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Molecular traffic control in single-file networks with fast catalysts
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As a model for molecular traffic control we investigate the diffusion of hard core particles in crossed
single-file systems. We consider a square lattice of single-files being connected to external reservoirs. The
(vertica) a channels, carrying onhA particles, are connected to reservoirs with constant depgijty B
particles move along théhorizonta) 8 channels, which are connected to reservoirs of densgjtyWe allow
the irreversible transitioA— B at intersections. We are interested in the stationary density profile i #mel
B channels, which is the distribution of the occupation probabilities over the lattice. We calculate the stationary
currents of the system and show that for sufficiently long channels the cutesnésfunction of the reservoir
densitie3 show in the limit of large transition rates nonanalytic behavior. The results obtained by direct
solution of the master equation are verified by kinetic Monte Carlo simulations.
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[. INTRODUCTION versibly A particles intoB particles. In a discrete-time setting
this mechanism can be specified by saying that per time unit
The concept of molecular traffic control was introduced inAt anA particle is converted into B particle without having
the beginning of the 1980EKL,2]. It is postulated that the a jump attempt. In a continuous-time description this prob-
effective reactivity of microporous catalysts may be en-ability reduces to the reaction ratewhich is the reaction
hanced by directing the reactant and product molecules alongrobability per time unitAt.
different pathways. The so-called molecular traffic control In our present calculations we assun® 1 andc large
(MTC) effect has recently been verified by Monte Carloenough so it is unlikely that aA particle that has entered an
simulations[3]. For a better insight into the restrictions and intersection point will leave the intersection before having
limitations of the MTC effect it is desirable to understand thebeen converted into & particle. Therefore in the steady state
conditions which determine the actual flow of particles. Thisthe bulk of the network contains almost Aoparticles. Only
question is closely related to the problem of calculating thethe first and the lag channels and the first segment of the
stationary density profile of the system. From a theoreticathannels are of interest. Due to reflection symmetry it is
point of view the MTC system can be modeled as an array ofufficient to consider only a half-system and finally the sys-
several interacting symmetric exclusion proce$$#sh [4].  tem reduces to Fig. 2.
The stationary properties of the SEH within a channel, in
particular, the linear density profile with the stationary par- IIl. THE GENERAL CASE
ticle currentjoc1/L, whereL denotes the number of lattice ) )
sites between intersections, together with the transition rules Let us label the lattice sites for thiéh «-channel segment
at the catalytic sites lead to an interesting and unexpectelom 1 toL and denote the catalytic site by-L +1 and the
behavior of the composed system.

Il. DESCRIPTION OF THE SYSTEM

We consider Rl—1 channels of typer and 8. Slightly
generalizing the setup ¢6] we assume the(B) channels to
be connected to reservoirs of constant densities such that the
entrances of the respective channels have fixed particle den-
sities pag) - There should be no interaction other than hard
core repulsion which forbids double occupancy of the lattice
sites.D is the elementaryattempi rate of hopping between
lattice sites and it is assumed to be the same for both species
of particles. Therefore we have a network of interacting one-
dimensional symmetric exclusion proces68EP. From this
we can expect linear density profiles between two intersec-

tions[4], the slope being inversely proportional to the num- L4 :' ® .. o

ber of lattice sited.. L is the number of lattice sites between

two neighboring intersections or intersection and the adja- FIG. 1. MTC system with threer channelgvertica) and three

cent boundary site. See Fig. 1. B channelghorizonta) andL =3 lattice sites between adjacent in-
At the intersections we place a catalyst that changes irreersections.
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FIG. 2. Reduced MTC system. Tl particle density of theth intersection is labled witfp, .

boundary site by 0. We use a similar labeling for tik 8 d . .

channel(bulksites 1 td_, intersections by=0) since it will giPn~In-17In (3.10
be clear which one we refer to. Because of the exclusion

interaction the local occupation numbeisandb; for A and  with the densitie$ﬁ=<an) or Pﬁz<bn>, respectively, at site
B particles can only take values 0,1. We also define the “van and the corresponding bulk currents

cancy occupation numberd, . In the o channel we have

vi=1—ay, in the B channeb,=1-b,, and on the catalytic jA=D({a,_1)—(an)), (3.1)
sitev;=1—b;—a] . The expected local densitiéa;) for A

particles andb{) for B particles satisfy the following set of iB=D((by_1)—(by)) (3.12
equations:

g between bondsn,n+1).
' r r For the stationary solution that we wish to study the time
E<al>: D({az)=2(ay) +pa), @D derivative vanishes. Because of particle conservation in the
bulk the currentg’, j2 do not depend on the lattice site
d . ; ; ; _ which implies linear density profiles. For notational simplic-
gila=D(ai,p+(aip-2(a)), 2<isL-1 ity we will drop then and add the information about the
(3.2 channel we are talking about instead.
For c#0 we derive from Eqgs(3.3—(3.6) for the rth
d . ; . C ot Cor channel
a<aL>:D(<aL—l>_<aL>+<ale>_<aLU|>)1 3.9
jr=ca)), (3.13

