevertheless, at larger
these studies have predominantly focused on rapid flow respatia| scales, we occasionally observe correlated motion and

gimes. Understanding slow, high density, flow is not trivial Lévy flights. But these events are rare and do not have a
[18]; there is no replacement at the fundamental level forsignificant impact in the mean.

collisionally based kinetic theories that are expected to apply
only in the dilute rapid flow regime.

A. Overview

B. Models for granular diffusion

In the kinetic theory approach, a granular temperature is
*Electronic address: utter@phy.duke.edu often defined as«=((v—v)?), with instantaneous particle
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velocity v and mean velocity, in which the velocity fluc- Here, x corresponds to the streamwise direction gnid
tuations contribute to a temperature in analogy with molecuPerpendicular to. The left-hand sides of Eq¢2)—(4) cor-
lar gases. respond to they?, xy, and x?> moments of the probability

A different approach was recently proposed by Makse andlensityP.
Kurchan, who applied uniform shear in a numerical experi- The higher order terms in E¢4) are due to Taylor dis-
ment and measured diffusivip and mobility y to define a  persion. For in§tance, the term arises because diffusive
temperaturd/y by analogy with fluid systemidl4]. In their ~ motion along=y moves grains to regions of different mean

model, they report that the Oth lathermal equilibrationis  velocity v(y)x which tends to increase their separation or
satisfied in a bidisperse mixture, supporting the thermOdy'dispersion along the direction. These higher order terms

hamic picture. _Th|s IS In contrast to exper_lmer_ltal MEASUree 5 ntribute to mean squared displacements which therefore
ments of kinetic granular temperature which find a lack Ofappear superdiffusive

equipartition when different types of particles are present It must be emphasized that Eq®)—(4) are derived as-
[22|,2?§. ic B ian diffusion i bounded . suming that the diffusivities and shear rate are constant in
sotropic Brownian diffusion in an unbounded system 'Sspace and time over an infinite plane. This condition is not

often characterized_ _by the t_ime_ evolutio_n of the second MOMet in the current experiment which changes the specific
ments of a probability distribution functioPDF). For ex- form of the correction terms

ample, Several issues concerning a diffusive picture must be ad-
(x2)=2Dt, (1) dressed for sh_eareq de_nse grgnular materials to determine

whether Brownian diffusion applies. Two of these issues are

wherex is the particle position relative to its initial position the presence of a shear band and the limiting boundary at the
(v=Ax/At for a small time stept), D is the diffusivity, _shearlr_1g surfa_ce. Ev_en assuming tha; a diffusive description
andt is time. is applicable, it remains to be determined on what temporal
More generally, diffusion must be described by a tensorO" SPatial scales such a description should apply. In dense
For instance, diffusivities along the flow direction in granular duasistatic flows, grains are generally close to a jammed state

gases are in general different from transverse diffusivitied" which particles are in constant contact. Motion of grains
[12,17,18. requires the creation of voids, so correlated motion might be

Diffusion in even a simple shear flow is complicated by expected to be particularly important in dense 2D systems
Taylor dispersion effect§21], in which diffusive motion where paths are constrained. Short-lived vortex structures

couples to the mean flow leading to larger dispersion alond/@ve been seen in 2D granular simulati¢hS] and experi-
the flow direction, as recently elucidated in systems of noniN€nts on 2D shearing of foanj@5]. These are potential

colloidal particleg20]. In this case(x?) is nonlinear in time, déviations from Brownian diffusive behavior which might
i.e., it contains higher order corrections due to the coupling®€ct the time evolution of the moments.

of the shear to the diffusive motion. Simply subtracting the

mean flow from particle trajectories and computing diffusivi- C. Previous measurements and simulations

ties does_not give accurate results Ln thisAsy_sEéﬁ]. _ The full diffusion tensor has been measured in granular
In particular, for flow of the formv = yyX, i.e., uniform  gases using kinetic theof{7], simulations of rapid granular
unbounded shear flow in two dimensions in which there is ahear[18], and shearing of noncolloidal suspensi§a6].

constant shear ratg creating a velocity gradient in the Substantial work on granular diffusivity in rapid flows has
direction, the second-order moments are given by Refdheen done by Hsiau and co-workers who have measured self-
[20,24: diffusion coefficients in a variety of granular systefid—
13,27. They find that fluctuations are anisotropic, with the
(yy)=2Dt, (2)  largest fluctuations along the flow. Diffusivities are found to
increase with shear rate and depend on the square root of the
(xy)=2D,t+ Dyy'ytz, (3y  9ranular temperatur® in agreement with kinetic gas theory.

Other results in a similar chute flow were subsequently pre-
. 2 _ sented by Natarayaet al. [10].
(xx)=2Dxxt+2Dnyt2+§Dyyy2t3. (4) Losert et al. studied a 3D fluidized Couette experiment
[3], in which velocity fluctuations were found to be slightly
Th i d ib bl f i I(irger in the direction along the mean flow. These fluctua-
pogi?iines?;?t)lo;(st ) ?Zfar;ivi ?ontr?gspgrrliclz ,:‘Y;{;?Togaﬁ%ir '%Bns decrease roughly exponentially far from the inner cyl-
li.e., [(x(0).y(0)]=(0.0], without subtracting the mean flow. inder, but decrease more slowly than the average velocity.

