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Fluctuation-response relation in a rocking ratchet

Takahiro Harada and Kenichi Yoshikawa*
Department of Physics, Graduate School of Science, Kyoto University & CREST, Kyoto 606-8502, Japan

~Received 30 July 2003; published 31 March 2004!

The relationship between the positional fluctuation and mechanical response for a thermal ratchet at a
nonequilibrium steady state was investigated experimentally and considered theoretically. We constructed a
ratchet system using a scanning optical trapping system and microbeads~0.20 mm diameter!, which is inter-
preted as a realization of a rocking ratchet@M. O. Magnasco, Phys. Rev. Lett.71, 1477 ~1993!#. In the
experiment, an asymmetric periodic potential~2.5 mm period! was generated by optical trap scanning, which
traps a bead. When the potential profile was rocked sinusoidally, diffusion of the bead was rectified in one
direction. We confirmed that both the diffusion coefficient and the mobility increased with potential rocking
with a positive correlation. To obtain better insight, we performed numerical and theoretical analyses of the
corresponding Langevin system. Although there is a positive relationship between the diffusion coefficient and
mobility, the diffusion coefficient is greater than the value given in the Einstein relation. This result means that
the effective temperature of the thermal ratchet at a nonequilibrium steady state becomes greater than that of
the environment. We propose that this elevation of the effective temperature causes a decrease in the energetic
efficiency of the thermal ratchet through irreversible dissipation to the heat bath.

DOI: 10.1103/PhysRevE.69.031113 PACS number~s!: 05.40.Jc, 05.70.Ln, 42.62.2b, 87.16.Nn
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I. INTRODUCTION

Recent experiments on biological molecular motors a
single-molecule level have revealed several curious asp
of their dynamic behavior, including their stochastic moti
under a large noise@1#, and excellent performance in chem
mechanical energy transduction@2#. To understand these re
sults, we must consider how thermodynamic considerati
can be extended to molecular motors operating far fr
equilibrium, where the mechanism is completely differe
from that of the Carnot engine.

We investigated how concepts in equilibrium thermod
namics, such as temperature, appear in a highly nonequ
rium regime. An important part of thermodynamics is t
fluctuation-dissipation theorem~FDT!, which associates the
fluctuation of an observable at equilibrium with its respon
to a small perturbation@3–5#. The Einstein relation@6# is an
example; this theory states that the diffusion coefficientD
and the mobilitym of a colloidal particle suspended in aqu
ous solution at equilibrium have the following relation:

D5mkBT, ~1!

wherekB is Boltzmann constant andT is the temperature o
the system. Therefore, it seems important to investigate
relationship between the fluctuation and the response in
lecular motors to address the above-mentioned problem

In this paper, we present our experimental results c
cerning the relationship between the diffusion coefficient a
mobility in a thermal ratchet, as a simple model of a mole
lar motor. Thermal ratchets, a class of theoretical models
rectify thermal and/or external noise into a net current
particles, have been intensively studied over the past de
@7,8#. There have been several studies on the average be
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ior of thermal ratchets, especially on the sign and magnit
of the induced probability current@9# and the energetic effi-
ciency @10#. In contrast, there are few reports that focus
the fluctuation in the motion of ratchets, especially we a
not aware of a study dealing with FDT on thermal ratche

Therefore, we examined the Einstein relation for a ratc
system, which is interpreted as a realization of a rock
ratchet @11,12# ~see the discussion in Sec. II A!. A ratchet
potential was experimentally constructed using scanning
tical trapping and polystyrene microbeads~0.20 mm diam-
eter!. When a focused laser beam~optical tweezers! is
scanned fast enough on the focal plane, a periodic asym
ric potential for the beads is generated at the orbit of
beam waist, upon which a trapped bead diffuses one dim
sionally. When the periodic potential profile is sinusoida
rocked, a net current of the beads is generated. It is
found that the potential rocking increases both the diffus
coefficient and the mobility of the beads in a positive cor
lation.

Inspired by the above experimental results, we also p
formed the numerical and theoretical analyses on the co
sponding Langevin equation. The numerical simulati
showed that the present model reproduces the experime
trend qualitatively, including the positive correlation betwe
the diffusion coefficient and mobility. However, a furthe
analysis revealed that their relation deviates from
Einstein-type linear relation, and the ratio of the diffusio
coefficient to mobility becomes greater than the tempera
of the surrounding heat bath. Essentially the same resu
also obtained from an analytical calculation for the case o
slow-rocking limit.

