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Diffusion and percolation in anisotropic random barrier models
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An anisotropic random barrier model is presented, in which the transition probabilities in different directions
have different probability density functions. At low temperatures, the anisotropic long-time diffusion coeffi-
cients, obtained using an effective medium approximation, follow an Arrhenius temperature dependence, with
the same activation energy for each direction. Such activation energy is related to the anisotropic percolation
properties of the lattice, and can be analyzed in terms of the critical percolation path approximation. The
anisotropic effective medium approximation is shown to predict the correct percolation threshold for an
anisotropic two-dimensional square lattice. In addition, results are compared with numerical simulations using
a fast kinetic Monte Carlo algorithm.
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[. INTRODUCTION different continuous PDF. The paper is organized as follows.
In Sec. Il the anisotropic RBM is introduced. In Sec. lll, the

Diffusion in disordered media is an active field of re- model is studied within the anisotropic effective medium ap-
search, due to its relevance in a wide variety of natural angroximation (EMA). These results are compared against
industrial processgd—3]. One of the traditional models for Monte Carlo simulations, whose numerical details are given
disorder is the random barrier mod&BM), which consists in Sec. IV. Section V is devoted to a description of the CPPA
of equally energy minima separated by energy barriers, thigleas in anisotropic conditions, and in Sec. VI the concluding
height of which is randomly distributed according to a givenremarks of the present paper are presented.
probability density functioPDPF). In this model, a particle
moves frpm one minimum to another by performing ther- Il. ANISOTROPIC RANDOM BARRIER MODEL
mally activated jumps.

In these systems, diffusion properties can be studied either Diffusion processes will be studied on a two-dimensional
in time or frequency variables. Several studies of diffusionsquare lattice with static disorder. Energy barriers are chosen
properties have been conducted in the isotropic RBM botlrom a given PDFp(E) att=0 and are kept constant during
under unbiasef4—9] and biased10,11 conditions. Follow- the diffusion process. Possible jumps are only allowed be-
ing a frequency analysiRefs.[4,5], and references thergin  tween nearest neighbors. Once the energy baEjgrbe-
the system may be characterized by a zero-frequency diffuween sites andj is selected, the transition rates; from
sion constanD(s=0), and a characteristic frequensy, sitei to sitej are determined following an Arrhenius law:
which marks the onset of frequency-dependent diffusion.

D(s=0) ands* follow Arrhenius laws with the same acti- ®o

vation energyE.. Analogously, from a time variable stand- wjj =—e FEij, 1)
point, it takes a timeé* ~s* ~* for a particle to reach a long- z

time diffusion regime in the RBM, characterized by a

diffusion constantD(t—%)=D(s=0) [8]. The activation Wherewy is the constant jump rate=4 is the coordination
energyE. depends on the percolation properties of the latticenumber, and3=1/kgT is the inverse temperature, wilty
and the PDF of the energy barriers. This dependence is sinfeing the Boltzmann constant. The enefgy characterizes
ply achieved by the critical percolation path approximationthe bond joining sites andj, thereforeg;=E;, and the
(CPPA), as shown for isotropic probleni$2—-14. forward (—j) and backward j(—i) jumps have the same

In view of the diversity of systems in which diffusion transition rate.
takes place, the anisotropic generalization of diffusion prob- In order to introduce the anisotropic character of the sys-
lems has attracted considerable attention in the last yeartgm, theE;; energies are selected from different PDFs, de-
both under unbiased5—21] and biasedi22—24 conditions.  pending on the orientation of the bond joining sitesnd.

