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Multiple dynamic transitions in an anisotropic Heisenberg ferromagnet driven
by polarized magnetic field

Muktish Acharyya*
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A uniaxially ~along theZ axis! anisotropic Heisenberg ferromagnet, in the presence of time-dependent~but
uniform over space! magnetic field, is studied by Monte Carlo simulation. The time-dependent magnetic field
was taken as elliptically polarized where the resultant field vector rotates in theX-Z plane. The system is cooled
~in the presence of the elliptically polarized magnetic field! from high temperature. As the temperature de-
creases, it was found that in the low anisotropy limit the system undergoes three successive dynamical phase
transitions. These three dynamic transitions were confirmed by studying the temperature variation of dynamic
‘‘specific heat.’’ The temperature variation of dynamic specific heat shows three peaks indicating three dynamic
transition points.
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INTRODUCTION

The dynamical behaviors of magnetic model systems
the presence of a time-dependent magnetic field, show in
esting physical phenomena@1#. The nonequilibrium dynami-
cal phase transition@1#, particularly in the kinetic Ising
model, has drawn much interest of researchers in the fiel
nonequilibrium statistical physics. The dynamic transition
the kinetic Ising model in the presence of a magnetic fi
~sinusoidally varying in time! was noticed@2# in the mean-
field solution of the dynamical equation for the average m
netization. The time-averaged magnetization over a full cy
~of external magnetic field! becomes nonzero at finite value
of temperature and field amplitude. These values of temp
ture and field amplitudes depend on the frequency of
oscillating field. However, the transition there@2# is not per-
fectly dynamic in nature since it can exist for such equat
of motion even in static~zero-frequency! limit! This reveals
that the transition in the zero-frequency limit is an artifact
the mean-field approximation which does not consider
nontrivial fluctuations. The occurrence of the true dynam
transitions for models, incorporating the thermodynami
fluctuations, was later shown in several Monte Carlo stud
@1#.

After observing the true dynamic transition in the kine
Ising model in presence of oscillating magnetic field a
knowing that it is a nonequilibrium transition, a considerab
amount of studies were performed@1# to establish that this
transition is thermodynamic phase transition. The div
gences of ‘‘time scale’’@3# and the ‘‘dynamic specific heat’
@3# and the divergence of length scale@4# are two important
observations to establish that the dynamic transition is a t
modynamic phase transition.

Although the dynamic transition in kinetic Ising model
an interesting phenomenon and a simple example to g
the various features of nonequilibrium phase transitions
has several limitations. In the Ising model, since the sp
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can have only two orientations~up/down!, some interesting
features of dynamic transitions~related to the dynamic trans
verse ordering! are missing in this model. The classical ve
tor spin model@5# would be the better choice to see su
interesting phenomena which are missing in the Ising mo
One such example is the ‘‘off-axial’’ dynamic transitions@6#
recently observed in the anisotropic Heisenberg ferromag
In the off-axial dynamic transition, the dynamical symmet
along the axis of anisotropy can be broken by applying
oscillating field along any perpendicular direction~X direc-
tion, say!. The dynamic phase transition in an anisotropicXY
spin system in an oscillating magnetic field was recen
studied @7# by solving the Ginzburg-Landau equation. Th
dynamic phase transition and the dependence of its beha
on the bilinear exchange anisotropy of a classical Heisenb
spin system~planar thin ferromagnetic film!, was recently
studied@9# by Monte Carlo simulation.

All these studies on the dynamic phase transition, mad
far, are related to a single transition. The dynamic transit
occurs at a single value of temperature~for fixed values of
field amplitude and frequency!. No evidence of multiple dy-
namic transitions~for bulk only! is reported so far in the
literature in an anisotropic Heisenberg ferromagnet driven
a polarized magnetic field. However, it should be mention
here that a very recent study@8# of dynamical phase transi
tions in thin Heisenberg ferromagnetic films with biline
exchange anisotropy has shown multiple phase transit
for the surface and bulk layers of the film at different tem
peratures. Here, in this paper, the observations of mult
~triple! dynamic transitions, in an anisotropic Heisenberg f
romagnet driven by an elliptically polarized magnetic fie
are briefly reported which is observed in the uniaxially a
isotropic Heisenberg ferromagnet~three dimensional! in the
presence of an elliptically polarized magnetic field stud
by Monte Carlo simulations.

