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Fluctuation-response relation in a rocking ratchet
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The relationship between the positional fluctuation and mechanical response for a thermal ratchet at a
nonequilibrium steady state was investigated experimentally and considered theoretically. We constructed a
ratchet system using a scanning optical trapping system and micro@28g:m diametey, which is inter-
preted as a realization of a rocking ratclist. O. Magnasco, Phys. Rev. Leffl, 1477 (1993]. In the
experiment, an asymmetric periodic potential5 um period was generated by optical trap scanning, which
traps a bead. When the potential profile was rocked sinusoidally, diffusion of the bead was rectified in one
direction. We confirmed that both the diffusion coefficient and the mobility increased with potential rocking
with a positive correlation. To obtain better insight, we performed numerical and theoretical analyses of the
corresponding Langevin system. Although there is a positive relationship between the diffusion coefficient and
mobility, the diffusion coefficient is greater than the value given in the Einstein relation. This result means that
the effective temperature of the thermal ratchet at a nonequilibrium steady state becomes greater than that of
the environment. We propose that this elevation of the effective temperature causes a decrease in the energetic
efficiency of the thermal ratchet through irreversible dissipation to the heat bath.
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[. INTRODUCTION ior of thermal ratchets, especially on the sign and magnitude
of the induced probability currefi®] and the energetic effi-
Recent experiments on biological molecular motors at aiency[10]. In contrast, there are few reports that focus on
single-molecule level have revealed several curious aspectse fluctuation in the motion of ratchets, especially we are
of their dynamic behavior, including their stochastic motionnot aware of a study dealing with FDT on thermal ratchets.
under a large noisgl], and excellent performance in chemo-  Therefore, we examined the Einstein relation for a ratchet
mechanical energy transductipg]. To understand these re- system, which is interpreted as a realization of a rocking
sults, we must consider how thermodynamic considerationgatchet[11,17 (see the discussion in Sec. I)AA ratchet
can be extended to molecular motors operating far frompotential was experimentally constructed using scanning op-
equilibrium, where the mechanism is completely differenttical trapping and polystyrene microbeas20 um diam-
from that of the Carnot engine. ete). When a focused laser beafoptical tweezers is
We investigated how concepts in equilibrium thermody-scanned fast enough on the focal plane, a periodic asymmet-
namics, such as temperature, appear in a highly nonequiliic potential for the beads is generated at the orbit of the
rium regime. An important part of thermodynamics is thepeam waist, upon which a trapped bead diffuses one dimen-
fluctuation-dissipation theoreit-DT), which associates the sjonally. When the periodic potential profile is sinusoidally
fluctuation of an observable at equilibrium with its responserocked, a net current of the beads is generated. It is also
to a small perturbatiof3—5]. The Einstein relatiof6] is an  found that the potential rocking increases both the diffusion

example; this theory states that the diffusion coefficiBnt  coefficient and the mobility of the beads in a positive corre-
and the mobilityu of a colloidal particle suspended in aque- |ation.

ous solution at equilibrium have the following relation: Inspired by the above experimental results, we also per-
formed the numerical and theoretical analyses on the corre-
D= ukgT, (1) sponding Langevin equation. The numerical simulation

showed that the present model reproduces the experimental
wherekg is Boltzmann constant arilis the temperature of trend qualitatively, including the positive correlation between
the system. Therefore, it seems important to investigate théhe diffusion coefficient and mobility. However, a further
relationship between the fluctuation and the response in manalysis revealed that their relation deviates from the
lecular motors to address the above-mentioned problem. Einstein-type linear relation, and the ratio of the diffusion
In this paper, we present our experimental results coneoefficient to mobility becomes greater than the temperature
cerning the relationship between the diffusion coefficient anf the surrounding heat bath. Essentially the same result is
mobility in a thermal ratchet, as a simple model of a molecu-also obtained from an analytical calculation for the case of a
lar motor. Thermal ratchets, a class of theoretical models thaglow-rocking limit.
rectify thermal and/or external noise into a net current of These results indicate that the effective temperature of the
particles, have been intensively studied over the past decadecking ratchet in a nonequilibrium steady state, determined
[7,8]. There have been several studies on the average behdyem the ratio of the diffusion coefficient to the mobility, is
close to but greater than the temperature of the environment.
We propose a simple formula to evaluate the energetic effi-
*Electronic address: yoshikaw@scphys.kyoto-u.ac.jp ciency in relation to the effective temperature of the thermal
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ratchet, based on which the energetic efficiency of the SAMPLE
present system was calculated. We suggest that the incre L
in the effective temperature causes dissipation between t = II D w

particle and the surrounding heat bath, and decreases tt QOBJ STAGE | _LASER

energetic efficiency as an engine.

