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Localized X-shaped field generated by a superluminal electric charge
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It is now well known that Maxwell equations admit of wavelet-type solutions endowed with arbitrary group
velocities (0<vg<<>c). Some of them, which are rigidly moving and have been called localized solutions,
attracted large attention. In particular, much work has been done with regard to the superluminal localized
solutions (SLS9, the most interesting of which are the “X-shaped” ones. The SLSs have been actually
produced in a number of experiments, always by suitable interference of ordinary-speed waves. In this paper
we show, by contrast, that even a superluminal charge creates an electromagnetic X-shaped wave: namely, on
the basis of Maxwell equations, we are able to evaluate the field associated with a superluminalwidege
the approximation of pointlikenesdt results in constituting a very simple example ofrae X wave.
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. INTRODUCTION a current density*#=(0,0§,:j° flowing in the z direction.
. . On assuming the fields to be generated by the sources only,
Itis well known that Maxwell equations have been showngne has thatA“=(0,0A,;#), which, when adopting the
to admit of wavelet-type solutions endowed with arbitrary| orentz gauge, obeys the equatiohA*=4mj*/c. Such a
[1] group velocities B<vy<c. Some of them, which are nonhomogeneous wave equation, in cylindrical coordinates

rigidly moving and have been called “localized solutions,” (p,0,z;t) and for axial symmetrjwhich requiresa priori
attracted much attentiof2]. In particular, much work has that A“=A*(p,z;t)], can be written &s

been done with regard to the superluminal localized solu-
tions (SLS’s), the most interesting of which—as predicted bya| 9 ( P 1 2 1 42 52
2, )

special relativity(SR) itself [3]—are the “X-shaped” ones

[4]. Such X-shaped SLSs have been actually produced in

number of experimentsb]. Ao
The theory of SR, when based on thelinary postulates =—jMp,L7), (1)

but not restricted to subluminal waves and objects, i.e., in its c

extended versiof6], predicts the simplest X-shaped wave to ) .

be the one corresponding to the electromagnetic field creatéE{OV'dgd tr;a?t we go on to the new V-cone variables]11],

by a superlumindlcharge[8,9]. Evaluating the field associ- With V=>c=:

ated with a superluminal electric charge is of utmost impor-

|- A(p, )
Pap\Pap) " 2 a2 yramp Takam|T ST

tance not only as a contribution to the theory of the X-shaped {=z-Vt,

waves, but also as a starting point for studying the electro-

magnetic interaction of a charged “tachyon” with ordinary n=z+VL. 2

matter(and planning, may be, the construction of a suitable . _

detectoy. In Eq.(1), itis A*=(0,0A;; ¢); quantity x assumes the two

valuesu = 3,0 only; and 6]

Il. THE TOY MODEL OF A POINTLIKE SUPERLUMINAL ) 1 )

CHARGE Y=y (1)

Let us first start by considering, formally, a pointlike su-
perluminal charge, even if the hypothesis of pointlikeness Let us now supposé” to be independent of;, so that
(already unacceptable in the subluminal gaseotally inad-  A*=A*(p,{). Due to Eq(1), we shall havej*=j*(p,{)
equate in the superluminal case, as it was thoroughly showtoo; and thereforg,=Vj° (from the continuity equatiorand
in Refs.[8].
Then, let us consider the ordinary vector potenfiéland
2As a further check of our calculations, we started also from the
so-called scalar Bromwich-Borgnf40] potentialu, under the hy-
*Email address: recami@mi.infn.it pothesis thaj=(0,0;,), in which case it iSEp=(92u/(9p,z?Z; while
Yincidentally, let us recall that thiiminal case was successfully E.=—d°uldr+5uldz?; and B4=d°uldp 97, where r=ct. On
examined by Bonnof7], who showed the Maxwell equations to defining the functiony=A,=du/dr, we showed by Maxwell equa-
admit of finite-energy solutions even in the limiting case ¢frmss-  tions thaty has to obey the same nonhomogene@ugally sym-
free) “particle” carrying equal amounts of positive and negative Metric wave equatior(1), with =3.
electric charge. 3In the following we shall put=1, whenever convenient.
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A,=V¢lc (from the Lorentz gauge Then, by callingy

=A,, so thatp=cy/V, Eq.(1) yields the hyperbolic equa-

tion

P(p.H)=4mj(p.0). )

19/ o 1 2
—_— —_ + —_

pap\Pap ¥? a¢?
One can notice that the procedure leading to By .consti-
tutes a simpl@eneralizatiorof the theorem by Lwet al.[12]
to nonhomogeneous equations, i.e., to the case with source
[13].