The paper is organized as follows: the model is introduc
and Monte Carlo simulation techniques are described in
next section, the third section contains numerical results w
figures, and the paper ends with a summary and few conc
ing remarks given in the fourth section.
©2004 The American Physical Society05-1
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MODEL AND MONTE CARLO SIMULATION TECHNIQUE

The Hamiltonian of a classical anisotropic~uniaxial and
single-site! Heisenberg model@5#, with nearest-neighbor fer
romagnetic interaction in the presence of a magnetic fi
can be represented as

H52J(̂
i j &

Si•Sj2D(
i

~Si
z!22h•(

i
Si , ~1!

where Si@Six ,Siy ,Siz# represents a classical spin vector
magnitude unity (Six

2 1Siy
2 1Siz

2 51) situated at thei th lattice
site. The classical spin vectorSi can be oriented in any~un-
restricted! direction in the vector spin space. In the abo
expression of the Hamiltonian, the first term represents
nearest-neighbor~^ij &! ferromagnetic (J.0) interaction. The
factor D in the second term represents the strength
uniaxial~z axis here! anisotropy which is favoring the spin t
be aligned along thez axis. Here, it may be noted that fo
D50, the system is in the isotropic Heisenberg limit and
D→` the system goes to the Ising limit. The last ter
stands for the interaction with the externally applied tim
dependent magnetic field@h(hx ,hy ,hz)#. The magnetic-field
components are sinusoidally oscillating in time, i.e.,ha
5h0a cosvt, whereh0a is the amplitude andv is the angular
frequency (v52p f ; f is the frequency! of the ath compo-
nent of the magnetic field. In this present case, the field
taken as elliptically polarized. The polarized field can
represented as

h5 x̂hx1 ŷhy1 ẑhz5 x̂h0x cos~vt !1 ẑh0z sin~vt !. ~2!

One can readily check thathx5h0x cos(vt) and hz
5h0z sin(vt) yield, after the elimination of time,

hx
2

h0x
2 1

hz
2

h0z
2 51, ~3!

which shows that the magnetic field lies on theX-Z plane and
is elliptically polarized ~in general,h0x and h0z are not
equal!. If h0x5h0z5h0 ~say!, the above equation will take
the form hx

21hz
25h0

2 and the field will be called circularly
polarized. The magnetic fields and the strength of anisotr
~D! are measured in the unit ofJ. The model is defined on a
simple cubic lattice of linear sizeL with periodic boundary
conditions applied in all three directions.

The model described above has been studied by Mo
Carlo simulation using the following algorithm@10#. To ob-
tain the equilibrium spin configuration at a particular te
peratureT, the system is slowly cooled down from a rando
initial spin configuration@11#. At any fixed temperatureT
~measured in the unit ofJ/kB , wherekB is the Boltzmann
constant!, and for the fixed values ofh0x , h0z , v, andD, a
lattice site i has been chosen randomly~random updating
scheme!. Monte Carlo simulations were performed using t
Metropolis algorithm@10# with a random updating scheme
The spin-tilt trial configuration is generated as follow
@11,6#: two different random numbersr 1 and r 2 ~uniformly
distributed between21 and11!, are chosen in such a wa
thatR25r 1

21r 2
2 becomes less than or equal to unity. The
02710
d,

e

f

r

-

is

y

te

-

t

of values ofr 1 and r 2 , for which R2.1, are rejected. Now,
u5A12R2 , Six52ur1 , Siy52ur2 and Siz5122R2. In
this way, the distribution of points of tips of spin vectors o
the surface of a unit sphere will be uniform. The accepta
of a trial configuration is determined by the Metropolis ra
@10#. L3 numbers of such updates~at random positions! of
spin vectors, defines one Monte Carlo step per site~MCSS!
and this may be considered as the unit of time in this sim
lation. The linear frequency (f 5v/2p) of the time varying
magnetic field is taken 0.02 and kept constant through
this simulational study. Thus 50 MCSS’s are required to o
tain one complete cycle of the oscillating field. Cons
quently, 50 MCSS’s is the time period~t! of the oscillating
magnetic field. Any macroscopic quantity, such as any co
ponent of magnetization at any instant, is calculated as
lows: Starting with an initial random spin configuratio
~high-temperature phase!, the system is allowed to becom
stabilized ~dynamically! up to 43104 MCSS’s ~i.e., 800
complete cycles of the oscillating field!. The average value
of various physical quantities are calculated from further
3104

MCSS’s~i.e., averaged over another 800 cycles!. This is im-
portant to achieve stable value and it was checked caref
that the number of MCSS’s mentioned above is sufficien
obtain a stable value of the measurable quantities, etc. w
can clearly show the dynamic transition points within limite
accuracy. But to describe the critical behaviors very precis
~e.g., to estimate critical exponent, etc.! a much longer run is
necessary. Here, the total length of simulation for one fix
temperature is 83104. The system is slowly cooled down~T
has been reduced by a small interval! to obtain the values of
the statistical quantities in the low-temperature orde
phase. The last spin configuration obtained at previous t
perature is used as the initial configuration for the new te
perature. The CPU time required for 83104 MCSS’s is ap-
proximately 25 min on an Intel Pentium-III processor.