: . Radjai and Roux studied particle velocity fluctuations in
These relations follow naturally for a PDF described bynumerical simulations under homogeneous strain in which

Brownian anisotropic diffusion with mean local flow as  there was no shear band formatiph5]. They measured
above, and a diffusion tens@, with elementsD,,, Dyy,  anomalous diffusion with an exponent of Grather than 0.5

andD,y=Dy,, where for ordinary diffusion which they attributed to long-time
. configurational memory of a granular medium in quasistatic
JPlot=v-VP+V.DVP. (5) flows.
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using a 2 megapixel charge-coupled deviGD) camera at

a frame rate of up to 7.5 Hz. Sequences of approximately
1500 images are analyzed to determine particle trajectories.
Disks within about 20 particles diameters of the shearing
wheel are marked with lines, thus allowing us to track par-
ticle position and orientation and to identify particles by size.
Approximately 4000 grains are typically in the field of view,
of which 2500 are marked. Images are thresholded and the
orientation and position of lines on the disks are found. Suf-
ficient temporal resolution is used such that each particle in a
frame can be connected with the closest grain in the subse-
quent frame to establish particle trajectories.

FIG. 1. Schematic of experiment as viewed from above. The The force network can also be visualized since the grains
granular materialb) is contained by the shearing whéa) and the ~ are made of a photoelastic mater[@l]. When polarized
outer ring(c). Their radii areR;=20.5 cm andR,=51 cm, respec- light travels through the disks, it experiences a phase shift
tively. On the right is a section of an experimental image of the(birefringence proportional to the difference in principle
grains. stresseso,— ;. When the disks are illuminated between

crossed polarizers, grains under larger stress are seen as re-

Diffusivities have also been measured in a 3D rotatinggions of larger gradients in light intensity. In this way, the
tumbler[6,7], 2D swirling flow[28], chute flow[9], simula-  force network is visualized as a network of bright lines on a
tions of shaken spherdd], and simulations of small num- dark background. Additional details were presented by How-
bers of spheres in suspensid8]. Earlier studies primarily ell et al.[1]. The polarizers are removed for measuring par-
addressed rapid flows from kinetic thedt6]. ticle trajectories and diffusivities.

Although these studies are relevant here, we note that the
displacements were assumed to be purely induced by the
shear flow and no attempt was made to investigate the role of IIl. DIFFUSION MEASUREMENTS
the force chain network.

102 cm

A. Mean velocity profiles

D. Organization of presentation We first consider the mean properties of the flow. In Fig.

. . . 2, we show the mean tangential velocity, versus radial
The paper is organized as follows. In Sec. I, we descr'bedistance from the shearing surfacesR— R, , whereRis the

tmhgnfgesrén;ﬁnfﬁl ;ﬁghrgggﬁss}r\évﬁ] grf:r?;érg'w;:fgimmli:ig:]%'istance from the center of the shearing wheel. The velocities
i are scaled by the velocity of the shearing surfadg

in Sec. IV. We show the impact of the anisotropic force net-_ ; . . o
work in Sec. V. We discuss diffusivities determined from the _ 0-28./S Whered is the mean particle diamet¢d=(ds
+d)/2]. For this particular run, we used a frame rate of

velocity autocorrelation functions in Sec. VI. In Sec. VII, we . .
: . : ., . ' 1.08 Hz, so that the shearing wheel was displacedd.25
_show_example_s of intermittent vortices andyye‘llght tra- between each of the 1080 images which, in totapl correspond
jectories, and in Sec. Vi, we draw conclusions. to one revolution of the shearing wheel. The limiting value
for v, of approximately 104 corresponds to the sensitivity
Il. EXPERIMENTAL TECHNIQUES of the measurement for a typical number of images and spa-