d
grlan=D(arvp)—(aj) —cap), (3.9 iB=jB  tc@), jB=-jB+c(@®).  (3.19

d [In the absence of catalysis€0) one would have an equi-
a(b[}ED(<b[’lv,r>—(b[v[’l>+(brlv{>—<b[vrl>)+0(a.r>, librium state with all currents equal to zefoEquations
(3.5 (3.13, (3.14 imply conservation of currents

d ic=it i+l 1sr=N-1 (3.19
a<bi>=D<<b5>—<b5>+<b{vi>—<b5v{>), (3.6)

1
g io=310- (3.16
Gr{BN=D(b]. ) +(bf_)=2(bf)), 2<i=L-1
(3.7) For futher analysis we neglect correlations between the oc-
cupancy of a catalytic site and its three neighboring sites.
d . ) ) o1 i This mean field_ app_roximation_ is motivated by exact resul';s
giPL=D(bL_)—=(b)+(bi " vp)—(bro; ")), for the correlations in the stationary state of the symmetric
3.9 exclusion process from which it is know] that nearest-
neighbor correlations in the vicinity of the boundary of a
d system of sizé are of order 1.2 and hence small under the
a(b[‘)=D((bf,l)—2<b’['>+p3). (3.9  assumptiorL>1 made here. Within the mean field we there-
fore replace joint probabilitiegéxy) by the productx){y).
Equation(3.11) together with Eq.(3.3 and Eq.(3.12 to-
gether with Eq.(3.6) then become two equations for the
currents, depending only on the local densities of the border-
ing catalytic site$?, B2, P, ,,

In these equations®r=<N— 1, notice tha{b(, ;)=pg and
(agy=pa- The linear nature of the bulk equatiof8s2), (3.7)
results from a cancellation of joint probabiliti€sia; ),
(b{bj,) due to the S(R) symmetry of the symmetric ex-
clusion proces§7]. For a generic channel they may be writ- BA+ pa(PB—1)
ten in the standard form of a lattice continuity equation for jf= D%, o<r<N-1 (3.17
the local density L(pr—1)-1
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FIG. 3. Particle current obtained by Monte Carlo simulatisn ~ FIG- 4. ForalatticdN=1,p,=0.6,pg=0.7 one findgp=1. For
vs theoretical currentdots. Lattice N=1, L=250, pg=0.7. The increasingL the density of the intersection obtained by simulations

deviations are mainly due to finite-size corrections. approaches the theoretical value.
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]F: L1M7 Osr<N-1. (3.18 L+1 L+1 L(p—1)—1" O=r=N-1
( pr)+ (3.19
For further discussion we neglect the densitiefgfarticles o _
on the intersections which comes from the model assumption po— P11 pa(Po—1) (3.20

that anA particle is very likely to be converted into B L+1 2L(pop—1)—1"

particle before returning to the channel. Equation§3.17)

and(3.18, together with Eq(3.15), finally leads to a set of These equations are quadraticdpand to leading order in
equations for the unknown densitTéEETJr, the system size one has the solutions

1

D= 5 5 . _ 1 (3.21
" | 2Bt Proatpa). Po=Pit5pa, 1ST=N-L.

FIG. 5. Normalized theoretical currents of thechannels(left) and 8 channels(right) in a lattice of N=3. The first intersectiof,
saturates whep,= % , p1 becomes one fop,= % .
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increase ofp, there is a critical value at which this density
1.0 = @ L. S L3 - .
] P reaches 1. Increasing, further eventually leads to the sec-
0.8 o ond catalytic site saturating. Then there is no current any-
. more in the first part of th@ channel. This goes on until the
p 0.6 7 = last catalytic site also saturates and the system reaches a
! oe ] situation where the current is limited by the capacity of the
o * last segment of th@ channel; only in this channel is there an
0.2 4 . actual flow of particles.
. To quantify this we note again that for small none of
0.0 1 = the catalytic sites is saturated and the recursion relation
oo o2 o ol ol (3.21) is solved by
Pa Pr=3 (N*~r®)pa+pg. (322
109 Notice thatp, <1 which implies the range
0.8 [ 1— PB
] @ P ® 0$pA<2v. (323
0.6 - £33
-
P .l ,”.(K Increasingp, to such an extent that the densities of the first
' = s intersections become 1 we have
0.2 = *
] . 5 1 r—s
Wl s pr=n_g| (N=D+(=8)pg+ ——(N=T)(N=S)pa|,
O.IO 0.‘2 0.‘4 0.‘6 0.‘8 r:s+1,N—1 (324)
Pa
with the corresponding range
1.0 o SOONWIEE B = [ 3 - 2(1_p )
o B
l o < . 3.2
S PASIN= s D(N-9) (329
1 =
A IV. SIMULATIONS AND RESULTS