A few examples of anisotropic systems are porous reservoiret 1 and 2 be the main directions of the square lattice, the
rocks [3,21,25, layered semiconducting compounfi2s],  key idea is to introducep;(E;) and p,(E;) instead of a
and superconductor cupratg®’]. When dealing with aniso- single PDFp(E). The model is characterized by anisotropy
tropic conditions, diffusion properties are independentlya=€;/e, and global mean energy= (e, + €,)/2. The mean
studied in the different relevant directions of the system. Itenergies in each directior; ande,, are thus represented by
was recently shown that, for a two-dimensional anisotropice;=2ae/(a+1) ande,=2€e/(a+1). In the present work, a
bond percolation model, different activation energies areconstant value o= 0.5¢, is adopted, where, sets the unit
found in each directiof20]. of energy, and the effects of having#1 are studied. Two

In the present paper, a two-dimensional unbiased diffudifferent anisotropic distributions will be considered) an
sion process is studied with each direction characterized by exponential PDF
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3 T T T T T T T T A. Self-consistent conditions

LN\ PE)D 1 Many author§28-31 have derived the EMA, which pro-
vides a self-consistent method to obtain effective diffusion
pr\(E ] coefficients. The approach considers one impure bond of the
s ~ _ disordered lattice as embedded ineffective mediupmim-

D icking the average surroundings. By imposing the averaged
~AE) ~ - fluctuations to be zero, the self-consistent condition is de-
| i rived for the transition rate of the effective medium. For an

---------- hypercubicd-dimensional isotropic lattice in the long-time
- . - limit, this condition read$2]

N
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_ wherew is the transition rate of the impure bond distributed

according to the PDR(w), o is the transition rate of the

effective medium, and the brackets denote average over the

PDF v(w). Solving the self-consistent condition fer, the

- I I - I - diffusion coefficient is obtained @@= ca?, wherea is the

0 0.2 0.4 06 08 1 lattice constant.
E/aO

The anisotropic extension of such formalism, where there
FIG. 1. Exponentialupper panel and uniform(lower panel ex:fstn dlf'_fetrenttl dlreftlonfs, Ifﬁdsdtgf Coueledqﬁeqyatlons ]that
probability density functions. Solid lines represent the anisotropi seli-consistently solve lor the difierent diffusion Coetfi-

cases &=2) and dashed lines the isotropic cases. cients. In a two-dimensional square lattice, and for the long-
time limit, these conditions arfgl 6,18
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p(E)=—e Fr/a,  E e[0m), (0m—0m) _
€ =) =0, (5)
wm+(fmn_1)0'm v ()
m m-
l .
p2Ep)= é—efEZ/EZ, E,e[0), (2)  with
2
2 Om
and(b) a uniform PDF fmn:; arctan\/a: (6)
n
_ 1 andm,n=1,2 denoting the principal axes of the lattice. The
pi(Ea)= 20161 Brel(1=o)e,(1+ e, effective transition rates,; are related to the diffusion con-

stants byD;=o;a2.
1 At high temperatures, the particle can easily overcome
pa(Ex)==——, E,e[(1-68)er,(1+8,)e,], (3)  energy barriers, and eventually all diffusion constants ap-
2656, proach the same value. In Fig. 2, the normalized diffusion

coefficients at high temperatures for the two-dimensional
whereé; andd, serve to control different distribution widths square lattice with an exponential PDF are plotted as func-

in each direction. This uniform PDF represents the most gentions of temperature, both under isotropic and anisotropic

eral anisotropic extension of the isotropic uniform PDF usectonditions. Lines represent the solutions of the EMA self-

in Ref.[8] to study diffusion in RBM. In the following, and consistent conditions, Eq$4) and (5), and symbols corre-

for the sake of simplicity, the widths of the uniform PDF will spond to numerical simulationsee Sec. Y. The figure

be ;= 8,=0.5. Figure 1 shows the exponential and uniformshows that, for high temperatured, /a?w,— 1/z. Analo-

PDFs fora=1 anda=2. gous results are obtained using the uniform PDF. In the fol-
lowing sections the predictions of EMA for diffusion at low

lIl. ANISOTROPIC EMA: LOW TEMPERATURE temperatures are considered.
PREDICTIONS

B. Isotropic case
The EMA self-consistent conditions provide a method for

obtaining the diffusion coefficients for a given disordered For an 'SOtFOp'C hypercubic lattice i dimensions, Eq.