The experiment is performed with a 2D Couette apparalial resolution, e.g., for an image resolution of 20 pixels per
tus, as sketched in a top view in Fig. 1. The granular materiafliameter, a grain displacement of 1 pixel over the entire run
(B) consists of a bidisperse mixture of about 40000would give a mean velocityv ;= 1o55(d/20)1.08 Hz=5
disks (diameters dg=0.42 cm, d,=0.50 cm, thickness Xx10 °(d/s) (or v/Vy~10"*%) and velocities smaller than
=0.32 cm) in a ratio of 3 small:1 large. The bidisperse mix-this cannot be resolved. Motivated by previous results for
ture is used to inhibit crystalline ordering of the disks. TheCouette sheaf2,32], we fit the data (<7.5d) to an expo-
disks lie flat on a Plexiglas sheet bounded by an outer ringnential [v,(r)=1.071exp{-0.52k)] and to a Gaussian
(R,=51cm) (C) and an inner shearing wheelR( [v4(r)=0.925exp{0.284 —0.05342)].
=20.5 cm) (A). A Plexiglas sheet covers the experiment to  From this individual run, the Gaussian fit seems most ap-
protect the experiment from external perturbations, but the@ropriate. However, this is an artifact of the data resolution.
sheet does not contact the particles. The shearing wheel Additional data with slower frame rates point to an important
rotated at a frequenclof 0.1-10.0 mHz or a speed of issue concerning particle tracking velocimetry. If the number
~0.013-1.3 cm/s at the shearing surface. The experiment if imagesN remains fixed, by taking data using slower frame
initially run for at least one revolution of the shearing wheelrates, velocities of slower particles further from the shearing
in order to avoid effects from transients, an issue that will besurface can be accurately measured while faster particles at
addressed in another pad80]. The shearing wheel and the the shearing surface can no longer be accurately tracked. We
outer ring have teeth with gaps comparable to the size of thehow these results in Fig. 3 in which the frame rate
smaller particles. (=1/At) is varied for different runs at the same imposed

The system is lit from below and observed from aboveshear rate (=1 mHz, N=1500). The individual curves are

031308-3



B. UTTER AND R. P. BEHRINGER PHYSICAL REVIEW B9, 031308 (2004

1,00y : " : 0 : 0 : ' T
! — V= 0.925 exp(-0.284 1 - 0.0534 *) - — d=0253] 3
0.80 — = V=1.071 exp(-0.521 r) s 10s
S A A experiment 20FE /S, TSN 00 == 80s =
z >
'§ 0.60 Tg) 102 <
= >
> i
-2 040 £ 10
= &
o g
5 = 10t
= 0.20
107 r
0.00 Radial Distance (d)
T T I T T T T T Y T T T T T
1.0000 3 10750084, , v A=03s E
F E "'vQAA i : 2'92“
5 r ] SN v":#gA 105 _
= r 1 = 10 '00e m 60s E
> 0.10005— . > 4“ — 841 expl-1.25x]
- ] 2 107
E - - >
Z 00100E - &
I 3 E 2 10”
= o 'W ] )
5 | i
& 00010 . 10"
[ E AA A E E
L A A, A ] 10-5 - | i ] | ) i
L & A 0 2 4 6 8 10 12
.50 ' N S B S Radial Distance (d)
o 2 4 6 8 10 12
Radial Distance, r (d) FIG. 3. (a) Tangential velocity vs radial distance from the shear-

ing surface using experimental runs at different frame rates
FIG. 2. Mean tangential velocity vs radial distance from the (=[1/At]) as described in text. Velocitias are shown relative to
shearing surface plotted on(@ linear and(b) logarithmic scale for  the velocity of the shearing surfatg=0.28/s. (b) Data is shown
a particular run. The velocity is scaled by the velocity of the where velocities can be resolved given the frame rate and number

shearing surfac®,. The experimental data/(,r<7.3d) is fitted  of pictures. An exponential tail is observed in whigpce 29,
to an exponential(dashed ling and a Gaussian(solid line).

f=1 mHz andV,=0.28i/s. whereN represents number of pictures, and the image reso-

lution is 20 pixels per diametat. The lower speed limit is
accurate over a particular range of velocities based on thset by image and temporal resolution. The upper limit is
frame rate and number of pictures in the run. In Fign)3we  chosen to resolve the occasionally fast displacements well
show data for each set within this range. It becomes eviderdbove the mean. Note, however, that the upper cutoff is not
that the velocity profile has an exponential tail which is ob-an issue when the speed of the shearing surface is less than
scured when simply analyzing a single run. Previous result§/At, since generally, all particle displacements can be re-
have shown exponentidll,19], Gaussian2], and similar iolved, e.g., foAt=0.3 s and 0.925 s, the requirement that
strongly decaying3] velocity profiles for Couette flow. Au- v ,<0.1(d/At) is not necessary.
thors of these studiefl,2] have suggested that the differ-
ences in measured profiles may depend on whether the flow
is 2D or 3D or on whether the particles are rough or smooth.
The present data suggest that an additional factor may be We measure diffusivities by tracking individual particles,
spatiotemporal resolution. Particle tracking issues in particuand hence their displacements, over time in both the radial

B. Radial and tangential diffusivities, D,, and D g,

lar have been addressed recently by efial. [33]. (r) and tangential §) directions. We subtract the mean flow
We conclude that correct tracking occurs for velocities(Fig. 2) from the tangential velocity component at each time
that approximately satisfy step.
Although Egs.(2)—(4) characterize absoluteandy dis-
t1d ~ .9 (6  Placements without subtracting the mean flow, they are also
N 20 At~ 7 AL predicated on a velocity profile such thét(t))=(y(t))
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FIG. 4. Mean displacement squared vs time for tangential and. 3 tor radial and tangential velocity components.
radial directions for particle trajectories starting at<2r <3d and

shearing wheel frequency df=1 mHz. Dotted lines show linear

fits tot<30 s. and occurs with 4 s for this data. Therefore, diffusivities
o ) ) o measured for 5st<30 s can be expected to be beyond the