These results indicate that the effective temperature of
rocking ratchet in a nonequilibrium steady state, determin
from the ratio of the diffusion coefficient to the mobility, i
close to but greater than the temperature of the environm
We propose a simple formula to evaluate the energetic e
ciency in relation to the effective temperature of the therm
©2004 The American Physical Society13-1
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ratchet, based on which the energetic efficiency of
present system was calculated. We suggest that the incr
in the effective temperature causes dissipation between
particle and the surrounding heat bath, and decreases
energetic efficiency as an engine.

This paper is organized as follows. In Sec. II, we descr
the experimental system and the results for the rock
ratchet. In Sec. III, we introduce the Langevin equation~and
the Fokker-Planck equation! corresponding to the exper
mental setup, and show the results of the numerical sim
tion and the analytical calculation. In Sec. IV, we present
interpretation of the results and a consideration of the e
getic efficiency. Our concluding remarks are given in Sec

II. EXPERIMENT

In this section, we describe the experiment on an opt
rocking ratchet. After explaining the sample preparation a
optical setup, we describe the behavior of beads trappe
unrocked and rocked periodic potentials. We then desc
the measurement of the mobility by applying a small exter
force, and then present the relationship between the m
sured mobility and the diffusion coefficient.

A. Experimental setup

We constructed an optical thermal ratchet by modifyi
the experimental system of Faucheuxet al. @13#. The experi-
mental setup is shown schematically in Fig. 1. Fluoresc
polystyrene beads of 0.20mm in diameter~fluorspheres, mo-
lecular probes: size dispersion<5%) were dispersed in pur
water to a volume fraction of 231026. Double-sided adhe
sive tape~NW-15, Nichiban! was cut into a ring shape an
placed as a spacer between microscope slides. The sa
cell, filled with a suspension of the beads, was sealed w
nail polish. The sample preparation was placed on an a
matic stage~BIOS-201T, Sigma Koki! of a fluorescent mi-
croscope~TE-300, Nikon!, and was observed with a SI
camera~Hamamatsu Photonics!. The scanning optical trap
ping system is constructed as follows. A linearly polariz
TEM00 beam with a wavelength of 1064 nm is output from
Nd31:YAG ~yttrium aluminum garnet! laser ~Millennia IR,
Spectra Physics!. The beam is deflected with an acoust
optic deflector~AOD, 2DS-50-30-1.06, Brimrose!, after be-
ing expanded with two spherical lenses, and fed into a
croscope, again via two lenses. The power of the incid
beam was 0.80 W. Upon strong focusing with an object
lens ~Plan Fluo3100 oil immersion, numerical aperture o
1.30, Nikon!, the beam forms an optical cone inside t
sample cell, which generates an attractive potential well
the beads.

This optical system enables the beam waist to rap
scan the focal plane of the objective lens. As described
Ref. @14#, a microparticle in the optical field of a Gaussia
beam waist, which is drawn sufficiently fast, feels a ‘‘co
tinuous’’ potential field along the orbit of the beam wais
The beam waist was reciprocated along a straight line, wh
beads are confined with Brownian motion. The depth of
optical potential is proportional to the time-averaged inte
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sity of the light @15#, which is inversely proportional to the
scanning velocity of the beam waist. We could thus constr
a sawtoothed periodic potential profile by modulating t
speed of the scanning beam waist. The beam waist was
grammed to move according toX(t)5L(A118t/t021)/2
for one period of the potential, whereL andt0 are the length
and duration of one period of the potential, respectively. T
beam waist was drawn along a straight line, repeating
period of motionX(t) 18 times, then drawn back with re
versed motionX(t02t) for the same number of times, an
the whole forward/backward scanning procedure was cyc
The lengthL of a single period of the optical potential wa
set at 2.5mm, and the scanning frequency, equal to 1/36t0,
was 300 Hz. Figure 2 shows the potential profile for a sin
bead, evaluated as a logarithm of the probability distribut
of a bead measured by tracing its motion within a sin
period @5#. The depth of the potential is estimated to
5.5kBT.