medium. Usually, these equations must be numericall)@ may be written as

solved, except for some simple cases. It is showed in this (0+(d—1)o—do)

section that for the low temperature limit, some analytical > =0.
v()

)
predictions may be obtained within the RBM. wt+(d-1o
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025F ' ' ' ' ' R It is worth noting thatpEM*=d~* is only exact ford=2
3 3 [32], therefore Eq(12) does not give the correct exponential
02 behavior ford= 3, and other approximations, such as CPPA,
. should be considereld].
“50.15
g r C. Anisotropic two-dimensional case
0.1 For the anisotropic two-dimensional case, E§). turns
into two self-consistent conditions, with transition rate PDFs
0.05 [ v1(wq1) and v,(w,), for each direction of the lattice. By
introducing the energy dependence,=w(E;) and w-,
00 = w(E,), the two self-consistent conditions read
1/Be,
< 1 > i
FIG. 2. Diffusion coefficients at high temperatures. Lines corre- -1 T o]
spond to the EMA solution and symgols to?mmerical simulations. @B+ (T~ 1oy p1(Eyp) 7

The isotropic case is represented by a dashed line and the aniso-

tropic casea=2 by continuous lines. < 1 > far
— ==, (13
By introducing the explicit dependence on energy o(B)+(for —Doaf o) 72
=w(E) given in Eqg.(1), and transforming the transition rate ?
average over(w) to an energy average ovp(E), Eq.(7) Again, the PDFs change abruptly f8r—c, and a param-
becomes eterE. can be defined as in the isotropic case. Howeklgr,
1 1 is expected to be characteristic of the underlying energy
< > = (8) landscape, so the diffusion coefficients in each direction are
o(E)+(d=1a/ . do expected to be governed by a singlg. For the anisotropic

- ' . case, an energi. will be defined separating two limiting
For B— o the transition rates(E) varies extremely rapidly, conditions simuItaneousta(El)<(fl’zl— 1)o; and w(E,)
due to its exponential dependence. Therefore it is possible @ (f;1~1)o, for E; and E, larger thanE., and w(E,)
define an energy valug. such that two possibilities arise: >(](1—21_1)01 and w(E2)>(f2’11—1)02 for E; and E,

w(E)>(d—1)o for E<E; or w(E)<(d—1)o for E>Ec.  gpajier thanE,. Thus, E, must verify two simultaneous
The characteristic valug, can be therefore defined as

conditions
w(Ey))=(d—1)o. 9 _
( C) ( ) ( ) w(EC):(flzl_l)O']_,
For values ofE<E,, the left-hand side of Eq8) vanishes.
Alternatively, for E>E. the valuew(E) on the left-hand w(EC)=(f;11—1)02. (14
side of Eq.(8) may be ignored. Taking these conditions into
account, and averaging ove(E), Eq. (8) for B—x be- In this way, a set of equations analogous to EHl) are
comes obtained,
1 _Jm p(E) dE 10 Ec
do e, (d=1o (10 jo p1(E)dE ="y,
or, equivalently, E,
J p2(Ez)dE;=fy;. (19
Ee 1 0
f p(E)dE= . (12)
0 d

By adding Egs.(15), using Eq.(6) and trigonometric rela-
In the EMA, the bond percolation threshold of the hyper-tions, an expression is arrived at,
cubic lattice is given bypEMA=d ! [28-31]. Therefore, Eq. . .
(12) is a condition oveE, for each particular PDIp(E), in f ¢ (E)dE +f ¢ (E)dE.=1 16
terms of the percolation properties of the lattice. Indeed, 0 pi(EJdE 0 p2(E2)dE=1, (16)
combining this value oE with Eq. (9), the EMA diffusion
coefficient for isotropiad-dimensional hypercubic lattices at which gives the activation energg, as a function of the

low temperatures is given by anisotropya. Moreover, by replacing the expressions in Egs.
) (15) for f1, andf,; in Egs.(14), and solving foro; and o,
_ @0 g the corresponding anisotropic diffusion coefficients are ob-
D=———e P& (12 . i
z(d—1) tained:

031107-3



SEBASTIAN BUSTINGORRY PHYSICAL REVIEW E59, 031107 (2004

' ' ' ' ' ' of EMA self-consistent conditions, Eqgl) and(5), are rep-

2R 2 gf 321%&6 - resented with dashed and continuous lines, for the isotropic
o D; a=1(SMO) | and anisotropiex=2 cases, respectively. Dotted lines repre-
o Dy a=2(SMC) sent the prediction of EMA for the low temperature limit,

-4 : gf g:fgﬁﬁg I Eqgs.(17). Symbols are the results of numerical simulations,

as described in the following section. These figures show that
the diffusion coefficients in each direction follow Arrhenius
laws with the same activation energy. Even though simula-
tion data at lower temperatures are needed, the agreement
with the low temperature anisotropic diffusion coefficients is

. , ! , better for a uniform PDF than for an exponential PDF.

10 15 20
'880 IV. NUMERICAL SIMULATIONS

In [D/ew,a’]

|
5

FIG. 3. Arrhenius plot of the diffusion coefficients for an expo-  Monte Carlo simulations were performed to obtain long-
nential PDF. The solution of the self-consistent EMA conditions istime diffusion coefficients for comparison with anisotropic
represented with a dashed line for the isotropic case and with corEMA predictions. The energy landscape was selected from
tinuous lines for the anisotropie=2 cases. Dotted lines represent the corresponding PDF dt=0 and kept fixed during the
the analytical EMA predictions, Eq$17), for low temperatures. diffusion process. At=0 a partic|e was assigned to a ran-
Symbols correspond to SMGtandard Monte Carjoand FKMC  dom initial sitei. Different Monte Carlo algorithms may be
(fast kinetic Monte Carlpsimulations, as indicated. used at this point and two possibilities were considered: stan-

dard Monte CarlgSMC) [8] and a fast kinetic Monte Carlo
Ec (FKMC) [33] scheme. A brief description of these methods is
J'O p1(E1)dE, wga? given in the following.
E Z e Ak In SMC, the particle selects at random one of its nearest
f sz(Ez)d E, neighborsj and tries to overcome the barrier between them
in a time unit. A random numbefe (0,1) is generated such
that if £<w;; the jump is effective, otherwise the particle
Ec stays at the initial site. In this process, one unit of time is
fo p2(E2)dE, wnd2 used for every jump trial. Although SMC simulations proved
D,=—= 0% o BE.. 17 to be very useful for studying diffusion processes, it was
f °p1(E1)d E, z shown that it is not too appropriate for studying low tem-
perature regimelsb,8,33. At low temperatures, the transition
rates decrease exponentially with increasthgand the ran-
The isotropic result, Eq.12), is obviously recovered by set- dom numberé is, mostly, orders of magnitude greater than
ting p1=po. the transition rates, making the number of effective jumps

Figures 3 and 4 show Arrhenius plots of the anisotropic(displacementisvery small and the long-time diffusion re-
diffusion coefficients at low temperatures, corresponding ta@ime difficult to reach.
the exponential and uniform PDFs, respectively. The solution In the FKMC[33] scheme, consider the particle in a Site

on a lattice with itsz nearest neighbotjs(j=1, ... 2). The
oF. ' ' ' ' ' ' ' ' transition rates from to j are denoted byw;;. The total
transition ratew; from sitei is defined as