Let us finally analyze the possibility and consequences of
having a superluminal pointlike chargetraveling with con-

stant speed/ along thez axis (p=0) in the positive direc- DL A e

tion: P (um)
- V5(P) P 4 FIG. 1. Behavior ofA,= as a function ofp and of {=z—Vt
12=¢€ p (9). 4 evaluated fory=1 (i.e., for V=cy2). (Of course, we skipped the

points in whichA, must diverge, namely, the vertex and the cone
To solve Eq.(3) with j, given by Eq.(4), let us apply(with  surfacg.
respect to the variablg) the Fourier-BesselFB) transfor-
mation of a function f(x) into function F(Q): f(x) the nonhomogeneous cagke fact that form=0 these equa-
=[5QF(Q)Jo(2x)dQ, and F(Q)=[gxf(x)Io(2x)dx, tions differ for an imaginary unit will be discussed else-
quantity Jo(Qx) being the ordinary zero-order Bessel func- where.

tion. After some calculations, one gets the equation It is rather important, at this point, to notice that such a
5 solution, Eq.(11), represents a wave existing only inside the
i ‘9_+Qz W(Q,0)=4meVé(?). (5) (unlimited double cone&C generated by the rotation around
v? a2 ' the z axis of the straight linep= * y{: This is in full agree-

ment with the prediction§l5] of the “extended” theory of
By applying subsequently the ordinary Fourier transformaspecial relativity{6].
tion with respect to the variablé (going on, from/, to the

variablew), after some further manipulations we obtain Il EVALUATING THE FIELDS GENERATED BY THE

'yz SUPERLUMINAL CHARGE
\I’(Q,w)=47TeVﬁ. (6)
Y Q' -w Once solution(8) for the “potential”  has been found,

) ) o . we can evaluate the corresponding electromagnetic fields.
Finally, the solution of our equation is got by performing the standard relatiorg= —V—Alat andH=V XA im-
the correspondininverseFourier and FB transformations: ply in the present casky=y(p,0)=A,: and ¢=c IV]
il Z

* = 0Jg(Qp)e it that, when Gsp<+y|{| (i.e., inside the con€), the fields
Wp.0)=Brevy | do| 0= P — 1) pecomé
— 0 v QO —w
Vvi-1
which, on using formulag3.723.9 and (6.671.7 of Ref. Ep:—\/gep , (10a
[14], ylelds \/[§2_p2(v2_1)]3
#(p,0)=0 for 0<y|{|<p, Vi1
Vv ®) E,=—\8mel , (10b)
W(p,{)=\8me for 0<p<1y|Z]. VI 2-p2(V2-1)73
V= pA(VP-1)
V(V2—1)

(109

In Fig. 1 we show such a solutioh,= ¢ as a function ofp Hy=— \/gep ,
and¢, evaluated fory=1 (i.e., forV=c+2). V[ 22— p3(V2—1)]3

For comparison, one may recall that thalassical
X-shaped solutior{4] of the homogeneousvave equation where, let us recall;=z— Vt, with V2>c2. We show in Fig.
has the forn{11] (with a>0) 2 the direction of the various field components in our coor-

\%
X

= . 9)
V(a—i0)%+p?(V2—1) 41t should be noted that the same results are obtained when start-
ing from the four-potential associated with a subluminal charge
In the second one of EqEB) it enters expressiof®) with the  (e.g., an electric charge at resand then applying to it the suitable
spectral parametdill] a=0, which indeed corresponds to superluminal lorentz “transformation6].
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Y p=%¢ AP
0

emission absorption

X

FIG. 2. Depicted here is the direction of the various field com-
ponents, in our coordinates.