=0 which is true for a uniform shear rate in an infinite do- ¢,rejated regime and are at times before significant Taylor

main, neither of which are true here. The exponential Velocdispersion effects are observed. We show below, using a ran-

ity profile observed in the experiment invalidates this andyom walk simulation, that the apparent subdiffusivity of the

prevents us from directly comparing to Eq®)—(4). Deriv- aqial component in Fig. 4 is due to the radial gradient in

ing the corresponding moment evolution equations with theypag, rate, an effect that is not included in E¢—(4)

exponential profile of the velocity and diffusion fields is sig- gpove.

nificantly more complicated and beyond the scope of this Figure 6 shows (RA 6)2) and ((Ar)?) for particles ini-

paper. Instead, we use a random walk model in Sec. IV g4y "at various distances from the shearing surface. It is
model the system. Nonetheless, the theory above explaingigent that the diffusivity is larger close to the shearing
the origin of the Taylor dispersion effects that we observe. Iy face, i e., in regions of large shear, as observed previously.
order to avoid the effects of a mean displacement due to thg, 4dition. the maximum diffusivity occurs at~2d. The
locally varying shear rate, we remove the mean flow. Thegct that the maximum diffusivity does not occurrat 0 is
resulting mean displacement squared is plotted versus timg,e 1o nondiffusive motion of particles in contact with the
and averaged for different particles initially within the SaMeghearing wheel. Since most of these particles 2d) are

rad_ial bin(bin.sizezq or.d/2). An initiall)_/ linear evolution dragged by the wheel at the same speed and the mean veloc-
indicates ordinary diffusive behavior with the slope of thej, as heen subtracted, the fluctuations are smaller. In Fig. 7,
line equal to D. we show the rms displacements versus time on a log-log

Figure 4 shows a typical example of the mean displacegcaje, The solid line shows the expected slope for diffusive
ment squared for the tangentigRA 0)<) and radiak(Ar)°)  pehavior.

directions for particles in the shear band. Here, sheota- As seen in Fig. 8, the diffusivity is proportional to the
tion reminds us that the mean flow is subtracted from th

data. The dotted lines are linear fits or 30 s giving diffu- Socal shear rate.. For this figure, we use the local shear rate

sivities proportional to the slopes. The tangential diffusivity ﬂglt? ;hmén;gggo?f;?g Séigss?ffolzrlq[f 38 nsd ?r?;ﬁgzx?;;gaitnls

is approximately double the radial diffusivity at small times. diffusivity at large shearing raté.e., close to the shearin

The former is expected to deviate from a straight line due tag y 9 anng ralg.e., 9
the higher order terms similar to those in E4).. Note, how- surfacg is due to par.t|(_:lles bemg .dragged. by the shearl_ng
ever that for smalt. the linear term in Eq(4j domi,nates wheel and hence exhibiting ballistic behavior. For the radial

and Taylor dispersion effects are not present. and tangential directionsD~0.1-0.2d?y~0.4-0.8a%y, -
One might worry that using early times would be inaccu-Wherea s the particle rad|us,-|.e., the scale of the diffusivity
rate when diffusivity is generally defined as a long-time be-is approximately given bya?y. As a consequence of the
havior. In particular, results for more rapid flows show anexponential tail of the velocity profile, the diffusivity also
initial ballistic regime[5,9,18, and significant velocity auto- decays roughly exponentially, such that the diffusive motion
correlations appear in noncolloidal suspensif2@]. How- s effectively confined to the shear band.
ever, in the quasistatic motion of the present experiment, Figure 9a) shows results for diffusivity versus local shear
there is no ballistic behavior because grains are constantly irate (>2d) for three different rotation frequencies of the
contact with each other. Moreover, as seen in the velocitghearing wheel. The diffusivity is approximately proportional
autocorrelation shown in Fig. 5, the velocities quickly be-to local shear rate over a large range of shearing rates from
come uncorrelated. The time for the correlation to reach zerseparate experimental runs, abg,/D,,~2. In Fig. 9b),
corresponds to a mean relative grain displacement ofd0.25the diffusivity at each data point was divided by the local
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FIG. 6. Mean displacement squared vs time at different dis- ool v v 1+ 11 | P
: : H 10 100
tances from shearing wheel. Radial displacements shown on top an Time (5)

tangential displacements on bottofi= 1 mHz.
FIG. 7. Log-log plot of displacement squared vs time for data in

shear rate. The resulting dat®/y) are roughly constant Fig. 6. Radial displacements given in plot on top and tangential
over 3 orders of magnitude of shear rate. The lines show fitdisplacements on bottom. The straight solid line gives the expected

for tangential diffusivitiesD ,,=0.223y and radial diffusivi- behavior for diffusive motion.

ties D, =0.108y. The data foD, are noisier than that for J(r) is difficult. However, a numerical simulation with ap-