This paper is organized as follows. In Sec. I, we describe
the experimental system and the results for the rocking
ratchet. In Sec. Ill, we introduce the Langevin equatiand \

DM

the Fokker-Planck equatiprcorresponding to the experi- D %

AOD
mental setup, and show the results of the numerical simula ‘

_—

tion and the analytical calculation. In Sec. IV, we present our
interpretation of the results and a consideration of the ener

; - ; ; ; WAVE
getic efficiency. Our concluding remarks are given in Sec. V. Dk ‘ Eﬂaer:;)ury GENERATOR

II. EXPERIMENT Monitor

In this section, we describe the experiment on an optica v CAMERA
rocking ratchet. After explaining the sample preparation anc M !

optical setup, we describe the behavior of beads trapped o o o o
unrocked and rocked period_ig potentialg. We then describe | o—o |
the measurement of the mobility by applying a small external
force, and then present the relationship between the mese VIDEO RECORDER
sured mobility and the diffusion coefficient.

FIG. 1. Schematic of the experimental setup for an optical rock-
ing ratchet. OBJ, DM’'s, M’s, and L's indicate an objective lens,
A. Experimental setup dichroic mirrors, mirrors, and lenses, respectively. A beam emitted
from a Nd:YAG laser was expanded with a beam expander, de-

. : flected with an acousto-optic deflect@OD), poured into the ob-
the experimental system of Faucheebal. [13]. The experi- jective lens via relay lenses, and then focused. The fluorescent

mental setup is shown schematically in Fig. 1. Fluoresce eads in the sample preparation were monitored with a SIT camera

polystyrene bead_s of 02@m in diameter(fluprsphere_s, MO~ mounted on the fluorescent microscope, recorded and analyzed.
lecular probes: size dispersien5%) were dispersed in pure

water to a volume fraction of 210 . Double-sided adhe- sity of the light[15], which is inversely proportional to the
sive tape(NW-15, Nichiban was cut into a ring shape and scanning velocity of the beam waist. We could thus construct
placed as a spacer between microscope slides. The samglesawtoothed periodic potential profile by modulating the
cell, filled with a suspension of the beads, was sealed witispeed of the scanning beam waist. The beam waist was pro-
nail polish. The sample preparation was placed on an aut@rammed to move according (t)=L(y1+8t/ty—1)/2
matic stage(BIOS-201T, Sigma Koki of a fluorescent mi- for one period of the potential, wheteandt, are the length
croscope(TE-300, Nikon, and was observed with a SIT and duration of one period of the potential, respectively. The
camera(Hamamatsu PhotonigsThe scanning optical trap- beam waist was drawn along a straight line, repeating the
ping system is constructed as follows. A linearly polarizedperiod of motionX(t) 18 times, then drawn back with re-
TEMy, beam with a wavelength of 1064 nm is output from aversed motionX(to—t) for the same number of times, and
Nd®*:YAG (yttrium aluminum garnetlaser (Millennia IR,  the whole forward/backward scanning procedure was cycled.
Spectra Physigs The beam is deflected with an acousto- The lengthL of a single period of the optical potential was
optic deflector(AOD, 2DS-50-30-1.06, Brimrogeafter be-  set at 2.5um, and the scanning frequency, equal to 1436
ing expanded with two spherical lenses, and fed into a miwas 300 Hz. Figure 2 shows the potential profile for a single
croscope, again via two lenses. The power of the incidenbead, evaluated as a logarithm of the probability distribution
beam was 0.80 W. Upon strong focusing with an objectiveof a bead measured by tracing its motion within a single
lens (Plan Fluo <100 oil immersion, numerical aperture of period [5]. The depth of the potential is estimated to be
1.30, Nikon), the beam forms an optical cone inside the5.5gT.
sample cell, which generates an attractive potential well for We applied unbiased periodic forcing on the trapped
the beads. beads by rocking the intensity profile of the ligtiig. 3).
This optical system enables the beam waist to rapidlyThe whole intensity profile can be translated slowly along
scan the focal plane of the objective lens. As described ithe direction of the scanning orbit. In this way, the intensity
Ref. [14], a microparticle in the optical field of a Gaussian profile I (x,t) was rocked in a sinusoidal manner l4x,t)
beam waist, which is drawn sufficiently fast, feels a “con- =1(x—Asinwt). With the rocking, the bead trapped on
tinuous” potential field along the orbit of the beam waist. the potential feels an additional viscous resistance from the
The beam waist was reciprocated along a straight line, whersolvent. If we adopt the coordinate system where the poten-
beads are confined with Brownian motion. The depth of thetial stays stationary, i.e., by transformatian- A sin wt—Xx,
optical potential is proportional to the time-averaged intenthe bead looks being exerted a periodic forégt)

