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Minimal speed of fronts of reaction-convection-diffusion equations
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We study the minimal speed of propagating fronts of convection-reaction-diffusion equations of the form
Ui+ pd(u)u,=uy,+f(u) for positive reaction terms witti’ (0)>0. The function¢(u) is continuous and
vanishes ati=0. A variational principle for the minimal speed of the waves is constructed from which upper
and lower bounds are obtained. This permitsdtgiori assessment of the effect of the convective term on the
minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the
minimal speed of the fronts. We show thafff(u)/f'(0)+ w¢’(u)<0, then the minimal speed is given by
the linear value 2f’(0), and theconvective term has no effect on the minimal speed. The results are
illustrated by applying them to the exactly solvable case puu,=u,,+u(1—u). Results are also given for
the density dependent diffusion caser xé(u)u,=[D(u)u,],+ f(u).
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I. INTRODUCTION si= —kp,

The reaction—giiffusion equatiout:uxx+f(.u) has been where diffusion of the chemical has been negledi@du-
employgd as asimple mogjel of phenomena in different ar€agnents to justify this approximation, together with the choice
population growth, chgmlca! reactions, flame propagation¢ .,nstant and y are given in Ref[9]). If we now look
and others. In the classical Fisher chEg f(u)=u(1—u), a for traveling wave solutions=s(x—ct), p=p(x—ct), then

f_ront pro_pagazting_r\r/]vith _speeq<ppl=_2 jOiPS the twolequilib_- si= —cs,, therefores,=kp/c, and the problem reduces to a
rium points [2]. The time evolution for general reaction single differential equation fop, namely,

terms was solved by Aronson and Weinberg&V] [3] who
showed that sufficiently localized initial conditions evolve
into a front which propagates with speex such that =Dpoo— X_k( 2y +1(p) 1)
2\f"(0)<c,=<2sug f(u)/u]. The asymptotic speed of PP T XTI
propagation is the minimal speed for which a monotonic
front joining the stable to unstable equilibrium point exists. The more elaborate models of Keller and Segel for chemo-
Existence proofs give limited quantitative information on thetaxis[10], which include diffusion of the chemical and other
dependence of the speed of the front on the parameters of tlgfects, have been considered to explain chemotactic collapse
problem [4]. For this reason different variational methods (see Refs[11,12], and references thereiand other phenom-
have been developed. For the one-dimensional case it hag;a. The derivation of these equations from transport theory
been shown that this minimal speed can be derived eithegnd the assumptions involved in them have been studied re-
from a local variational principle of the minimax tyjpg], or  cently[13]. In addition to these biological processes, equa-
from an integral variational principlgs,7]. Minimax varia-  tions analogous to Eq1) appear when modeling the Gunn
tional principles for the speed of fronts in several dimensionsffect in semiconductors and in other physical phenomena
and for inhomogeneous environments have also been estar4 15. Equation(1) for a Fisher type reaction terrf(u)
lished[4,8]. =u(1-u) has been studied in RdfL6]. An extensive study

In many processes, in addition to diffusion, motion canof the existence of traveling waves of nonlinear diffusion-
also be due to advection or convection. Nonlinear advectioReaction-convection equations which includes a review of
terms arise naturally, for example, in the motion of chemo-many results to which we refer for additional references is
tactic cells. In a simple one-dimensional model, denoting bytontained in Ref[17].
P the density of bacteria, chemotactic to a single chemical In this work we concentrate on the equation with a gen-
element of concentratios(x,t) the density evolves accord- eral convective term which, suitably scaled, we write as
ing to
pi=[Dpx—pxsxlxtf(p), e (U U= ot HL), @

where diffusion, chemotaxis and growth have been considhere the reaction terrfi(u) is a continuous function with
ered. There is some evidenf@] that, in certain cases, the Ccontinuous derivative ifi0,1] and satisfies

rate of chemical consumption is due mainly to the ability of

the bacteria to consume it. In that case f(0)=f(1)=0, f’(0)>0, f'(1)<0
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and II. MINIMAL SPEED OF TRAVELLING FRONTS

Traveling monotonic decaying frontgx—ct) of Eq. (2)
satisfy the ordinary differential equation

f>0 in (0,1.
The function¢(u) is a continuous function with continuous
derivative in[0,1]. Without loss of generality we may as-
sume that in additiorp(0)=0, since otherwise only a uni-
form shift in the speed is introduced. The parameieis
positive.

