
PHYSICAL REVIEW E 69, 027102 ~2004!
Statistical properties of a discrete version of the Ornstein-Uhlenbeck process

Hernán Larralde
Centro de Ciencias Fı´sicas, UNAM Apdo. Postal 48-3, C.P. 62251, Cuernavaca, Morelos, Mexico
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A discrete version of the Ornstein-Uhlenbeck process is discussed which arises from a simple generalization
of the master equation of the random walk. The calculation of the statistical properties of the free propagator
for this process can be obtained using essentially the same formalism as for simple random walks. These
calculations are carried out in some detail for the one-dimensional case. The usual equation for the evolution
of the probability distribution of the Ornstein-Uhlenbeck process is recovered in the continuum limit if the
jump distribution has a finite variance. However, the discrete process is also well defined for long tailed jump
distributions and, thus, can be used to describe a Le`vy walk under the effect of a harmonic potential. Finally,
a brief discussion of the generalization of this process to describe random walks in general potentials is
presented and briefly compared with results arising from the fractional diffusion approach.
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I. INTRODUCTION

Brownian motion and its discrete counterpart rand
walks have found innumerable applications in physi
chemistry, economics, biology, and many other areas of
search. The same is true of the Ornstein-Uhlenbeck~OU!
process@1–4#, which is the most generalized continuous s
tionary Gaussian Markov process@2#, and can be thought o
physically as an overdamped Brownian particle in a h
monic potential. However, there appears to be relatively li
discussion on the discrete counterparts of this process. M
attempts have been made by considering discrete ran
walks on a lattice and introducing the effect of the poten
as a spatially varying bias@3#. More recently, this approac
has been generalized to include the possibility of long ra
jumps as a basis for the derivation of appropriate genera
tions to the Fokker-Planck equation~see, for example, Refs
@5,6#, and references therein!. This work presents a differen
approach in which the main effect of the potential is to re
cate the center of the jump distribution. For the harmo
potential this gives rise to a simple generalization of
~continuous space! random walk which is a discrete tim
analog of the OU process. The characteristic functions
statistical properties of this discrete OU process can be c
puted in essentially the same manner as for normal ran
walks @7#. As occurs in the continuous OU process, the d
crete process tends to a stationary distribution and the
tinuous OU process is shown to be recovered in a partic
scaling limit. However, the discrete OU process is also w
defined for step distributions which possess no moments
the limiting stationary distribution is not Gaussian in th
case. These can be interpreted as Le`vy walks on a harmonic
potential, and the results agree with those obtained fro
fractional diffusion approach@8#. Finally, a generalization to
nonharmonic potentials is briefly discussed.

II. DISCRETE OU PROCESS

The master equation describing the evolution of the d
crete OU process is given by the following simple gener
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zation of the master equation for a random walk@7#:

Pn11~x!5E
2`

`

f~x2gy!Pn~y!dy, ~1!

whereg is a constant andf( j ) can be interpreted as a ‘‘jump
distribution’’ which will be assumed to have zero mean wit
out loss of generality.

A particle transport interpretation of the process describ
by Eq. ~1! is that it represents a random walk which tak
place on a harmonic potential. The potential acts during
time interval between jumps by changing the landing po
tion y of the nth step togy, the initial position of the (n
11)th step, much like a flea on an appropriate slippery bo
that jumps to a certain position, then slides down the side
the bowl before jumping again, and so on. If the flea’s m
tion while sliding down the bowl is assumed to be ove
damped, thengy is the result of sliding down a harmoni
potential for a fixed time intervalt. Clearly, the overdamped
equation of motion is

ẏ52ky thus y~ t1t!5e2kty[gy. ~2!

This interpretation is appealingly simple, and opens the p
sibility of contemplating the effects of more complicated p
tentials which act on the particle during the intervals betwe
steps; an example of such extensions will be discussed
ther on. From this point of view, the distributionPn(x) is the
probability density of the flea’s landing sites. The actu
probability density of the position of the flea as a function
time must be computed together with the sliding motion; t
will not be pursued in this work. However, we can also d
fine Qn(y) as the probability density for the jump departu
sites. Clearly, ifxn is the arrival site of thenth jump, the
departure site of thenth11 jump will be yn115gxn . Thus
Qn11(y) can be computed directly fromPn(x) by a simple
rescaling of the variable. This is not the case for more co
plicated potentials, for which the statistics of the landi
sites and of the departure sites can be qualitatively differ
©2004 The American Physical Society02-1
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Presently we will be concerned with the process as
scribed by Eq.~1!. A further discussion of the differenc
between landing and departure sites will be conducted
reference to extensions to other potentials.