We applied unbiased periodic forcing on the trapp
beads by rocking the intensity profile of the light~Fig. 3!.
The whole intensity profile can be translated slowly alo
the direction of the scanning orbit. In this way, the intens
profile I (x,t) was rocked in a sinusoidal manner asI (x,t)
5I (x2A sinvt). With the rocking, the bead trapped o
the potential feels an additional viscous resistance from
solvent. If we adopt the coordinate system where the po
tial stays stationary, i.e., by transformationx2A sinvt→x,
the bead looks being exerted a periodic forceF(t)

FIG. 1. Schematic of the experimental setup for an optical ro
ing ratchet. OBJ, DM’s, M’s, and L’s indicate an objective len
dichroic mirrors, mirrors, and lenses, respectively. A beam emi
from a Nd:YAG laser was expanded with a beam expander,
flected with an acousto-optic deflector~AOD!, poured into the ob-
jective lens via relay lenses, and then focused. The fluores
beads in the sample preparation were monitored with a SIT cam
mounted on the fluorescent microscope, recorded and analyze
3-2



-
ic
ng
o

e

a

-

on
ial
da
n

pe
e

s
in

th
n

de.
ce-
city

for

s

lly

m
a

or

o-
t of

the
s

n-
ro-
ve

FLUCTUATION-RESPONSE RELATION IN A ROCKING . . . PHYSICAL REVIEW E69, 031113 ~2004!
52gvAcosvt by the solvent~see also Appendix for de
tails!. This kind of system, where a particle on a period
potential is exerted a periodic force, is called a rocki
ratchet@8#. Thus our system is considered as a realization
a rocking ratchet. In this study, the rocking frequencyv/2p
was fixed at 10 Hz, which is sufficiently slower than th
scanning frequency of 300 Hz, and the amplitudeA was
varied from 0L to 0.6L. In relation to the characteristics as
rocking ratchet, the amplitude ofF(t), F05gvA, is calcu-
lated as 0 fN–1.83102 fN from these parameters. This am
plitude corresponds to 0kBT–1.23102kBT for a maximum
potential drop per potential period,F0L.

In the following experiments, a single particle was put
the optical potential for every trial. For each parameter, tr
were repeated for around 100 times sequentially, and the
were analyzed statistically. All of the experiments were co
ducted at 2161 °C.

B. Experimental results

In the experiment, stepwise movement of a single trap
bead over the periodic potential was observed. Figure 4

FIG. 2. Profile of the optically generated periodic potential
one period. The profileU(x) is estimated from the probability
distribution P(x) of a f50.20 mm bead, obtained by tracing it
motion within one period of the potential, using the formulaU(x)
52kBT ln P(x)1G, whereG is a constant@5#.

FIG. 3. Schematic of an optical rocking ratchet. An optica
realized sawtoothed potential~periodL) is rocked sinusoidally with
amplitudeA and frequencyv. A trapped microbead shows rando
and stepwise motion on the rocked periodic potential, where e
period is of lengthL. Only a single bead is put on the potential f
each trial, and trials are repeated.
03111
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emplifies the spatial distribution, in units ofL, of beads ini-
tially placed atx50 after 2 s of diffusion, under a stationary
condition ~i.e., A50L) and a rocking condition (A
50.36L). The probability densities under both condition
form Gaussian distributions. The center of the distribution
the rocking condition is shifted to the right~see Fig. 2!, while
that in the stationary condition is almost at zero. The wid
of the distribution in the rocking condition is greater tha
that in the stationary condition. In Fig. 5, the mean velocityv
of the beads is plotted as a function of the rocking amplitu
The mean velocity is determined from the average displa
ment of the beads in 2 s. The graph shows that the velo

ch

FIG. 4. Spatial distribution of stepwise movement of micr
beads in an optical rocking ratchet. Histograms for displacemen
beads initially placed atx50 after 2 s of diffusion are shown in
units of L. The black bars and the gray bars represent data for
stationary condition (A50L) and one of the rocking condition
(A50.36L), respectively. The solid lines are Gaussian fits.

FIG. 5. Mean velocityv of the beads against the amplitudeA of
the potential rocking. The amplitude is given in units of the pote
tial periodL. The error bars are standard errors, which is also p
portional to the magnitude of the diffusion coefficients. In the abo
axis, the magnitude of oscillating viscous force from solventF0

5gvA is also shown~see the argument in Sec. II A.!.
3-3



a

lo
tin
tio

r

o
on
n
lin
w

g

o-
s
u

re
y.
m
ion
a
at
io

no
ffi

ri-
tical
ro-
vin
on
ntal
w

eir

ed

t
ex-
the

is

na

e
k-

ion

T. HARADA AND K. YOSHIKAWA PHYSICAL REVIEW E 69, 031113 ~2004!
remains almost zero when the rocking amplitude is sm
(A<0.2L), and then increases withA until it reaches a maxi-
mum atA.0.35L.