Dl:

i
L z
N';; -10 wj= 2 wji . (18)
g .l =1
g 15 . . .
= - Instead of selecting the neighbor at random, as in SMC, a
= -20 neighbork is selected for an effective jump given that
_25> 1 k—1 1 z
30 ! ! ! 1 ; Zl wji<§1sz Zk Wjj (19
i 10 20 30 40 50 H= H=
’880 where &, is randomly uniformly distributed in (0,1). The

time variablet is then increased in’, wheret’ is chosen

FIG. 4. Arrhenius plot of the diffusion coefficients for a uniform . S ; o .
PDF. The solution of the self-consistent EMA conditions is repre-frciq1 an exponential distribution with mean waiting time

sented with a dashed line for the isotropic case and with continuou®i Therefore,

lines for the anisotropiee=2 cases. Dotted lines represent the ana- 1

lytical EMA predictions, Eqs(17), for low temperatures. Symbols t'=——Iné&,, (20)
correspond to FKMC simulations. i
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with &, randomly uniformly distributed in (0,1). This proce- ' ' ' '
dure is repeated from siteand so on. In the FKMC algo- 0.5
rithm, each jump trial is effective, meaning that the particle
always jumps to one of its neighbors, and the time elapsed ir 451
one jump is accordingly adjusted. Furthermore, the FKMC
algorithm depends on the raties; /w; and consequently it
is not asB dependent as;; [33]. This algorithm allows us to
reach larger values @8 in simulations of the diffusion pro-

cess. 0.35F exponential PDF

Simulations were performed on 38B00 and 506 500 \
sites square lattices for the SMC and FKMC, respectively, (3 . ! . ! .
with periodic boundary conditions. For each algorithm, the 1 1.5 2 25
mean square displacements on each directidift)) and o
(r5(t)) were computed, averaging over between 2000 and FiG. 5. Dependence of the activation enefgy on the aniso-
5000 realizations of the random walks. The long-time diffu-tropic parameter for the exponential and uniform PDFs studied
sion coefficients were defined throughf(z)(t))ZZDl(z)t, here.

and were obtained from the best linear fits to the Iong—time[ . . .
mean square displacements. 32)). It has been shown thé&t, is the highest energy barrier

In Figs. 3 and 4, numerical simulations and EMA resultsVhich the particle must overcome in order to gain full access
are presented together. In Fig. 3, SMC simulations are plott-q the percolation network. The '0”9'“”?9 ‘?"ff!JS'O” coeffi-
ted up toBe,=10 and some FKMC simulation points are CI€Nt must therefore bB~exp(-SEy), which is indeed the
shown for comparison. Both algorithms coincide within theobserved behavior of isotropic diffusion at low temperatures

numerical precision. In Fig. 4, only FKMC results are pre- [4.8]- . . . L
sented up to a valuBe,=30. Monte Carlo simulations do The percolation threshold of a particular lattice, which is

not completely reach the asymptotic low temperatures bed!Ven by a pointp for isotropic percolation, becomes for
havior. However, numerical simulations and EMA seem to@nisotropic percolation a critical surfage({p;}) =0 [34],

agree very well in the accessible temperature range. where{p;} denotes the set of relevant occupation probabili-
ties. For example, the percolation functiongdg$p) =p—p.

for isotropic percolation,¢(p1,p2)=p1+p,—1 for the

square lattice, an@(p1,P2,P3)=P1+ P2+ P3—P1P2Ps— 1
The idea of a percolation path governing diffusion at lowfor the triangular latticd 34]. Furthermore, the critical sur-

uniform PDF

©

E /e

04r T

V. CRITICAL PERCOLATION PATH APPROXIMATION

¢

temperatures was first developed in Réf2] and rigorously  face implies a change in the morphology of the incipient

proved latef13,14). In this section, this idea will be briefly percolation network.

summarized and extended to anisotropic conditions. In the anisotropic RBM context, the occupation probabili-
At low temperatures the characteristic Arrhenius diffusionties of a bond with energy barri&; i.e., accessibility condi-

energyE, can be related to the bond percolation threshold ofion of the bond, is given by the probability & being lower

the lattice. Consider a random walk on a realization of thethan the maximum accessible barrier. Therefore, the gener-

disorder energy landscape at a very low temperature. In ordedization of Eq.(21) to anisotropic conditions becomes

to overcome a barrier with an energy, the particle spends £

a mean waiting timea’~exp(BE’). For short times, there- {f Cpi(Ei)d Ei] ) =0. (22)

fore, the particle can only move to sites which are connected 0

by low energy barriers and is surrounded by a perimeter of . o

higher energy. Roughly, at timg the particle might jump Note tha}t thg:-re exists just one eneigy, which is the same

barriers withE<E’, and the probability to overcome this for "?‘" d”EC“O‘?S’ and gives full access to the' whole aniso-