D,, since due to the mean flow the magnitude of the tangen- . . -
tial motion is much larger than radial motion. propriate spatial dependencebrandv using a random walk

model is relatively simple.
In this section, we present such a simulation in which we
assume diffusive motion and impose an exponential velocity
The off-diagonal diffusion consta,, is shown in Fig. profile and impenetrable inner boundary so as to parallel the
10. This diffusion coefficient is an order of magnitude experiment. To model radial diffusion, a walker makes a step

smaller tharD,, andD,,. Away from the shearing surface, each timer with equal probability along=r with a radial

D,y is also negative. This is due to the anisotropic force, ; : 12 L
e vork and will be addressed below. step lengthL,(r) proportional to[ y(r)]¥4, wherey is the

experimentally measured shear rate. That Is,(r)
=c,[y(r)]¥2 wherec, is a constant. This imposes a diffu-
sivity Do L(r)%/ rcy(r) in agreement with Fig. 9. Radial
As mentioned earlier, direct comparison of the data tomotion is bounded by the shearing wheel, so any step that
Egs. (2)—(4) is not possible. The fact that(r) andD(r)  would move a particle through that boundary is automati-
decay exponentially and the presence of the boundary at cally forced to be a step away from the shearing witeel,
=0 in the experiment are inconsistent with the assumptionsowards positiver). Tangential motion is modeled in a simi-
leading to the moment evolution equations in Sec. | B. Anlar way. At each time step, the walker is advected at the
exact solution of the moment equations with the appropriatexperimentally measured mean velocity based on its radial
boundary conditions and spatial dependenceDdf) and  position(Fig. 2) and also randomly takes an additional step

C. Off-diagonal diffusivity D,,

IV. RANDOM WALK SIMULATION
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FIG. 8. DiffusivitiesD vs local shear ratg(f=1 mHz). Diffu- — ——Ty — T
sivities are proportional to the local shear rate. Close to the shearing g O
wheel, at larger shear rates, the diffusivity decreases because pa ~ | 0o o o
ticles atr<2 are typically dragged continuously by the shearing *'U - . O 2 A O o DO
wheel. The solid line show® =0.200y and the dashed line shows & 2 & ap

. 6:3 02 o] A A A A —
D=0.108y. 5 o g 2
along * # with tangential step length,(r)=c,y(r)"2 This > A am Bu,  u "
model contains two free parametarsandc,, correspond- .z o1 1“."'i"'".".".'i[.'*.'g"""' Yl |
ing to the magnitude ob,, andD ,,. Equivalently, the fit = "
parameters can be thought of as determining an overall scal 2 1
factor for the data and the ratio of radial to tangential diffu-
sivities. Here, we do not consider additional anisotropies as- oL+ . ... T T
sociated with the force chain network. ' Local Shear Rate(Hz) '

Figure 11 shows a mean-square displacement versus time
for the simulated data. The experimental data from Fig. 6 is FIG. 9. (3) Diffusivities vs local shear rate for grainsrat 2 for
also included for reference as thin solid lines. The simulatior{hree different rotation rates of the shearing wheel(bin the dif-
is performed assumin®,/D,=1.9 (c;=0.48, c,=0.66). fusivities are rescaled py the local shear ratqnd d?. The lines
As noted, the two free parameters set the scale of the radighow fits forD 4= 0.223y (solid) andD,, = 0.108y (dashedwhich
and tangential displacements. We emphasize that the relati@proximately hold for 3 orders of magnitude of shear rate.
magnitudes of the data at different distances from the shear-
ing wheel and the apparent subdiffusive and superdiffusivéhearing wheel show an apparent superdiffusive behavior
behavior at longer times result from the experimentally meadue to Taylor dispersion.
sured velocity profile. We note that in the exp.eriment, grainsrartz are gener-
Although the initial slope of the lines in Fig. 11 is equal to @y dragged by the shearing wheel which tends to decrease

2D(r), the long-time behavior and deviation from a straight
line is due to the coupling to the mean flow. The horizontal
and vertical scales of Figs. 6 and 11 are identical in order to
compare the long-time behavior. This confirms that the ap- i o o
parent subdiffusion and superdiffusion is due to the mean o
flow. 0 o
In particular, it is clear that the curvature of tBg, data N o o o
for particles close to the shearing surface, which appeared t= - o o .
be subdiffusive, arises from the gradient in local shear rate, .&
That is, the grains next to the wall diffuse away to a region of g g01|- i
slower shearing rate and, once away from the wall, diffuse
more slowly. If this gradient is removed from the simulation

(i.e., 'y is assumed constanthe lines become straight with o
approximately the same slope. The presence of a wall (

0.0001 T T . r T

i e P ! oo :
.—O) also tends to decrease the diffusivity at smabut th[s . Radial Distance, 1 (d)

is @ much less pronounced effect than that of the gradient in

shear rate. Note in Fig. 11 that simulated grains close to the FIG. 10. Off-diagonal diffusivityD,, .
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T — FIG. 12. Diffusivity vs radial distance from the shearing surface
— et Y for experimental data and the random walker model. The deviation
..... E—— :

—— 3d<r<35d : 1 between simulation and experiment fox2 is due to particles
o el : 1 being dragged nondiffusively by the shearing wheel.