For Eq.(2), the existence of monotonic decaying traveling
fronts u(x—ct) for any wave speed greater than a critical Wherez=x—ct. It is convenient to work in phase space;

Uy +[c—ue(u)Ju,+f(u)=0,

limu=0,

Z— %

lim u=1,

Z— —

u,<o,

valuec, has been proved recently R¢l.8]. Moreover, in
Ref.[18] the following estimate for the threshold valog is
obtained,

f(u
2 f’(O)sc*sZN/ sup(—)+ max uep(u). (3)
ue01 Y uefoa

defining as usuap(u)= —u,, the problem reduces to find-
ing the solutions of

dp(u)
gy L me(wp(u)+f(u)=0, (7)

p(u)

with

Analogous results for density dependent diffusion are also

established in Ref[18]. The convergence of some initial

p(0)=p(1)=0, and p>0.

conditions to a monotonic traveling front has been proved

[19] for systems in which the minimal speed is strictly

greater than the linear valug =2/f'(0).

We will show that the minimal speed, for the existence
of a monotonic decaying froni(x—ct) joining the stable
equilibriumu=1 to the unstable equilibrium=0 obeys the
variational principle

Cx =sup&(g), 4
ges
with
1
fo {2VEHWwg(u)[—g'(u)]+ ué(u)g(u)}tdu
&g)=

1
J g(u)du
0
5)

and the supremum is taken over the &eof all positive,
monotonic decreasing functioggu) for which the integrals
in Eq. (5) exist andg(1)=0. From here it will follow that

2\Jf’(0)=c <c,<inf sup

1
a+—f"(U)+ud(u)|.
a>0 ue[0,1] @

(6)

From the variational expressidd) one may obtain the value
of the minimal speed with any desired accuracy, and th
inequalities(6) enable us to characterize the reaction terms

for which the speed is the linear valag. More precisely, if

f”(U)
f(0)

then c, =2f'(0).

+tue’(u)<0,

The bound(3) is also derived from the variational prin-
ciple. The generalization to density dependent diffusion is

given as a direct extension of the previous results.

e

We first perform the linear analysis around the endpoints
u=0 andu=1, which may provide restrictions on the al-

lowable speed. These results will also be needed when prov-

ing the existence of a variational principle. Near0,
p(u)=mu, where m is the larger root ofm?—F(0)m
+f’(0)=0. For convenience, we have definédu)=c
— ué(u). This root is given by

F(0)+ VF(0)°—4f'(0)
m= .
2

The condition thain be real imposes the restrictidf?(0)
=4f'(0). Written explicitly this bound is

c=2{f'(0)=c_. (8

Nearu=1, p=r(1—u), wherer is the positive root of?
+F(1)r+f'(1)=0, namely,

—F(1)+F2(1)—4f'(1)
r= .
2

9

No additional restriction on the range of allowable speeds is

imposed from the expression above, since by hypothesis

f’(1)<0.