Next, we examined the response of this ratchet system
an external load force. We used viscous resistance as a
force, which is exerted on the trapped beads by transla
the microscope stage at a constant velocity. For transla
velocity V, the load force is estimated to bef 56phaV,
whereh51.031026 g/(mm s) is the viscosity of the wate
anda50.10mm is the radius of the beads@16#. The direc-
tion of stage translation is set opposite the mean velocity
the beads. A typical response of the mean velocity to c
stant external force is given in Fig. 6 for the stationary a
rocking conditions, where the mean velocity decreases
early with the force. From the slope of the response line,
can evaluate the response coefficient~mobility! of the mean
velocity to the external force. The mobility in the rockin
condition is greater than that in the stationary condition.

In Fig. 7, the mobility is plotted against the diffusion c
efficient without a load force for various rocking amplitude
The diffusion coefficient is calculated from the second c
mulant of the step distribution in 2 s~see, e.g., Fig. 4!, i.e.,
D5L2^(x2^x&)2&/2t, where L52.5 mm and t52 s. The
data points from the bottom to the top in the graph cor
spond to the cases ofA/L50,0.20,0.26,0.40, respectivel
The mobility increases with an increase in the rocking a
plitude, as well as the diffusion coefficient. The extrapolat
of the plot, however, does not go through the origin,
shown in the inset for Fig. 7. According to the graph, the d
plot seems to have a certain offset from the Einstein relat

III. THEORY

Since the statistical error in Fig. 7 is so large, we can
determine whether the relation between the diffusion coe

FIG. 6. Typical response of the mean velocityv against the load
force f. The open circles and squares correspond to the statio
condition (A50L) and the rocking condition (A50.4L), respec-
tively. The lines are linear fits withx2 fitting @26#. The forcef is
calculated with Stokes’ formula, from the translation velocityV of
the microscope stage@16#.
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cient and the mobility is linear or not only from the expe
ment. Thus we examined the corresponding mathema
model to obtain a deeper insight. In this section, we int
duce a mathematical model of an overdamped Lange
equation, along with the results of a numerical simulati
which show a qualitative correspondence to the experime
trend. An analytical calculation in the limiting case of slo
rocking is also described.

A. Model

Since the relaxation time of the beads (m/g52.2
31029 s) is negligible compared to the time scale of th
stepping motion~subseconds! in the experiment, the motion
of a microparticle can be described with an overdamp
Langevin equation of the form

g ẋ52]xW~x,t !1 f 1j~ t !,

^j~ t !&50,̂ j~ t !j~ t8!&52gkBTd~ t2t8!, ~2!

or the equivalent Fokker-Planck equation

] tP~x,t !52]x~2]xW~x,t !1 f 2kBT]x!P~x,t !/g. ~3!

g, W(x,t), f, j(t), andkBT represent the viscous coefficien
of the solvent, the rocked optical potential, the constant
ternal force, the thermal noise, and the temperature of
surrounding solvent, respectively@5,17#. For simplicity, the
profile of the periodic optical potential, shown in Fig. 3,
approximated with a piecewise-linear function

ry

FIG. 7. Relationship between the diffusion coefficientD and
mobility m. The diffusion coefficient without a viscous load and th
mobility against a load are plotted for different values of the roc
ing amplitude, 0L, 0.20L, 0.26L, 0.40L, from the bottom to the
top. The error bars forD represent 50% confidence intervals inx2

distribution@27#. The error bars form were calculated byx2 fitting
on the force-velocity relation~see Fig. 6!. The solid line is the linear
fit whose slope is 4.231022160.48310221 J (53.0310263.4
3101 K). Inset: The same data displayed with the Einstein relat
~dashed line!.
3-4
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FLUCTUATION-RESPONSE RELATION IN A ROCKING . . . PHYSICAL REVIEW E69, 031113 ~2004!
U~x!5H U0

x0
~x2nL! ~nL<x,nL1x0!