Clearly, for the process under consideration, very differ
behaviors will arise depending on whetherugu is greater or
smaller than 1: ifugu.1u the process diverges exponential
while if ugu,1 the process is, in some sense, confined
becomes stationary. Of course, wheng is exactly equal to
one, the usual random walk is recovered.

The continuous OU process is easily recovered from
~1! by writing time ast5nt, takingg;12kt, and expand-
ing f(x2gy)5f(x2y1@12g#y)'f(x2y)1f8(x
2y)kty1•••. The right hand side of Eq.~1! then reads

E
2`

`

~f~x2y!1f8~x2y!kty1••• !Pn~y!dy. ~3!

Introducing the change of variablej 5x2y and integrating
by parts gives

E
2`

`

f~ j !S 12kt
]

] j
@x2 j #1••• D Pn~x2 j !d j

5E
2`

`

f~ j !Pn~x2 j !d j

1kt
]

]xE2`

`

f~ j !@x2 j #Pn~x2 j !d j1•••. ~4!

Finally, assuming the distributionf( j ) to be sharply peaked
at the origin, with a second moments2;2Dt, then, to order
t, one obtains

P~x,t !1
]P~x,t !

]t
t1•••5P~x,t !1Dt

]2

]x2 P~x,t !

1kt
]

]x
xP~x,t !1•••, ~5!

wherePn(x) has been written as an explicit function of tim
and the fact thatf( j ) has zero mean has been used. Can
ling the P(x,t) on both sides and dividing byt yields the
evolution equation of the OU process.

However, Eq.~1! is a simple enough generalization of th
random walk, that it can be dealt with by the same te
niques developed for that process. A Fourier transform c
it into the recursion relation

P̂n11~u!5f̂~u!P̂n~gu!, ~6!

with the initial conditionP̂0(u)5eiuxo. The solution to this
recursion relation is easily seen to be

P̂n~u!5eignuxo )
m50

n21

f̂~gmu!, n51,2,3, . . . . ~7!

This expression allows a direct calculation of the cumula
of P̂n(u) in terms of those of the step distribution function,
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these exist. That is, ifk̂n(u) is the cumulant generating func
tion associated withPn(x) and q̂(u) that associated with
f( j ), then

k̂n~u![ (
m50

`

i m
kn~m!

m!
um

5 ignuxo1 (
m50

n21

(
m50

`

i m
q~m!

m!
gmum. ~8!

Thus, having assumed thatf( j ) has zero mean, we have

kn~1!5gnxo for m51,

kn~m!5
12gmn

12gm
q~m! for m.1. ~9!

If ugu.1, the above expressions do not converge an
→`. However, if ugu,1, then asn→`, the above expres
sions do converge, andP̂n(u) tends to the Fourier transform
of the stationary distribution, namely,

P̂`~u!5 )
m50

`

f̂~gmu!. ~10!

In what follows, only values ofg in the interval@0,1# will be
considered. It should be noted that even in this case, care
choices off(x) can lead to extremely singular distribution
P`(x). For example, iff(u)5cosu andg51/2, the station-
ary distribution is the uniform distribution in the interva
@21,1#, however, if g,1/2 the stationary distribution ha
support on a Cantor set@2#, with fractal dimensiondf
5 ln(1/2)/ln(g). This amusing behavior is a consequence
the fact thatf(x) is itself singular; however it does sugge
that no limit theorem is generally applicable in the largen
limit.

On the other hand, wheng→12, we can again writeg
512kt andm5t8/t, so thatgm5(12kt) t8/t→e2kt8 ast
→0. If we further assume that the characteristic function
the jump distribution can be written asf̂(u);12Gtuuua
1o(t) whent→0, where 0,a<2 @7#, then

)
m50

n21

f̂~gmu!;expS 2GuuuaE
0

t

e2akt8dt8D . ~11!

Thus, in this particular scaling limit, we do reach a stab
distribution @2,7#, whose characteristic function is given by

P̂~u,t !;expF ie2ktuxo2GuuuaS 12e2akt

ak D G . ~12!

If the second moment of the step distribution is finite, th
a52 and the characteristic function of the OU process
again recovered@4#.
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It should be remarked that the asymptotic expression~12!
coincides with the results derived from the fractional diff
sion approach to Levy flights in harmonic potentials@8#.
Other statistical properties can also be obtained as extens
of the results for random walks. For example, the statistic
first entrance into an interval for this process. Also, high
dimensional versions of this process can give rise to a
behavior. These courses of inquiry will be pursued el
where.