In addition to the linear constrai(8), a simple constraint
is found from direct integration of Eq7). Dividing by p(u)
and integrating between 0 and 1, we have

c—,ufo d(u)du+ fo p(u)du'

Sincef andp are positive in (0,1), we obtain

1
C>,uJ0 $(u)du.
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A. Variational principle m

In this section we construct a variational principle from ”W-
which the exact speed of the front may be calculated.d et
be any positive function ir0,1) such thath=—dg/du>0.
Multiplying Eqg. (7) by g/p and integrating with respect to ~ The integrals in Eq(10) converge provided
we find that

1 1
CJgdu=f
0 0

where the first term on the right-hand side is obtained aftefhis condition is satisfied wheneveg >c, , that is, when-
integration by parts. However singe h, f, andg are posi- everc, >c there exists a functiog=§ for which equality
tive, we have that for every fixed holds in Eq.(10) or, equivalentlyc, =max&(g) =£(9).

On the other hand, whea, =c, , there does not exist a

f 1
hp+ag)du+,uf ¢gdu T_1<1'
0

fg function § in the setS of admissible functions for which
hp-+ FZZVfgh- equality holds in Eq(10). Consider however the trial func-
tions
so that
go(W)=u""*—1.
1
[2Vfgh+ ueég]du
_ fo B Clearlyg, e S for any 0<a<1. Moreover one can check that
c= 1 =&9). (10 (see the Appendix
f gdu
0
limé&g,)=c =c,,
To show that this is a variational principle we must prove a0
that there exists a functiog=§ for which equality holds.
Equality is attained fog=g§ such that therefore
of
ph=-pg'=— C, =Supt(g)
p geS

Using Eq.(7) to eliminatef(u) we have that in this case. Notice that in this last case the maximum is not

. , attained since the limiting functiog, does not belong t&.
g"(w _P (W) - _ F(u) This concludes the proof of our variational principle.
g(u)y P p(u)

B. Upper and lower bounds

which can be integrated to obtain
The variational principle provides lower bounds with suit-
ably chosen trial functions, which can be arbitrarily close to
dt} with 0<ug<1. the exact value of the speed. The fact that it is a variational
principle for which equality holds, enables one to obtain also
(11) an upper bound to the speed.

. (1)
u)=p(u)exg —
g(u)=p(u) r{ LO( o(D)
. . ) To obtain an upper bound we use the fact that
Sincep vanishes at 0 and 1, we must analyze the behavior of

g at these points in order to ensure the convergence of the 1 )

integra|s in Eq(lo) 2ab= 0[a2+ ;bz with a>0. (12)
At u=1, sincep(u)=r(1—u), and sinceF(u) is con-

tinuous at 1, we obtain that

Then the following inequality holds:
g~r(1_u)[1+F(l)/r].

1 fh
From the expression far, Eq. (9), we see that, sincé’ (1) 2\fgh=2g/fh/g <9( +— E)
<0, for any value of~(1) the exponent £ F(1)/r is posi-
tive, henceg(1)=0.
Near u=0, sincep=mu and sinceF is continuous at where we used the inequality above wihk-1,b=/fh/g.
zero, we find that Then
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1 similar criterion can be obtained in the present problem. The
fo (2Vfgh+pugg)du minimal speed for the existence of a front is known unam-
c, =su - biguously to be the linear value whenever the upper bound
g j gdu (14) coincides with the linear lower boung] . A sufficient
0 condition for this to occur is that the supremum of the func-
) tion K(u)=a+f'(u)/a+ u¢p(u) in (0,1] does not exceed
the value of K at the origin. Effectively, if supK(u)
fo glatfh(ag)+udldu —K(0)=a-+f'(0)/a: minimizing with respect tar we ob-
<sup 1 - tain o= \/f’(0) and the upper bound is precisely the linear
g fo gdu value. A sufficient condition that guarantees that the maxi-

mum (supremum of K occurs at zero is that(u) be de-

The second term in the last expression can be integrated tf€asing. Witha=Jf’(0) this condition is
parts. The boundary terrfg|$ vanishes and we obtain ()
u

) —+ 1’ (U)<O0.
j gla+f'lat+ ugp)du 1 (0)
0
Cy<SUp 1 < sup|a+ M¢+Zf’}- Whenever this condition is fulfilled, for all, we know that
g f gdu uelo.d] the minimal speed of a monotonic front is the linear value
0