We constructed an optical thermal ratchet by modifying
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FIG. 2. Profile of the optically generated periodic potential for FIG. 4. Spatial distribution of stepwise movement of micro-

o_ne_per_iod. The profild)(x) is estimated ff‘?m the probgbili_ty beads in an optical rocking ratchet. Histograms for displacement of
distribution P(x) of a ¢=0.20 um bead, obtained by tracing its pq5qg initially placed ax=0 afte 2 s of difusion are shown in

TO“O” within one period of.the potential, using the formulgx) units of L. The black bars and the gray bars represent data for the
=—keT INP()+G, whereG is a constans]. stationary condition A=0L) and one of the rocking conditions

(A=0.36.), respectively. The solid lines are Gaussian fits.
=—1ywAcoswt by the solvent(see also Appendix for de-

tails). This kind of system, where a particle on a periodicempiifies the spatial distribution, in units bf of beads ini-

potential is exerted a periodic force, is called a rockingtia"y placed atx=0 afte 2 s of diffusion, under a stationary
ratchet[8]. Thus our system is considered as a realization ok ondition (.e., A=0L) and a rocking condition A

a rocking ratchet. In this study, the rocking frequenagm =0.36.). The probability densities under both conditions

was f|?<ed at 10 Hz, which is sufficiently slowgr than theform Gaussian distributions. The center of the distribution in
scanning frequency of 300 Hz, and the amplitutdlevas . o . . . .

: , o the rocking condition is shifted to the rigtgee Fig. 2, while
varied from @ to 0.6_. In relation to the characteristics as a that in the stationary condition is almost at zero. The width
rocking ratchet, the amplitude &%(t), Fo= ywA, is calcu- a 1€ stationary co on Is aimost at zero. 1he

. of the distribution in the rocking condition is greater than
lated as 0 fN—L.8& 10" fN from these parameters. This am- that in the stationary condition. In Fig. 5, the mean velogit
plitude corresponds tok3T—1.2<x 10°kgT for a maximum fh is ol y f L g.f h K i y

otential drop per potential periofioL of the beads is p_ott_ed as a function of the rocking amp itude.
P o= The mean velocity is determined from the average displace-

In th.e foIIowmg expenments? a single particle was put ONment of the beads in 2 s. The graph shows that the velocity
the optical potential for every trial. For each parameter, trials

were repeated for around 100 times sequentially, and the data

were analyzed statistically. All of the experiments were con- 2
ducted at 231 °C. Fo (10°1N)
0.0 0.5 1.0 1.5
L) M ] v T T T
B. Experimental results 15k i
In the experiment, stepwise movement of a single trapped i i
bead over the periodic potential was observed. Figure 4 ex- —~ 10
2] e <
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~ 05} 4
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FIG. 3. Schematic of an optical rocking ratchet. An optically = FIG. 5. Mean velocity of the beads against the amplitudlef
realized sawtoothed potentigderiodL) is rocked sinusoidally with  the potential rocking. The amplitude is given in units of the poten-
amplitudeA and frequencyw. A trapped microbead shows random tial periodL. The error bars are standard errors, which is also pro-
and stepwise motion on the rocked periodic potential, where eachortional to the magnitude of the diffusion coefficients. In the above
period is of lengthL. Only a single bead is put on the potential for axis, the magnitude of oscillating viscous force from solvEgt
each trial, and trials are repeated. = ywA is also showrn(see the argument in Sec. II)A.
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J/(fN) FIG. 7. Relationship between the diffusion coefficiétand