Td<r<7.5d 3
8d < 1< 8.5d

chains are preferentially oriented to oppose the motion of the
shearing wheel, at an angle that is intermediate between the

and ¢ directions. We might expect the diffusivity to be af-
fected by the anisotropic force network. To determine this
angle, images such as Fig. (&Bcan be transformed from
polar to Cartesian coordinates, such that the shearing wheel
—————— 4 is located aty=0 [Fig. 13b)]. In this figure, each vertical
“““““““ line corresponds to a radial line in the original image. Since
Time (s) the curvature of the wheel is relatively small, the transforma-
tion is not dramatic and distortion of the image is small. A
FIG. 11. Mean displacement squared vs time for simulation of2D autocorrelation of image 13), then provides a measure
random walk in which the experimentally measured velocity profileof the mean force chain orientatiph3(c)]. The mean angle

is imposed. Radial displacements shown on top and tangential og, of the force chains fluctuates strongly in time around a
bottom. The thin solid lines show the experimental data from Fig. 6‘mean value of 20°—30° relative fo

To determine the angular dependence of the diffusive mo-
ion, we locally project displacements at each time step onto
an axis rotated at an angke from the radial direction, as

Tangential Displacement Squared (dz)

-——
——

=]

the apparent radial diffusivity and add to the effects of Taylort
dispersion(which accounts for the slight difference in the

magnitudes of Figs. 6 and 1However, Fig. 11 reveals that sketched in Fig. 14. That is, for each step, the displacement

the QOmlnant effects are the shear gradient and Tayl'or d.'ﬁ's locally parametrized in terms of radial and tangential com-
persion. Thus, the main features of the apparent subdiffusive

and superdiffusive behavior are observed even though the
simulation does not include the effect of ballistic motion due
to dragging of particles by the shearing wheel.

We show the measured diffusivities for the experiment &%
and the random walk simulation together in Fig. 12. There isg#
very good agreement except fox2, where the simulation ¥
overestimates the diffusivity.

V. EFFECTS DUE TO ANISOTROPIC FORCE NETWORK

In the previous discussion, we tacitly assumed that the
natural coordinate system for diffusion measurements is se
by the radial and tangential directions, corresponding to the
anisotropy of the imposed shear. However, dense systems,

unlike dilute rapid flows, have anisotropic force networks G, 13.(a) Force chains imaged using photoelastic grains. The
due to imposed shear which are in general at a differenghearing wheel is marked by the white line and is rotating to the
orientation from the flow direction. This is seen by using thejeft. (b) Image (a) is rescaled from polar to Cartesian coordinates
photoelasticity of the grains to image the force chains, as iguch that the shearing wheel isyat 0. (c) A 2D autocorrelation of

Fig. 13a). This figure shows a typical case where the force(b) which characterizes the orientation of the strong force network.
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sivity indicated by the filled circles. 0 2 10 12
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Radial Distance, r (d)

ponents(relative to the center of the shearing wheahd

. g . FIG. 16. The angle of minimum diffusivity,,;, vsr measured
then are locally projected onto an axis rotateddyelative J Pomin

- - according to Fig. 14 for multiple data sets. Again, the orientation of
to ther direction. We then use the components of the inimum diffusivity shifts towards a direction that corresponds to

trajectories to measure a diffusiviy,, along this direction.  the mean force chain direction. The same analysis is performed on

On the right side of Fig. 14, we sho® ,, versus¢ for  the random walk data® and linear fii which does not model the
grains at different radial distanae Again, the diffusivities  anisotropic force network.

decrease with distance from the shearing wheel. In addition,
the direction of minimum diffusivity¢,,i,, marked by the sets, including the data used to create the velocity profile of
solid circles, changes with distance from the shearing wheekig. 3 and on two additional data sets with different shearing
In Fig. 15, we show the angle of minimum diffusivity rates. We show data in Fig. 16 only for velocities that are
dmin Versus distance from the shearing wheel which we deproperly resolved, as in Fig. 3. Although there is some sig-
termine by fitting a parabola t® 4, in the region¢n,, nificant variability from one data set to the next, there is a
+30°. Close to the shearing surface, at high shear rates, tldear trend in whicheg,,;, shifts towards the direction of
minimum diffusivity is in the radial direction, corresponding force chain orientation asincreases. When we perform the
to the minimum expected based on the imposed shear diresame analysis on the simulated data, in which there is no
tion. At larger distances, the minimum shifts towards the force network,¢,;, does not increase above 0° as indicated
direction of the mean force chain orientation. In other wordsby the open circles. The fact that these points are negative is
outside of the immediate vicinity of the shearing wheel, theaddressed in the following section.
anisotropic force network affects particle motion and must be
taken into account in order to properly describe the diffusivev|. DIFFUSIVITY AND VELOCITY AUTOCORRELATION
motion in dense granular systems. EUNCTIONS
We use the same procedure for deducing the angular de-

pendence of the diffusivity on a number of independent data Diffusivities (D, andD 4,) can also be determined using
velocity autocorrelations from the expression