13 c.=2f'(0). Again as it occurs in the standard case0,
(13 this condition is sufficient but not necessary.
The above inequality holds for any positive hence
I1l. AN EXACTLY SOLVABLE CASE
c,.<inf sup
a ue[0,1]

. (14 Here we illustrate the above results by applying them to
the exactly solvable case discussed in IRES]: a Fisher type
reaction termf(u)=u(1—u) and the simplest convective
term ¢(u)=u. By means of a phase space analysis Murray
[16] found that the minimal speed for the existence of a
monotonic decaying front is

1
a+ Ef (u)+u P(u)

The bound14) in the caseu= 0 differs from the classical
AW [3] result for fronts of the parabolic reaction diffusion
equationc<caw=2 SUR c[o,1)Vf(u)/u. The bound(3) ob-
tained in Ref[18] on the other hand, reduces, wher-0 to
the classical AW result. Here we show that this last bound

2
can be derived from the variational principle as well. Using —+% if u>2
the inequality(12), now with a=+/fg/u and b= \/uh, we C=1H (19
have that 2 if u=s2.
1 1 fg 1 1 fg 1 Here we show that the results of the preceding section allow
Zfo Jfgh dlﬁfo a- +—hudu= fo a7+ -9/du for the exact determination of the speed.

In this example the linear marginal stability value is given
where the last expression is obtained after integrating th8Y cL=2. We first use the variational principle to obtain a

second term by parts. We have then lower bound. Take the trial function
1 f 1 —u\* .
fog a’a'f';‘f‘,u,(ﬁ du g(u)= T with 0<A<1.
C,=<sup T
9 J gdu A straightforward integration of Eq10) leads to
0
fo1 c=2%+ 52 (1-N)=c(h).
< sup |a—+—+ud|. 2
uefogl U4«

If u>2 the maximum ofc(\) occurs forn=4/u? and it is
given by 2u+u/2. For u<2, however, the supremum of
c(\) occurs as\—1. We have then

Choosinga = 1/sup/f/u we obtain

i
u

In the classical AW cas@=0, we know that when the
reaction term is concave then supffu)/u=2f’(0). In  and
this case the upper bound coincides with the linear lower
boundc, and the minimal speed is univocally determined. A c,=supc(\)=2 for u<2.

C,=< Ssup
ue]0,1]

+u max ¢(u).
ue(0,1]

N)= —2 += f >2
=
C4 =SUC(N) 5 for u=>2,

031106-4



MINIMAL SPEED OF FRONTS OF REACTION. .. PHYSICAL REVIEW E 69, 031106 (2004

To obtain an upper bound we use Ef3), that is, IV. DENSITY DEPENDENT DIFFUSION
1 2 The effect of the convective term on the minimal speed of
C,< Sup|a+—+u|lu—— Va>0. fronts of the reaction diffusion equation for nonconstant dif-
uel01] @ @ fusion follows in a simple way from the previous results.

. Consider traveling fronts of the equation
We will separate the two casgs<2 andu>2. 9 q

If u<2, choosex=1, then Ui+ pp(u)u,=[D(u)uy]y+f(u),
C,=< sup[2+u(u—2)]=2. where f(u) and ¢(u) satisfy the properties spelled in the
uel0, previous sections. The diffusion coefficidd{u) is continu-

ous andD(u)>0 in (0,1]. D(0) is either positive or zero.
By a suitable change of variablg20,21] the equation for the
fronts is reduced to the usual reaction diffusion equation with
a reaction ternf (u)=D(u)f(u). This reaction term satisfies
f>0, andf'(0)=D(0)f’(0). We must distinguish two
The lower bound obtained from the variational expressiorfases. IfD(0)# 0, thenf satisfies the same properties fas
coincides with the upper bound obtained from H4), and the results of the preceding sections can be applied di-
therefore we know with certainty that the minimal speed isrectly. If D(0)=0, thenf’(0)=0 and we expect a sharp
indeed Eq.(15), and had been previously demonstrated bywave front. In this case it has been shol@ij that the front