mobility w. The diffusion coefficient without a viscous load and the
FIG. 6. Typical response of the mean veloaitygainst the load mobility against a load are plotted for different values of the rock-
force f. The open circles and squares correspond to the stationaiyg amplitude, @, 0.20_, 0.26_, 0.4Q_, from the bottom to the
condition (A=0L) and the rocking conditionA=0.4L), respec- top. The error bars fob represent 50% confidence intervalsyif
tively. The lines are linear fits witly? fitting [26]. The forcef is distribution[27]. The error bars fop were calculated by? fitting
calculated with Stokes’ formula, from the translation velodityf on the force-velocity relatiofsee Fig. 6. The solid line is the linear

the microscope stadd 6]. fit whose slope is 4.210 21+0.48<10 %! J (=3.0x10°=3.4
X 10! K). Inset: The same data displayed with the Einstein relation
. . . . Fdashed ling
remains almost zero when the rocking amplitude is smal

(A=<0.2L), and then increases withuntil it reaches a maxi- . o )
mum atA=0.35_. cient and the mobility is linear or not only from the experi-

Next, we examined the response of this ratchet system tg'€nt. Thus we examined the corresponding mathematical
an external load force. We used viscous resistance as a lo&gdel to obtain a deeper insight. In this section, we intro-
force, which is exerted on the trapped beads by translatinfUce @ mathematical model of an overdamped Langevin

the microscope stage at a constant velocity. For translatiofduation, along with the results of a numerical simulation
velocity V, the load force is estimated to He=6mnaV which show a qualitative correspondence to the experimental

where 7=1.0x 106 g/(ums) is the viscosity of the water trend. An analytical calculation in the limiting case of slow

anda=0.10 um is the radius of the bead46]. The direc- ocking is also described.

tion of stage translation is set opposite the mean velocity of

the beads. A typical response of the mean velocity to con- A. Model

stant external force is given in Fig. 6 for the stationary and _ ) _
rocking conditions, where the mean velocity decreases lin- Since the relaxation time of the beadsn/y=2.2

79 . . . . .
early with the force. From the slope of the response line, we<10 " S) is negligible compared to the time scale of their
can evaluate the response coefficiémbbility) of the mean ~ St€PPing motior(subsecondsin the experiment, the motion

velocity to the external force. The mobility in the rocking ©f & microparticle can be described with an overdamped
condition is greater than that in the stationary condition. ~ L-@ngevin equation of the form

In Fig. 7, the mobility is plotted against the diffusion co-
efficient without a load force for various rocking amplitudes.
The diffusion coefficient is calculated from the second cu-
mulant of the step distribution in 2 (see, e.g., Fig. 4 i.e., (E(1))=0&t)&(t"))=2ykgTS(t—t"), )
D=L%((x—(x))?)/2t, whereL=2.5um andt=2 s. The
data points from the bottom to the top in the graph corre- . _
spond to the cases a%/L=0,0.20,0.26,0.40, respectively. OF the equivalent Fokker-Planck equation
The mobility increases with an increase in the rocking am-
plitude, as well as the diffusion coefficient. The extrapolation P(X, 1) == (= ,W(X,t)+f—kgTa,)P(x,t)/y. (3)
of the plot, however, does not go through the origin, as
shown in the inset for Fig. 7. According to the graph, the data

plot seems to have a certain offset from the Einstein relationy: W(X,t), f, £(t), andkgT represent the viscous coefficient
of the solvent, the rocked optical potential, the constant ex-