T T T

15 g D= fw<vx(t)vx(t+7)>d7a (7)
0

o o where the velocity at each time step is simply defined as
vy(t)=[x(t)—x(t—1)]/At. The integral must be taken over

L o ©® 1 times long enough to extend beyond the initial correlated
region. Thus, for this data,

N
Dxx:AtdZ0 (v (Do, (t+dD)), ®)
t=

Angle of Minimum Diffusivity (degrees)
[ J

| ) | 5). After an initial transient of about 5 s, the curve fluctuates
2 Radial Distancé r(d) 6 around a constant value. The average of the data well after
’ the transient(85—185 s, for this data gets taken as the
FIG. 15. The anglep corresponding to the minimum diffusivity ~ diffusivity. Figure 17 shows the diffusivities determined
dmin IS measured from Fig. 14. The increase with radial distancdrom the velocity correlations. For the most part, they agree
corresponds to the minimum diffusivity becoming more alignedquite well with diffusivities determined from the displace-
with the mean direction of force chains. ment squared versus time data which are indicated by lines

T ° 7 where we use a cumulative sum of the autocorrelatkig.
® o
|
5O
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FIG. 17. Diffusivities determined from velocity autocorrelations  FIG. 18. Off-diagonal diffusivity determined by integrating the
using Eq.(7). The shearing wheel frequency fs=1 mHz. The  velocity cross correlation. Data determined from the slope of dis-
lines show fits to the tangentiédolid) and radial(dashed diffusivi- placement squared vs time pldtsig. 10 is shown for comparison.
ties in Fig. 12 for comparison. D,, for the random walk simulation is also shown.

showing fits to the data of Fig. 12. The exception is forcontrast, we have chosen the natural experimental coordinate

tangential diffusivities of particles adjacent to the shearingsystemy=r such thaty=0 at the boundaryshearing wheg|

wheel. This discrepancy is due to the fact that there is somand increases into the bulk, i.@., decreases witly.

non-negligible correlation in the tangential velocity after Returning to the present studies, the fact g is posi-

=30 s for particles in contact with the shearing wheel. tive for the simulation is the origin of the slightly negative
The off-diagonal diffusivity must be determined using ¢, seen in Fig. 16. We emphasize that the positiyg,

[34] and negativD,, in the experimental data have the opposite

sign from the simulation. This difference in sign is due to the

presence of the strong force network in the experiments, an

effect that is absent in the simulations.

D=5 [ it )+ v, @

which for larget can be rewritten afl8] VII. LE VY FLIGHTS AND VORTICES

1 (= We also observe examples of correlated motion and tra-
Dij=35 f (vi(Hvj(t+7))dr, (100 jectories similar to Ley flights [35] which could contribute

o to nondiffusive motion. In fact, the dense 2D packing leads
to caging and coordinated motion such that neighboring

?jjﬁgg%hg(ﬂ%l?g r'St;;at(ljsgg::élsizt;ﬁqg?gjov.?_[]ng%_Th'Sgrains tend to move together. This differs from more dilated

diaconal diffusivity D. « is shown in Fia. 18 alona with data flows in which collisions are the source of fluctuating mo-
agona USIVILY, D | 9. 9 . ion. The fact that the present system behaves diffusively on
determined using the displacement squared versus time plo

: . . . ?/erage indicates that long-range correlated motion is suffi-
t(ilz)lrgé Ileoz)a. dstg]faergtg? r:r(])ziisgemi;u?r?egr raelg‘uftg]a"’ the fluctua- ciently rare and random over time that the mean behavior is

Further from the wheel, where the minimum diffusivity not affected.
shifts to larger angles, the cross-correlation term is negative. .

This indicates that motion alongis anticorrelated with mo- portant. Lery flights are random walks in which occasional
tion alongr, which agrees with a decrease in diffusivity large steps, or flights, are observed, such that apparent
along positive¢p, and a shift in minimum diffusion angle Brownian motion on smaller scales is punctuated by large
towards positive¢p. To emphasize the effect of the aniso- displacements. They also have the property that the variance
tropic force network, we contrast the experimental resultof the step siz€L?) and therefore the diffusivity o L2/ 7)

with data from the simulation, where there is no force net-are infinite. This situation can be realized if the probability of
work effect andD, , is always positiveFig. 18). the walker making a step is given by a power lawP(L)

The fact thaD, 4 is positive in the simulation is due to the «L ™, where 2<a<3. This is in contrast with Gaussian or
velocity gradient, an effect that was also observed in previexponential distributions of in which case large steps are
ous measurements of the cross tdiypically designated as much more rare and the variance is finite.