L . . tropic percolation network. For the anisotropic RBM on a

barriers isf5 p(E)dE. For_longer times, the particle could square lattice, Eq(22) becomes equal to the EMA predic-

overcome the lowest barrier of the perimeter, and access fbn, Eq. (16). This means that EMA predicts the correct

new region with a higher energy perimeter. These regions argitcal percolation surface(py,p,) =p;+ p,— 1 for aniso-

noncompact in the sense that they may have inside barrie%piC bond percolation in the square lattids, 17.

that belong to the perimeter barriers. Eventually, there exists Figure 5 shows the effect of anisotropyon E(«) for

a particular barrier of heigh., beyond which the particle e energy distributions studied in the present model, and

gains access to the whole system, through the correspond|wedicted both by CPPA, Eq22), and EMA, Eq.(16). For

percplation _path of energigS<E.. Thus, for an isotropic i, exponential PDF, the condition foE, reads exp

medium, E. is given by (—E./€)+exp(—E./e)=1, which was numerically solved.

For the uniform PDF Eq(16) givesE./ey=2al(a+1).

EC
f p(E)dE=p, (21)
0 VI. CONCLUDING REMARKS

where p.. is the bond percolation threshold of the system In this paper, diffusion properties were studied using an
(p.=0.5 for the two-dimensional isotropic square lattice anisotropic RBM, with emphasis on the low temperature be-
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havior and on percolation properties. Two kind of PDFs were In the present paper, a connection was established be-
used to characterize different directions of the latticetween EMA and CPPA ideas, and EMA was shown to predict
namely, exponential and uniform PDFs. The anisotropiche correct activation energy for anisotropic diffusion in the
EMA was used to calculate the long-time diffusion propertiessquare lattice. For other geometries and dimensions, it is
for all temperatures, derived from the numerical solutions ofexpected that EMA will still predict an Arrhenius behavior,
the self-consistent conditions expressed in Ef.Further- byt with an activation energy that differs from that predicted
more, analytical expressions for the diffusion coefficients afy cppA. This difference is due to the fact that CPPA uses
low temperatures were obtained, E@7), which show that  ne percolation threshold as a parameter, while EMA predicts
diffusion in different directions follows Arrhenius laws with ;5 qwn percolation threshold. However, EMA is known to
a same activation energyc. Th's ?hou'fj be cqmpared with predict the correct percolation threshold only for the square
the thermally activated diffusion in anisotropic bond PErco-|,iice. even in anisotropic conditiorfd5,17. Concerning

::iﬂ?]r(]j flgrtt'ecscsﬁ éﬂeﬁ?&%goflrrﬂﬁgt fgstgﬁ'r?% deer:ecr)?]'lesor?ereCPPA, corrections of the forng¥ become relevant for di-
' P » Oy mensions greater than two, but it is not clear which of both

activation energy is found due to the existence of an amsoépproximations, EMA or CPPA, give better resuif and a

tropic percolation path of low energy barriers, which governs ) : Additional Ki
the diffusion process. Besides giving the activation energyySt€matic comparison turns necessary. Additional work:in

for diffusion, EMA predicts the exponential prefactor for dif- this direction is now under progress.
fusion and it dependence with the anisotropy of the disor-
dered system.

The two Monte Carlo algorithms used here, namely, SMC
and FKMC, show a very good agreement with the EMA
predictions for the diffusion coefficients in the accessible The author want to thanks G. L. Insua for useful discus-
temperature range. For a more extensive comparison witkions. This work was financially supported by CONICET,
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