NUMERICAL RESULTS

The simulational study is done for a simple cubic latti
of linear sizeL520. The instantaneous magnetization co
ponents ~per lattice site! mx(t)5( i(Sx

i /L3), my(t)
5( i(Sy

i /L3), and mz(t)5( i(Sz
i /L3) are calculated at eac

time in the presence of magnetic field. The time averag
~over a full cycle of the oscillating magnetic field! magneti-
zation components~the dynamic order-parameter comp
nents! Qx5(1/t)rmx(t)dt, Qy5(1/t)rmy(t)dt, and Qz
5(1/t)rmz(t)dt are calculated by integrating~over the
complete cycle of the oscillating field! the instantaneous
magnetization components. The total~vector! dynamic order
parameter can be expressed asQ5 iQx1 jQy1kQz . The in-
stantaneous energy e(t)52J(^ i j &Si•Sj2D( i(Si

z)2

2h•( iSi is also calculated. The time-averaged instantane
energy isE5(1/t)re(t)dt. The rate of change ofE with
respect to the temperatureT is defined as dynamic specifi
heatC(5dE/dT) @3#. The dynamic specific heatC is calcu-
lated from energyE, just by calculating the derivative usin
the three-point central difference formula, given below.
5-2
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BRIEF REPORTS PHYSICAL REVIEW E69, 027105 ~2004!
C5
dE

dT
5

E~T1dT!2E~T2dT!

2dT
. ~4!

For the elliptically polarized@Eq. ~3!# magnetic field, where
the resultant field lies in theX-Z plane, the amplitudes o
fields are taken ash0x50.3 andh0z51.0. The strength of
uniaxial anisotropy is taken asD50.2. This value ofD is
obtained by rigorous searching to have these interesting
sults and is kept constant throughout the study. Howe
there must be variations in transition points depending on
values ofD. It is observed that for higher values ofD the
multiple transition phenomenon disappears. The values
field amplitudes and frequency are also obtained by sea
ing.

The temperature variations of the dynamic ord
parameter components (Qx ,Qy ,Qz) are studied and the re
sults are depicted in Fig. 1~a!. As the system is cooled down
from a high-temperature disordered (Q50W ) phase, it was
observed that first the system undergoes a transition f
dynamically disordered (Q50W ) to a dynamicallyY-ordered
~only QyÞ0) phase. This may be called the first phase (P1)
and the transition temperature isTc1 . This phase can be
characterized asP1 : (Qx50,QyÞ0,Qz50). Here, the re-
sultant vector of elliptically polarized magnetic field lies
the x-z plane and the dynamic ordering occurs along thy
direction. So, this is clearly an off-axial transition@6#. In the
case of this type of off-axial transition the dynamical sy
metry ~in any direction;y direction here! is broken by the
application of the magnetic field in the perpendicular dire
tion ~lies in thex-zplane here!. As the system cools down,
retains this particular dynamically ordered phase (P1) over a
considerable range of temperatures. As the temperature
creases further, a second transition was observed. Here
system becomes dynamically ordered both in theX and Z
directions at the cost ofY ordering. In this new dynamic
phase,P2 : (QxÞ0,Qy50,QzÞ0). In this phase the dynami
cal ordering is planar~lies on thex-z plane!. The ordering
occurs in the same plane on which the field vector lies. T
transition is axial@6#. This phase may be called the seco
phase (P2) and the transition~from first phase to the secon
phase! temperature isTc2 . As the temperature decreases fu
ther, theX andZ ordering increases. At some lower tempe
ture, a third transition was observed, from where theX or-
dering starts to decrease and onlyZ ordering starts to
increase quite rapidly. This third phase can be designate
P3 : (QxÞ0,Qy50,QzÞ0). Although the characterization o
P2 and P3 , in terms of the values of dynamic orde
parameter components, looks similar there exists an im
tant difference between these two phases. In the phaseP2 ,
both Qx andQz increase as the temperature decreases bu
the phaseP3 , Qx decreases as the temperature decreases@see
Fig. 1~a!#. So these two phasesP2 and P3 distinctly differ
from each other. In this phase the dynamical ordering is a
axial ~along theZ axis or anisotropy axis!. The system con-
tinues to increase the dynamicalZ ordering as the tempera
ture decreases further. The low-temperature phase is
dynamicallyZ ordered. That means the systems orders
namically ~only QzÞ0) along theZ direction ~direction of
02710
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FIG. 1. ~a! The temperature variations of the components
dynamic order parameters. Different symbols represent diffe
components.Qx ~L!, Qy ~s!, andQz ~d!. This diagram is forD
50.2 and for an elliptically polarized field whereh0x50.3 and
h0z51.0. The size of the error bars ofQx , Qy , andQz close to the
transition points is of the order of 0.02 and that at low temperat
~e.g., belowT50.5) is around 0.003.~b! The temperature variation
of the dynamic energy~E! for D50.2,h0x50.3, andh0z51.0. The
vertical arrows represent the transition points.~c! The temperature
variation of dynamic specific heat (C5dE/dT) for D50.2, h0x