2
U0

12x0
@x2~n11!L# @nL1x0<x,~n11!L#

~n: integer!, ~4!

whereU0 and x0 (,L) are positive constants andL is the
period of the potential~see Fig. 8!. Since the intensity profile
of the light is rocked sinusoidally, the optical potential d
pends on time asW(x,t)5U(x2A sinvt).

In connection to the experimental parameters,L, kBT, and
g correspond to 2.5mm, 4.1310221 J, and 1.931029 kg/s,
respectively. Thus the unit of time becomest[L2g/kBT
52.9 s. In this notation, the other experimental parame
were U0'5.5kBT, x0'0.8L, A50L20.6L, and v/2p
510 Hz'30t21. On the other hand, the parameters in t
mathematical model were chosen asU055kBT, x050.8L,
A50L20.6L, andv/2p515t21 for the following simula-
tion and calculation.

B. Numerical results

In Fig. 9~a!, the mean velocity in the numerical simulatio
is plotted against the rocking amplitude. The graph cor
sponds well to the profile of the velocity-amplitude relati
obtained in the experiment~see Fig. 5!. We then investigated
the relation between the diffusion coefficient and mobili
Figure 9 shows the numerical result for this relationship
every value of the rocking amplitude. A positive, almost li
ear, correlation between the diffusion coefficient and mo
ity is also found in the numerical simulation. However th
relationship deviates from the Einstein-type linear relati
In the numerical simulation, the diffusion coefficient an
mobility at A50L, namely, the stationary condition, satis
the Einstein relation, unlike the experiment. This is beca
the stationary condition in this model exactly describes
simple Brownian motion in a static potential, which is co
sidered to be in equilibrium.

FIG. 8. Piecewise-linear potential used in the mathemat
model@Eq. ~4!#. U0 andx0 are positive constants,L is the period of
the potential, andn is an integer. In the present paper, we ha
adopted the valuesU055kBT andx050.8L.
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C. Analytical solution

In addition to the numerical study, we performed an an
lytical calculation of various observables for the prese
model, in the limiting case ofv→0. The details of the cal-
culation are presented in the Appendix. The results of t
analytical investigation are shown in Fig. 10 for both t
mean velocity and the relation between the diffusion coe
cient and mobility, both of which show qualitative corre
spondence to the numerical results for finitev. In the case of
small A/L, the analytical solution leads to an asympto
expression as

D~A!2D05
Ds

(2)~0!

vs
(3)~0!

@m~A!2m0#, ~5!

where D(A) and D0 are the diffusion coefficients for the
rocking and stationary conditions, respectively, andm(A)

l

FIG. 9. Results of numerical simulation.~a! Mean velocityv
against the rocking amplitudeA. In the left and right axes,v is
represented in units ofL/t andmm/s, respectively.A is represented
in units ofL at the bottom with correspondingF05gvA at the top.
~b! Relationship between the diffusion coefficientD and mobilitym
for the mathematical model of Eqs.~2! and ~4!. The diffusion co-
efficientD ~at the bottom in units ofL2/t and at the top in units of
mm2/s) under no external force and the mobilitym @at the left in
units of L2/(tkBT), and at the right in units ofmm/(s fN)] against
an external force are plotted for various values of the rocking a
plitude from 0L to 0.6L. The dashed line indicates the Einste
relationD5mkBT.
3-5
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T. HARADA AND K. YOSHIKAWA PHYSICAL REVIEW E 69, 031113 ~2004!
andm0 are the mobility for the rocking and stationary co
ditions. In this case, the Einstein relation also holds for
stationary condition asD05m0kBT. vs( f ) andDs( f ) are the
velocity and the diffusion coefficient over a stationary pe
odic potential with constant external forcef ~see the Appen-
dix for details!. The coefficientDs

(2)(0)/vs
(3)(0) is equal to

1.27kBT for the parameters used here, and is greater t
kBT.

IV. DISCUSSION

In this section, we discuss the physical meaning of
results. First, before discussing the connection to the F
we discuss the interpretation of the experimental results,
pecially for the stationary condition. Next, we define the
fective temperature of the rocking ratchet in a nonequi
rium steady state in connection with the Einstein relati
Finally, we discuss the physical meaning of the effect
temperature in terms of the energetic efficiency of the th
mal ratchet.