IIl. THEORY ternal force, the thermal noise, and the temperature of the
' surrounding solvent, respectivel$,17]. For simplicity, the
Since the statistical error in Fig. 7 is so large, we cannoprofile of the periodic optical potential, shown in Fig. 3, is
determine whether the relation between the diffusion coeffiapproximated with a piecewise-linear function

yX=—W(X,t) + f+ &(1),
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FIG. 8. Piecewise-linear potential used in the mathematical A (units of L)
model[Eq. (4)]. Uy andx, are positive constants, is the period of 2
the potential, anch is an integer. In the present paper, we have (b) D (um’/s)
adopted the values ,=5kgT andx,=0.8L. 0.0 1.'0 . 2.'0 - 3.'0 ~—Jos
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U i; T /// -
X—O(x—nL) (nL=x<nL+xo) E el o o~
0 194 <
Ux)= U “g oe- /// - EJ%
— 2% Ix—(n+1)L] [nL+xe=x<(n+1)L] g | o e
1—Xg g 0.4} o o2
Nl 7
302} "
(n:integey, (4) i
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0.0 0.5 1.0 1.5
whereU, andx, (<L) are positive constants ardis the D (units of L?/1)

period of the potentialsee Fig. 8. Since the intensity profile
of the light is rocked sinusoidally, the optical potential de-

pe?:ic?nnngcrgi):?x(txﬁ;)exgé;(imeAn?:’ﬂ ngﬁmetlal,’* T and represented in units &f/  and um/s, respectivelyA is represented
o1 _Bg . in units ofLL at the bottom with correspondirfgy= ywA at the top.
Y corre;pond to 2.um, 4.1_>< 10 . J, and 1.%10 2 kg/s, (b) Relationship between the diffusion coeffici@iand mobility u
respectively. _Thus the unit of time becpmegL vikeT for the mathematical model of Eq&) and (4). The diffusion co-
=2.9s. In this notation, the other experimental parameterticientp (at the bottom in units of.?/ 7 and at the top in units of
were Uo~5.5gT, xo~0.8., A=0L-0.6., and “’/2_77 wm?/s) under no external force and the mobiljgy[at the left in
=10 Hz=307*. On the other hand, the parameters in theynits of L2/(7ksT), and at the right in units om/(s fN)] against

FIG. 9. Results of numerical simulatiofe) Mean velocityv
against the rocking amplitudd. In the left and right axesy is

mathematical model were chosen g=>5kgT, Xo=0.8L,  an external force are plotted for various values of the rocking am-
A=0L—0.6L, and w/27=157"1 for the following simula-  plitude from (L to 0.6.. The dashed line indicates the Einstein
tion and calculation. relation D = ukgT.

C. Analytical solution

. o . . . In addition to the numerical study, we performed an ana-
. In Fig. 9(a), '_[he mean vel(_)cnylnth_e numerical simulation lytical calculation of various observables for the present
is plotted against the rocking amplitude. The graph correz odel. in the limiting case of—0. The details of the cal-
sponds vx{ell to the prpfile of thg velocity-ampllitude_relation culatidn are presented in the Apbendix. The results of this
obtamedlln the experlmemee F!g. 3 We 'th'en mvestlgatgq analytical investigation are shown in Fig. 10 for both the
the relation between the diffusion coefficient and mobility. . -© velocity and the relation between the diffusion coeffi-
Figure 9 shows the numerical result for this relationship atcient and mobility, both of which show qualitative corre-
every value of the rocking amplitude. A positive, almost lin- spondence to the r’1umerical results for finiteln the case of
ear, correlation between the diffusion coefficient and mobil—Small A/L, the analytical solution leads to an asymptotic
ity is also found in the numerical simulation. However this expressioﬁ as
relationship deviates from the Einstein-type linear relation.

B. Numerical results

In the numerical simulation, the diffusion coefficient and D(Z)(O)
mobility at A=0L, namely, the stationary condition, satisfy D(A)— Do=53—[M(A)—Mo]. (5
the Einstein relation, unlike the experiment. This is because v(0)

the stationary condition in this model exactly describes a
simple Brownian motion in a static potential, which is con- where D(A) and D, are the diffusion coefficients for the
sidered to be in equilibrium. rocking and stationary conditions, respectively, gaA)
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D (um?/s) well was sufficiently fas{300 H2), the experimental results
10 20 3.0 show that such an approximation is not corfd@|. Such an
amplification on the diffusion coefficient has also been pre-
viously observed by Fauchewt al. for a Brownian particle
diffusing in a circular track generated with scanning optical
tweezers(see Fig. 11 in Ref[14]). On the other hand, the
los2 additive increase in the diffusion coefficient in the rocking