If u>2 choosex=2/u, then

2 2
=—+

M

C,=< sup 5

ue[o,g\ M

Lad
5

phase space methods. approachesi=0 ascu. A variational principle exists also in
Note that Eq.(3) constitutes a poorer bound in this case.this casg22]. We have then that, in both cases, the minimal
Effectively, from Eq.(3) it follows thatc, <2+ u. speed of the wave fronts is given by

1
fo {2VD(Wf(wg(u[-g'(W]+p¢(ug(widu

C, =Sup

1
g
JO g(u)du

where the supremum is taken over all positive monotonicacknowledges support under Grants No. BFM2000-0351 and
decreasing functiong(u) for which the integrals exist and No. SGR-2001-00186.
g(1)=0. Upper and lower bounds can be obtained following

the methods of the preceding sections. We do not spell them

out here APPENDIX
In this appendix we prove that
V. SUMMARY
We have studied the effect of a convective term on the lim £(g,)=cL=2Vf'(0),
speed of monotonic reaction-diffusion fronts. The minimal a0
speed for the existence of fronts has been shown to derive )
from a variational principle from which the exact speed Canwherega—u —1 with 0<a<1.

be determined in principle. The existence of this variational Slncefoga(u)du (1-a)/a, andh,=(1-a)u*"? we
characterization permits the obtention of upper and lowemay write
bounds. The classical result that establishes that for concave
reaction terms, the minimal speed of the fronts is the linear E(g)=d1(a)+Is(a),
value is extended to the case where convective terms are
present. The extension to the case of density dependent difthere
fusion has been given for positive diffusion terms.
We have found that a convective term increases the mini-
mal speed of the traveling front only if it is sufficiently Ji(a)= f VE(u)(u?* 3 —u*?)du
strong, if not, the minimal speed is determined by the reac-
tion term alone.
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Since $(0)=0 and ¢ is continuous the integral id, has a
finite value whena=0. Then, due to the overall multiplica-
tive factor of o, we see that

But | Ja— Jb|<[b—a], therefore

. 2
limJ,(a)=0. IK(a)|<= <

a—0 Vi—«a

To show that limJ;(a)=2f'(0), asa—0, write

fl\/lf(u)—uf’(0)|(u2“*3—u“*2)du.
0

Sincef(u) and its derivative are continuous, [i0,1], there
existd>0, g>0 such that

PR — fW F(0) (U™ 3= u™ ?)du+K(a)
= u u -u u ,
ne Vli—aJo “ ,
[fw-uf'©@__ .
where u <dau’.
2a 1 — — In particular, if f(u) is analytic in a neighborhood of @
— 20—3_ ,,a—2 ’
K(a)= \/m fo ViU u* %)du =1. Using this inequality in the expression above, we have

that

- fl\/uf’(O)(uZ““”—u“*Z)du :
0

2a

Vi-a

1
|K(a)|< J Jdud i (u?e—3—ye=2)du.
0

The first integral is

Finally, sinceu?® 3—u® 2<y2* 3,

2
\/%Jol\/uf’(O)(uz‘**—u“‘z)du

1 2a 1 2a \/H
; r < a—1+q/2 4, —
_=f’(0 "l1-a | IK(a)|<mJafou du o atal
Ji—a —3+a
2(a—1)
Therefore, lim  |K(a)|=0.
Now we prove that lim  K(a)=0. To sum up,
1
2a 1 r
[K(a)|= fo(U)(UZH—U“*Z) Jaf'(0) l1-a
Ji-alo i =i =2JF
a l|in05(ga) llino \/m : 374 2\f'(0).
—yuf’ (0)(u*">—u*" u. a—1
Juf (0) (U3 =u")|d 2(a—1)
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