We used dynamic Monte Carlo simulations to verify the
" results obtained in the previous section. The algorithm uses
random sequential update. Statistical errors are of order 0.1%
and therefore not additionally marked on the graphs. We cal-
T T T T T culated the stationary profile for a systemM&1 « chan-

0.2 -

0.0 4

0.0 0.2 0.4 0.6 0.8
nels andL=250 and a system dii=3 « channels and
Pa =250. See Fig. 3. In the first case we find the two solutions
FIG. 6. Densitied,, p1, p, Of B particles obtained by Monte D p
Carlo simulation(X) vs theoretical densitiegloty. Lattice N=3, 5 TA’ 0=pp=2—2p3
L =250, pg=0. .
PB | = 1 4.7
~PB

Before giving an explicit expression for the local densities at D L 2=2pg=pa<l

the intersections we would like to discuss which of these

solutions the system selects. We note that owing to exclusiowhich implies that the system selects the smaller of the two
‘pr=1. Owing to particle conservation in the bulk of the sys-values(4.1),

tem all currents are non-negative. This implies an increase of
the densitie®, for decreasing. Therefore all solutions with
pn=1 andp,,<1 for m<n need to be discarded. The actu-
ally selected solution is determined by the boundary densi-
ties po and pg. For small py each « channel is in its This has an intuitive physical meaning. In each channel the
maximal-current state since the probability of findigpar-  system tries to maximize its current, but the actually selected
ticles on the catalytic sites is almost zero. Egglthannel  current is limited by the smaller one of the two maximal
can support the accumulated currents that enter through thecurrents. To understand the origin of this selection principle
channels. However, this implies a rather high densityBof we employ the picture developed in the preceding section.
particles at the first catalytic site. Then, with an adiabaticNotice that the stationary probability of finding &nparticle

——AE-A 1_pBE.B
2 L JmaX’ L JmaX'

j=min (4.2

031102-4



MOLECULAR TRAFFIC CONTROL IN SINGLE-FILE . .. PHYSICAL REVIEW E 69, 031102 (2004

on the catalytic site is almost zero. Now let us assume that V. CONCLUSION
first p5, i.e., the reservoir density oA particles, is very
small. For smallp, the system tries to sustain the currént
=jﬁ1axwhich is possible as long as tiechannel can support
this current. This is the case if the densityB®fparticles at
site N required to generate this current in tBechannel is
less than 1. Notice that in this regime the densityAopar-

We discussed the stationary occupation probabilities of
the molecular traffic control system with fast catalysts. Our
main results are the obtained intersection densit&e22—
(3.25), calculated in the limit of large file length. They are
sufficient for the derivation of the density profile as a func-

ticles both on sitd and on the last site of the channel is  1on Of the reservoir densities, ,pg due to linear density
nearly zero. Now we assume, to be increased adiabati- profiles of the channel segments. As an _mtngw_ng result we
cally, i.e., so slowly that the system reaches stationarity beShowed that an increase of the reservoir gradient does not
fore a further increase occurs. On the catalytic site Bhe necessarily mean an increase of the currents inside the sys-
densityp increases in order to sustain the enhanced statiof€M- In fact, due to saturating intersection sites certain chan-
ary current. Ifp, becomes so large thaf,, =2 one has nels show(Fig. 4) an aptual decrease qf the current apd fi'—
7=1. Then the current is limited by the capacity of tge Nally become zero. Since the mean field approximation is
channel and increasing, further does not increase the cur- €ssential in our calculation the results are not valid for sys-
rent. Instead the last site in the a channel acquires a finite tems of short file length. The stationary behavior of these
density ofA particles. systems remains an open question. The main ingredient in
For increasing- one expects the simulations to approachour approach is current conservation inside channels. Hence
the theoretical densities. Figure 4 shows the calculations foa similar analysis may be performed for more realistic model
a lattice ofN=1, po=0.6, andpg=0.7 with the theoretical systems with density-dependent currents.
density at the intersecticp=1. The nonanalyticity of the current is not a critical phenom-
We consider the system &f=3 « channels. For simpli- enon in the usual sense of being associated with a divergent
fication we assumeg to be zero. Figure 5 shows the theo- correlation length. It results from a nonequilibrium transport
retical currents of thex channels angB channels as a func- phenomenon, viz., the saturation of channels with the maxi-
tion of p,. The first intersectiofp, saturates whep,=3; mal current they can support. We expect this phenomenon to
D, becomes one fop,= 3 . For the same lattice Fig. 6 com- occur also in three dimensions. A quantitative investigation
pares the densities obtained by simulation with the theoretiin three dimensions by means of Monte Carlo simulation is

cal values. in progress.
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