S E|g condition is due to slower rockind.0 H2). Thus, separation

_k
Co
o

o
[o:]
T

U (units of LZ/’CkBT)

04l 52 2@_ oo = of the time scales may enable us to divide the diffusion co-
o 1§ = efficient into several components as
g =
e = i B D(A)=Deq+ Diasrt Datowl A), ©®)
00 4 , A (ynits of L) 0.0 . . o
0.0 05 1.0 15 where Dgg, Diast, @and Dy, are the diffusion coefficient
D (units ofLZ/'c) which satisfies the Einstein relation and the components of

the increment due to fast scanning and slow rocking, respec-

FIG. 10. Analytical result for the relationship between the dif- tively. In this interpretationD o+ Dy, is equal to the diffu-
fusion coefficientD and mobility . for the model of Eqs(2) and  sion coefficient atA=0L, D(0L)=2.2+0.18 um?/s. On
(4) with the limit «—0. The units are the same as in Figo@ The  the other hand, Dg(0.4L) =(3.3+0.27)— (D¢gt Dras)
diffusion coefficient and the mobility are plotted for values of the =1 .1+ 0.46 MmZ/S, for example. From this consideration, it
rocking amplitude from 0 to 0.6.. The dotted line is an s apparent that the stationary condition in the experiment
asymptotic fit in the limitA—0 with a slope of 1.2KT [see Eq.  does not correspond to thermal equilibrium. On the other
(5)]. The dashed line indicates the Einstein relation. Inset: the anghand, in the mathematical model, Eq®) and (4), the Ein-
lytical result for the mean velocity against the rocking amplitude  stein relation holds in the stationary condition, and this case
A. The units are the same as in Figa can be regarded as under equilibritine., Dye=0) [19].

Thus, the experimental results can be summarized as
showing that the diffusion coefficient and the mobility of a
‘?ocking ratchet increase in a positive correlation, with an
increase in the rocking amplitude Furthermore, the math-

) ; _ ematical model predicts that the Einstein relation does not
odic potential with constant exte(rzr)lal for(tse)ésee the Appen- 414 in the nonequilibrium steady state. The ratio of the dif-
dix for detaily. The coefficientD”'(0)/vs™(0) is equal to  fysjon coefficient to mobility can be defined as the effective
1.2%gT for the parameters used here, and is greater thaﬂemperature of the thermal ratchet,

kgT.

and uq are the mobility for the rocking and stationary con-
ditions. In this case, the Einstein relation also holds for th
stationary condition aBy= ugkgT. v{f) andD((f) are the

velocity and the diffusion coefficient over a stationary peri-

_ D(A)
IV. DISCUSSION KgTer(A)= (A’ (7)

In this section, we discuss the physical meaning of the
results. First, before discussing the connection to the FDTWhich in our model matches the temperature of the surround-
we discuss the interpretation of the experimental results, edng heat bath in equilibrium. In a nonequilibrium steady
pecially for the stationary condition. Next, we define the ef-state, however, the effective temperature is greater than that
fective temperature of the rocking ratchet in a nonequilib-of the heat bath. Such a nonequilibrium effect on a thermal
rium steady state in connection with the Einstein relationratchet may be attributed to the breaking of a detailed bal-
Finally, we discuss the physical meaning of the effectiveance and seems to be rather general, independent of the de-
temperature in terms of the energetic efficiency of the thertailed mechanism of the ratchet, including a flashing ratchet
mal ratchet. [20], and a correlation ratch¢21] (data not shown