A. Connection to the Einstein relation

In the experiment, although we found a positive corre
tion between the diffusion coefficient and mobility, th
whole data points in the inset in Fig. 7 do not obey t
Einstein relation. Especially, even the stationary condit
does not satisfy the Einstein relation (A50L: the lowest
data point in the inset for Fig. 7!. This significant deviation
from the Einstein relation in the stationary condition occu
because the optical potential was generated by scannin
the beam waist, and was not static. In the stationary co
tion, although it is naively expected that a periodic poten
is formed adiabatically since scanning of the optical poten

FIG. 10. Analytical result for the relationship between the d
fusion coefficientD and mobilitym for the model of Eqs.~2! and
~4! with the limit v→0. The units are the same as in Fig. 9~b!. The
diffusion coefficient and the mobility are plotted for values of t
rocking amplitude from 0L to 0.6L. The dotted line is an
asymptotic fit in the limitA→0 with a slope of 1.27kBT @see Eq.
~5!#. The dashed line indicates the Einstein relation. Inset: the a
lytical result for the mean velocityv against the rocking amplitude
A. The units are the same as in Fig. 9~a!.
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well was sufficiently fast~300 Hz!, the experimental results
show that such an approximation is not correct@18#. Such an
amplification on the diffusion coefficient has also been p
viously observed by Faucheuxet al. for a Brownian particle
diffusing in a circular track generated with scanning optic
tweezers~see Fig. 11 in Ref.@14#!. On the other hand, the
additive increase in the diffusion coefficient in the rockin
condition is due to slower rocking~10 Hz!. Thus, separation
of the time scales may enable us to divide the diffusion
efficient into several components as

D~A!5Deq1D fast1Dslow~A!, ~6!

where Deq, D fast, and Dslow are the diffusion coefficient
which satisfies the Einstein relation and the components
the increment due to fast scanning and slow rocking, resp
tively. In this interpretation,Deq1D fast is equal to the diffu-
sion coefficient atA50L, D(0L)52.260.18 mm2/s. On
the other hand, Dslow(0.4L)5(3.360.27)2(Deq1D fast)
51.160.46mm2/s, for example. From this consideration,
is apparent that the stationary condition in the experim
does not correspond to thermal equilibrium. On the ot
hand, in the mathematical model, Eqs.~2! and ~4!, the Ein-
stein relation holds in the stationary condition, and this c
can be regarded as under equilibrium~i.e., D fast50) @19#.

Thus, the experimental results can be summarized
showing that the diffusion coefficient and the mobility of
rocking ratchet increase in a positive correlation, with
increase in the rocking amplitudeA. Furthermore, the math
ematical model predicts that the Einstein relation does
hold in the nonequilibrium steady state. The ratio of the d
fusion coefficient to mobility can be defined as the effect
temperature of the thermal ratchet,

kBTeff~A![
D~A!

m~A!
, ~7!

which in our model matches the temperature of the surrou
ing heat bath in equilibrium. In a nonequilibrium stead
state, however, the effective temperature is greater than
of the heat bath. Such a nonequilibrium effect on a therm
ratchet may be attributed to the breaking of a detailed b
ance and seems to be rather general, independent of th
tailed mechanism of the ratchet, including a flashing ratc
@20#, and a correlation ratchet@21# ~data not shown!.

B. Energetics

We now address the energetics for the ratchet system
terms of the effective temperature. Recently an express
for the energetic efficiency of a thermal ratchet has be
suggested using an effective temperature, which is es
tially identical toTeff introduced here, by considering a larg
scale description of the motion of a particle@22#. According
to the theory, the energetic efficiency of a thermal ratche
expressed as

e5
f v

2kkBDT1Fv
, ~8!

a-
3-6
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where v is the mean velocity,F[v0 /m (v0 is the mean
velocity under no load! is the effective drifting force of the
thermal ratchet,f is the external load,DT[Teff2T is the
effective temperature rise, andk21 is the time constan
which has a length close to the mean first passage time
the periodic potential. The mean velocityv obeys the rela-
tionshipv5m(F2 f ).