50.3, andh0z51.0. Vertical arrows show the peaks and the tran
tion points.
5-3
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BRIEF REPORTS PHYSICAL REVIEW E69, 027105 ~2004!
anisotropy! only at very low temperatures. The zer
temperature dynamic phase~for such a polarized field! can
be characterized asQx50, Qy50, andQz51.0.

To detect the dynamic transitions and to find the transit
temperatures the temperature variation of the energyE is
plotted in Fig. 1~b!. From this figure it is clear that thre
dynamic transitions occur in this case. The transition po
are the inflection points in theE-T curve. The temperature
derivative of energyE is the dynamic specific heatC. The
temperature variation ofC is shown in Fig. 1~c!. The three
dynamic transitions are very clearly shown by three peak
the specific heat plotted against the temperatureT. From this
figure the transition temperatures are calculated~from the
peak positions of theC-T curve!. The first transition~right
peak! occurs aroundTc151.22, the second transition~middle
peak! occurs atTc250.94, and the third~left peak! transition
occurs aroundTc350.86.

This study was further extended for other values ofh0x
keeping other parameters fixed. It was found that this thr
transition scenario disappears for higher values ofh0x . For
example, forh0x50.9, the second phaseP2 disappears. In
this case, theC-T curve shows two peaks. It was also o
served that forh0x50.2, h0z50.2 ~keeping all other param
eter fixed! the system shows a single transition and o
dynamically orders along theZ direction.

To detect the dynamic transition points an alternat
method may be to study the temperature variation of fluct
tion of dynamic order parameterx(Q)@5L3(^Q2&
2^Q&2)#. However, we do not have a sufficient amount
precise data to study this.

SUMMARY

The uniaxially~Z direction! anisotropic Heisenberg ferro
magnet in the presence of a time-dependent~but uniform
over space! magnetic field is studied by Monte Carlo sim
lation using Metropolis dynamics. The dynamic transition
a uniaxially anisotropic Heisenberg ferromagnet has alre
v.

-
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been studied by Monte Carlo simulation. In that case
time-dependent magnetic field was sinusoidal and the a
and off-axial dynamic transition was reported@6# earlier.

In the present study, the external time-dependent magn
field was taken as elliptically polarized where the result
field vector rotates on theX-Z plane. For the lower values o
anisotropy and a specific range of the values of field am
tudes the system undergoes multiple dynamic phase tra
tions. Here, three distinct phases are identified. In this pa
this observation is just briefly reported. This multiple d
namic phase transition in an anisotropic Heisenberg fe
magnet in the presence of an elliptically polarized field
observed here by Monte Carlo simulation. An alternat
method to check this phenomenon may be to use the Lan
Lifshitz-Gilbert equation of motion@12# with Langevin dy-
namics. Another important thing should be mentioned h
regarding the possible explanation of multiple dynam
phase transitions~axial and off-axial transitions! observed in
the anisotropic Heisenberg model. One possible reason
be the coherent rotation of spins, where the dynamic ph
transition in the Ising model can be explained simply by s
reversal and nucleation@13#. But to establish the responsibl
mechanism behind the multiple dynamic phase transitio
detailed investigations are required.

The variations of the dynamic phase boundaries with f
quency and the strength of anisotropy is quite interesting
study. This study also indicates that the system will show
very rich phase diagram with multicritical behavior. Th
finite-size analysis is also necessary in order to distingu
the crossover effects from the true phase transitions. T
requires a huge computational task which will take mu
time. This work is in progress and the details will be report
later.
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