A. Connection to the Einstein relation B. Energetics

In the experiment, although we found a positive correla- We now address the energetics for the ratchet system in
tion between the diffusion coefficient and mobility, the terms of the effective temperature. Recently an expression
whole data points in the inset in Fig. 7 do not obey thefor the energetic efficiency of a thermal ratchet has been
Einstein relation. Especially, even the stationary conditiorsuggested using an effective temperature, which is essen-
does not satisfy the Einstein relatiod0L: the lowest tially identical toT.¢ introduced here, by considering a large
data point in the inset for Fig.)7This significant deviation scale description of the motion of a parti¢22]. According
from the Einstein relation in the stationary condition occursto the theory, the energetic efficiency of a thermal ratchet is
because the optical potential was generated by scanning ekpressed as
the beam waist, and was not static. In the stationary condi-
tion, although it is naively expected that a periodic potential o fo ®)
is formed adiabatically since scanning of the optical potential 2kkgAT+Fov’
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f(f]\]) model, we found that their relation deviates from an
0.0 0.5 10 15 Einstein-type linear relation, indicating a larger diffusion co-
0.06 T T T efficient. These results support the notation that the effective
temperature for a rocking ratchet operating far from equilib-
rium is greater than that at equilibrium.
] It may be a challenging problem to associate the effective
temperature with the magnitude of violation of the detailed
balance. It would also be interesting to conduct experiments
on biological molecular motors from this perspective. Recent
techniques involving single-molecule measurement would be
J the most suitable for such a subjé24]. This could be a new
) benchmark for testing theoretical models against real mo-
0.00F I N 7 lecular motors
J(N) '
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calculated using Eq(8) for the present mathematical modeh ( ;L(J:Iiagr?(;tae?o:anﬁz bééir:aenﬁ;lgparioﬁf%éagg]e Promotion of
=0.40L). The time constank~1=0.186r=0.54 s is adopted from 9 '

the numerically determined mean first passage time, which is inde-
pendent of the load forck Inset: Experimentally determined ener- APPENDIX
getic efficiencye against an external loddn the rocking condition

(A=0.40L). The solid line is the calculated curve with the follow- . e - .
ing values: the effective forde=3.1 N, the mobilityx=0.29 um/ ables, such as the velocity, diffusion coefficient, and mobil-

(sfN), time constantmean first passage timec 1=0.57 s, and Iy, N the case of a slow-rocking limit. First, we perform a
effective temperature risesAT=8.5x10 2 J. transformationx— A sinwt—y, on Eq.(2) to get the equa-
tions

FIG. 11. Energetic efficiencg against an external loadat the
bottom in units ofkgT/L and at the top in units of fN humerically

We describe in detail the calculation of various observ-

wherev is the mean velocityF=vq/u (vq is the mean
velocity under no loadis the effective drifting force of the
thermal ratchetf is the external loadAT=Tg—T is the
effective temperature rise, and™! is the time constant
which has a length close to the mean first passage time f
the periodic potential. The mean velocityobeys the rela-
tionshipv = u(F —f).

Since the denominator of E¢B) containskAT, a higher

yy=—3d,U(y) — yAw coswt+ f + £(t),

(£(1))=0(&(t) &(t"))=2ykgTS(t—t"), (A1)

here the notations are the same as those in(Bq.This
Langevin equation corresponds to one known as a rocking
ratchet. Since the momenta for ((x), (x?), and so oh

match those fory with a long-time limit, it is sufficient

effective tempe_ra?ure_ decreases the _energetlc efﬂmencyo calculate the velocity, diffusion coefficient, and mobility
WhenAT>0, dissipation occurs even without a net currente y

of the particle. Therefore, the efficiency reaches 0 in the Next, we consider a system with only a constant external
guasistatic casev(~0), while a finite velocity results in force in’stead of periodic forcing as follows:
higher efficiency. Figure 11 shows the energetic efficiemcy '

as a function of the external loddindicating a maximum at yy=—a,U(y)+f+E&t)
a finite velocity. On the other hand, E®) becomes unity in Y ’
the ideal case oAT—0 andv—0, i.e., in a reversible pro- (E())=0{E(D)E()) =2yksTS(t—1"). (A2)

cess. In other words, this expression of efficiency means

“how much work can be extracted from thermodynamically For a periodic potentiall(y) with a periodL, the velocity

available free energy?[23]. Therefore, it must be distin- ;.4 giffusion coefficient can be given E25]
guished from the usual concept of thermodynamic efficiency

(e.g., for a Carnot engine 1—exp(—fL/kgT)
vdf)=—gy : (A3)
V. CONCLUSION fo '+
In summary, we constructed a micrometer-sized rocking

ratchet system using a scanning optical trap and microbeads. Ldy )