III. NONHARMONIC POTENTIALS

We now discuss how to generalize the approach to
case of nonharmonic potentials. The idea simply consist
substituting the sliding stage of the process, in the slid
flea interpretation, to the overdamped motion of a particle
an arbitrary potentialV(x). Given an initial pointy and a
time interval t, the departure point will be given by ax
5 f (y,t), solution to the overdamped equation of motionẋ
52V8(x). The recursion relation for the distribution of a
rival sites then reads

Pn11~x!5E
2`

`

f~x2 f ~y,t!!Pn~y!dy. ~13!

The continuum limit attained by takingt→0 must now be
taken carefully. The usual approach would be to wr
f (y,t)'y2V8(y)t and then to expandf(x2y1V8(y)t)
'f(x2y)1f8(x2y)V8(y)t, as before, leading to

Pn11~x!'E
2`

`

f~x2y!Pn~y!dy

1tE
2`

`

f8~x2y!V8~y!Pn~y!dy. ~14!

However, there is no guarantee that the second integra
the right hand side converges. It is easy to see thatPn(x) is
at least as ‘‘wide’’ asf(x) for any potential: the most con
fining potential would be one which brings the particle to t
origin, say, after each step, and in this casePn(x)5f(x);
less confining potentials allow the departure sites to be
tributed around the origin, leading to a landing site distrib
tion which is wider thanf(x). Thus, the convergence of th
integral is especially troublesome in processes in which
step distribution has long tails. On the other hand, if the ju
distribution is sufficiently localized, the integral does co
verge, and the usual scaling arguments can be applied l
ing to the appropriate Fokker-Planck equation.

An example that illustrates the problems of converge
in Eq. ~14!, is the case of Le`vy walks in potentials of the
form V(y)5(k/b)uyub with b>2, for which some beautifu
results were obtained in Refs.@9,10# from a fractional diffu-
sion approach. Though the problem cannot be solved
tirely, what can be shown is that for any finitet there are
striking differences between the statistics of the landing s
and the statistics of the departure sites.
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As the system is symmetric we consider the motion on
positive side. The equation of sliding motion will be

ẋ52kxb21. ~15!

Thus, if we denote the arrival site byx and the site of depar
ture byz for the next jump after a time intervalt, these are
related by

z5
x

~11~b22!xb22kt!1/~b22!
[ f ~x,t!. ~16!

It is worth emphasizing that asx tends to infinity,z→1/@(b
22)kt#1/(b22), and, thus, the support of the distribution
the departure sites is always bounded. Thus, for any ch
of f(x), all the moments of the distribution of departu
sites are finite. This is in contrast with the distribution of t
arrival sites which may not have even have finite seco
moment, which would be the case if the jump distributi
corresponds to that of a Le`vy walk: following the same lines
of the argument given above, shouldf(x);1/uxu11a for
large uxu, then alsoPn(x);1/uxu11a in this limit ~since the
support of the departure sites is bounded!. Thus, both the
distribution of departure sites and of landing sites dif
strongly from each other and from those obtained in fr
tional diffusion in steep potentials@9,10#. The reason for this
discrepancy comes not only from the possible divergence
the integral in Eq.~14!, but also from the fact that the ap
proximation f (y,t)'y2kyuyub22t only holds over the re-
gion uyu!(kt)1/(b22) in the integral of Eq.~13!, and the
remaining terms do not necessarily vanish fast enough
yield a fractional Fokker-Planck equation as a consist
continuous limit.

In summary, we have presented a simple generalizatio
the master equation for random walks which gives rise t
discrete Ornstein-Uhlenbeck process. The generalized ma
equation can be analyzed using the same techniques as
developed for normal random walks. If the second mom
of the jump distribution is finite, the continuum limit of th
discrete process recovers the continuous Ornstein-Uhlen
process; however, the discrete process is well defined
for long tailed jump distributions, and the continuum limit
this case coincides with the results obtained from the fr
tional diffusion approach. The approach presented in
work provides a simple physical picture for random walks
the presence of a potential, which can be easily general
to other potentials. However, we have shown that the si
larities with the results obtained from the fractional diffusio
approach do not hold in steeper potentials.

Further generalizations to higher dimensions and to d
tributed sliding times may also be interesting. But at least
former represents a rather difficult mathematical task.
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