dinates; while the behavior &,, as a function op and¢,

is shown in Fig. 3. FIG. 4. The spherical equipotential surfaces of the electrostatic
However. outside the con@ i.e.. for 0< ‘y|§|<p one field created by a charge at rest get transformed into two-sheeted
gets, as expected, that rotation hyperboloids, contained inside an unlimited double cone,
' ' when the charge travels at superluminal sp@tdRefs.[6,8]). This
figure shows, among others, that a superluminal charge traveling at
E,=E,=H,=0. (1o 9 g P 9 9

constant speed, in a homogeneous medium such as the vacuum,

doesnot lose energy[8]. Let us mention, incidentally, that this

One faces therefore a field discontinuity when crossingy, pie cone has nothing to do with the Cherenkov ctsee the
the double-cone surface, since the field is zero outside iteyy The present picture is a reproduction of Fig. 27 of our earlier

Nevertheless, the boundary conditions imposed by Maxwelyqk [6].
equationg 15] are satisfied by our solutiai8) or Eqs.(109—

(100, since at each point of the cone surface the electric andne callselectric the “electromagnetic charge” when it is
the magnetic field are both tangent to the cone: We shall,pjuminal. then he should call itmagnetic when

discuss this point below. superluminal (cf. Fig. 46 at page 155 of Refi6(a)]). Actu-
_Let us here emphasize that, wheér-o,y—0, the elec- )1y result (8) can be obtained in a quicker way just by

tric field tends to vanish, while the magnetic field tends toapplying a superluminal lorentz “transformatiofi] to the
the valueH,,= — V8we/p?. This does agree with what is fields generated by a sublumin@h particular, at restelec-
expected from extended relativifg], which predicts super- tric point charge.
luminal charges to behave, in a sense, as magnetic mono- | et ys add that—as mentioned at the end of the preceding
poles. In the present paper we can only mention such a Cisection—extended relativity predicts, e.g., that the spherical
cumstance, and refer to Ref8,9], where it is shown that, if equipotential surfaces of the electrostatic field created by a
charge at rest get transformédy a superluminal lorentz
transformation into two-sheeted rotation hyperboloids, con-
1 tained inside an unlimited double cof&8]: see Fig. 4. One
ought to notice, incidentally, that this double cone does not
have much to do with the Cherenkov cone: In fact, the
double cone is associated with a constant-speed superluminal
charge even in the vacuum, while Cherenkov radiation emis-
sion is induced by a fast electric charge only out of a material
medium. Moreovefcf. also Fig. 27 at page 80 of RéB(a)])
a superluminal charge traveling at constant speed, in the
vacuum, e.g., doesot lose energy8].

Let us go eventually back to the problem where one faces

4 B ; a field discontinuity across the double-cone surfaee Egs.
\/4 (109—(100 and Eqgs(10d)], since the field is zero outsidg
0.5 05 !
P (nm) ; 05 0

’ & (um)

(10°pm?)

E,

(87‘5)1/27 "

SWe have shown elsewhe{8,16] that a superluminal charge
FIG. 3. Behavior of the component of the electric field gener- and a superluminal current are pseudoscalar and pseudovector,
ated by a superlumindpointlike) charge as a function qf and ¢, respectively: Just as in the case of a magnetic charge and a mag-
with the same parameters as used for Fig.(Qnce again, we netic current; so that they should rather be writterygesand ysj*.
skipped the points in whiclk, has to diverge, namely, the vertex But in this paper we shall forget about the symmetry properties of
and the cone surfage those quantities.
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for p— y|Z| fields (109—(10¢) even diverge. Nevertheless,
one can straightforwardlyerify that our solution8), or Egs.
(109—(100), satisfies the following boundary conditions, re-
quired by Maxwell equations in the present case ofaving
boundary{17,18:

(Eext— Ein) - N=0,
(Hex—Hin) -n=0,
(Eext_ Eint)tan: - (ﬁ V)ﬁX (Hext_ Hint)a

[1—(N-V)2INX (Hex— Hind =] (11)
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