It is clear that the diffusion coefficient and the mobility are T Jo T +W-(y)

amplified in this operating thermal ratchet under a nonequi- Dy f)= B 3, (A4)

librium steady state, and they show a positive and monotonic Y

Ldy
fo Tl +(y)

correlation. For the case of a corresponding mathematical

031113-7
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where where 2r/w must be sufficiently greater than the relaxation
time of the system of Eq(A2). Similarly, the mobility is

Ldz )
I (y)= kBlTL T exp(=U(y) FU(yF2)—zf)/kgT}. given as
(A5)

27w

. . J

We next proceed to the case of the periodic forcing. In the w(A)= Iimi —
limit of w—0, the velocity and diffusion coefficient are as- 102 df Jo
ymptotically calculated as (A8)

dtv(— vAw coswt+f).

w (27w
v(A)= ﬂfo dty(— yAw cosol), (A6) Since the periodic potentidl(y) is given in Eq.(4), the

velocity, diffusion coefficient, and mobility can be calculated

w (27l using this procedure. The results of the calculation are shown
D(A)= Efo dtD{ — yAw coswt), (A7) in Fig. 10.

[1] K. Svoboda, C.F. Schmidt, B.J. Schnapp, and S.M. Block, Na{15] T. Tlusty, A. Meller, and R. Bar-Ziv, Phys. Rev. Le&l, 1738

ture (London 365, 721(1993. (1998.
[2] H. Tanakaet al,, Nature(London 415, 192 (2002. [16] See, for example, L.D. Landau and E.M. Lifshi&uid Me-
[3] R. Graham and H. Haken, Z. Phy&13 289 (1971. chanics(Pergamon Press, London, 1987
[4] G.S. Agarwal, Z. Phys252, 25 (1972. [17] A.S. Mikhailov and A.Yu. Loskutov,Chaos and Noise—
[5] H. Risken,The Fokker-Planck Equation: Methods of Solution Foundations of Synergetics (Springer-Verlag, Berlin, 1996
and ApplicationgSpringer-Verlag, Berlin, 1989 [18] The reason for and the mechanism of the FDT violation under
[6] A. Einstein, inlnvestigations on the Theory of the Brownian breaking of the adiabatic approximation are being considered
Motion, edited by R. Frth, translated by A. D. CowpeiDo- K. Hayashi, T. Harada, and S. Sasmpublishedl
ver, New York, 1956 [19] K. Tomita and H. Tomita, Prog. Theor. Physl, 1731(1974).
[7] F. Juicher, A. Ajdari, and J. Prost, Rev. Mod. Phy89, 1269  [20] R.D. Astumian and M. Bier, Phys. Rev. Lef2, 1766(1994).
(1999. [21] C.R. Doering, W. Horsthemke, and J. Riordan, Phys. Rev. Lett.
[8] P. Reimann, Phys. Rep61, 57 (2002. 72, 2984(1994).
[9] P. Reimann and P. higgi, Appl. Phys. A: Solids Surff5, 169  [22] T. Harada(unpublishegt e-print cond-mat/0310547.
(2002. [23] This type of definition of efficiency is also discussed in the
[10] J.M.R. Parrondo and B.J. De Cisneros, Appl. Phys. A: Solids following: 1. Derenyi, M. Bier, and R.D. Astumian, Phys. Rev.
Surf. 75, 179 (2002. Lett. 83, 903(1999.
[11] M.O. Magnasco, Phys. Rev. Leftl, 1477(1993. [24] K. Svoboda, P.P. Mitra, and S.M. Block, Proc. Natl. Acad. Sci.
[12] R. Bartussek, P. Haygi, and J.G. Kissner, Europhys. Le28, U.S.A. 91, 11782(1994.
459 (19949). [25] P. Reimanret al, Phys. Rev. Lett87, 010602(2001).
[13] L.P. Faucheux, L.S. Bourdieu, P.D. Kaplan, and A.J. Libch-[26] P.R. Bevington,Data Reduction and Error Analysis for the
aber, Phys. Rev. Let74, 1504(1995. Physical SciencegMcGraw-Hill, New York, 1969.
[14] L.P. Faucheux, G. Stolovitzky, and A. Libchaber, Phys. Rev. E[27] G.W. Snedecor and W.G. CochraBtatistical Methodglowa
51, 5239(1995. State University Press, lowa, 1989

031113-8