Since the denominator of Eq.~8! containskDT, a higher
effective temperature decreases the energetic efficie
WhenDT.0, dissipation occurs even without a net curre
of the particle. Therefore, the efficiency reaches 0 in
quasistatic case (v→0), while a finite velocity results in
higher efficiency. Figure 11 shows the energetic efficience
as a function of the external loadf, indicating a maximum at
a finite velocity. On the other hand, Eq.~8! becomes unity in
the ideal case ofDT→0 andv→0, i.e., in a reversible pro
cess. In other words, this expression of efficiency me
‘‘how much work can be extracted from thermodynamica
available free energy?’’@23#. Therefore, it must be distin
guished from the usual concept of thermodynamic efficie
~e.g., for a Carnot engine!.

V. CONCLUSION

In summary, we constructed a micrometer-sized rock
ratchet system using a scanning optical trap and microbe
It is clear that the diffusion coefficient and the mobility a
amplified in this operating thermal ratchet under a noneq
librium steady state, and they show a positive and monoto
correlation. For the case of a corresponding mathema

FIG. 11. Energetic efficiencye against an external loadf ~at the
bottom in units ofkBT/L and at the top in units of fN!, numerically
calculated using Eq.~8! for the present mathematical model (A
50.40L). The time constantk2150.186t50.54 s is adopted from
the numerically determined mean first passage time, which is in
pendent of the load forcef. Inset: Experimentally determined ene
getic efficiencye against an external loadf in the rocking condition
(A50.40L). The solid line is the calculated curve with the follow
ing values: the effective forceF53.1 fN, the mobilitym50.29mm/
~s fN!, time constant~mean first passage time! k2150.57 s, and
effective temperature risekBDT58.5310221 J.
03111
or

y.
t
e

s

y

g
ds.

i-
ic
al

model, we found that their relation deviates from
Einstein-type linear relation, indicating a larger diffusion c
efficient. These results support the notation that the effec
temperature for a rocking ratchet operating far from equil
rium is greater than that at equilibrium.

It may be a challenging problem to associate the effec
temperature with the magnitude of violation of the detail
balance. It would also be interesting to conduct experime
on biological molecular motors from this perspective. Rec
techniques involving single-molecule measurement would
the most suitable for such a subject@24#. This could be a new
benchmark for testing theoretical models against real m
lecular motors.
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APPENDIX

We describe in detail the calculation of various obse
ables, such as the velocity, diffusion coefficient, and mob
ity, in the case of a slow-rocking limit. First, we perform
transformationx2A sinvt→y, on Eq. ~2! to get the equa-
tions

g ẏ52]yU~y!2gAv cosvt1 f 1j~ t !,

^j~ t !&50,̂ j~ t !j~ t8!&52gkBTd~ t2t8!, ~A1!

where the notations are the same as those in Eq.~2!. This
Langevin equation corresponds to one known as a rock
ratchet. Since the momenta forx (^x&, ^x2&, and so on!
match those fory with a long-time limit, it is sufficient
to calculate the velocity, diffusion coefficient, and mobili
for y.

Next, we consider a system with only a constant exter
force instead of periodic forcing as follows:

g ẏ52]yU~y!1 f 1j~ t !,

^j~ t !&50,̂ j~ t !j~ t8!&52gkBTd~ t2t8!. ~A2!

For a periodic potentialU(y) with a periodL, the velocity
and diffusion coefficient can be given as@25#

vs~ f !5
12exp~2 f L/kBT!

E
0

Ldy

L
I 1~y!

, ~A3!

Ds~ f !5
kBT

g

E
0

Ldy

L
I 1~y!2I 2~y!

F E
0

Ldy

L
I 1~y!G3 , ~A4!

e-
3-7
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where

I 6~y!5
g

kBTE0

Ldz

L
exp$~6U~y!7U~y7z!2z f!/kBT%.

~A5!

We next proceed to the case of the periodic forcing. In
limit of v→0, the velocity and diffusion coefficient are a
ymptotically calculated as

v~A!5
v

2pE0

2p/v

dtvs~2gAv cosvt !, ~A6!

D~A!5
v

2pE0

2p/v

dtDs~2gAv cosvt !, ~A7!
a

n

n

lid

h

. E

03111
e

where 2p/v must be sufficiently greater than the relaxati
time of the system of Eq.~A2!. Similarly, the mobility is
given as

m~A!5 lim
f→0

v

2p

]

] f E0

2p/v

dtvs~2gAv cosvt1 f !.

~A8!

Since the periodic potentialU(y) is given in Eq.~4!, the
velocity, diffusion coefficient, and mobility can be calculate
using this procedure. The results of the calculation are sho
in Fig. 10.
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