Dyy) [17,18,28. Note that a positiv®,, in the present data In Fig. 19a@), we show trajectories for particles in the
corresponds to a negati,, in previous results. This dif- shear band. Each line shows the trajectory of a single particle
ference in sign is due to the fact that the authors of Refsover the same time periodl000 3. Next to the shearing
[17,18,26 used the convention that, increases witly. By  surface (bottom of imageg particles travel relatively fast
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FIG. 20. Granular vorticegupper lefi are occasionally ob-
served in plots of particle trajectories over 25 s. Particle position is
indicated by a dot with darker gray scale levels used for later times.

presence of [ey-like behavior. In this plot, regions of small
fluctuations(nearly flat line$ are separated by faster jumps
along the mean flow direction.

These data can be compared with an example from a ro-
tating flow fluid experiment[36] e.g., Fig. 7 from which
similar data were obtained. Although we observe somewhat
similar motion, the trajectories in Fig. 19 have a different
origin. In the fluid case, particles exhibit flights between pe-
riods in which they are trapped by vortices. In the granular
system, grains become trapped as they move farther from the
shearing surface and remain effectively trapped until they
move closer to the wheel. In addition, it is common for local
rearrangements involving 10—-20 grains to occur intermit-
£ ) tently. (A similar effect may also account for the \ne dis-
W tributions of trapping times for observations of grains depos-
o ' Th;?(s) ' 1000 ited on sand pile$37_].)_ With th_e present data,_ e.g., Fig. 19,

we do not have sufficient statistics to determine whether the

FIG. 19. (a) Trajectories in the shear band are shown for a fixedtrajectories exhibit Ley scaling because flightlike trajecto-
time (1000 $. (b) A few individual trajectories from the dashed box €S are rare.
in (a) are shown. Motion similar to vy flights is occasionally We also occasionally observe cooperative motion as in
observed (~4—5d), in the region indicated by the arrow. Small Fig. 20, which displays particle trajectories over a 25 s win-
fluctuations of particle position are observed with occasional largeflow in which the gray scale level indicates tiright gray
scale advection(c) Tangential displacements vs time for seven in- =early time, dark=later time. In the lower right, there is a
dividual trajectories (~2.5d,3d,3.5d,4d,4.5d,5.5d,6.5d) chosen  region of locally correlated motion. A transient vortex is
to highlight Levy-like motion. Trajectories closer to the shearing present in the upper left. Although correlated motion is com-

Tangential Displacement (d)

wheel are displaced upwardstat0 for clarity. mon, since motion in a dense packing requires motion of
neighboring grains, vortices are rare events. In addition, un-
compared to particles outside of the shear béog of im- like vortices in fluids, there are no inertial effects and granu-

lar vortices appear to quickly dissipate without affecting the

age, which fluctuate around effectively stationary positions. . - )
g9 y yp long-time behavior of the grains.

Figure 19b) shows a few particular trajectories from the
dashed region of Fig. 18). At the edge of this bandr &4
—5d), we see trajectories that are reminiscent ofvye VIIl. CONCLUSIONS

flights, in which relatively large displacements occur be-

tween periods of fluctuating motion on a smaller scale. To To conclude, we find that granular motion in dense shear
observe this better, in Fig. 18, we plot tangential displace- flows is diffusive With a self-diffusivity proportional to the
ment versus time for seven trajectories at different distancel®cal shear rate [~ ya?, wherea is the particle radius
from the shearing wheel. The data have been smoothed ovelowever, the diffusion tensdD is anisotropic due to under-

a 5 s running window. We note that these are not necessarilying anisotropies in both the velocity field and force net-
typical trajectories, but have been chosen to elucidate thevork. The velocity anisotropy leads to a tangential diffusiv-
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ity that is about double the radial diffusivity. The anisotropic ated with the anisotropic force network. The same is true for

force network dominates the local diffusivity outside the im-the orientation of the minimum diffusivityD ;. Velocity

mediate vicinity of the shearing surface, and leads to a miniautocorrelation plots show that motion in dense granular

mum diffusivity approximately along the mean force chainflows quickly becomes uncorrelated and there is not a distin-

direction. This latter feature has not been observed in morguishable ballistic regime before diffusive behavior domi-

rapid flows, to our knowledge, and is a property of dense,ates.

granular systems. o ) Examples of correlated motion, such as vortices, and tra-
Motion can appear subdiffusive due to the decreasingectories similar to Ley flights are also observed. However,

shear rate away from the shearing surface or superdiffusivyese effects are sufficiently intermittent and random that the
due to Taylor dispersion effects. A simple random walksystem behaves diffusively.

model which reproduces the apparent anomalous diffusion
indicates that the underlying motion is diffusive. Using the

experimentally measured velocity profile, assuming/D,

~2, and choosing an overall multiplicative scale factor, the
simulation closely matches the experiment, including the We appreciate a number of very helpful discussions with

long-time behavior which is affected by the gradient in shealProfessor John Brady. This work was been supported by the
rate and Taylor dispersion. The simulation also highlights theNational Science Foundation through Grant Nos. DMR-

effects of the anisotropic force network. Differences in the0137119, DMS-0204677, and DMS-0244492, and by NASA
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