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Statistical properties of a discrete version of the Ornstein-Uhlenbeck process
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A discrete version of the Ornstein-Uhlenbeck process is discussed which arises from a simple generalization
of the master equation of the random walk. The calculation of the statistical properties of the free propagator
for this process can be obtained using essentially the same formalism as for simple random walks. These
calculations are carried out in some detail for the one-dimensional case. The usual equation for the evolution
of the probability distribution of the Ornstein-Uhlenbeck process is recovered in the continuum limit if the
jump distribution has a finite variance. However, the discrete process is also well defined for long tailed jump
distributions and, thus, can be used to describewy ealk under the effect of a harmonic potential. Finally,

a brief discussion of the generalization of this process to describe random walks in general potentials is
presented and briefly compared with results arising from the fractional diffusion approach.
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I. INTRODUCTION zation of the master equation for a random wigdk

Brownian motion and its discrete counterpart random o
walks have found innumerable applications in physics, Pn1(x)= J7m¢(X— YY)Pa(y)dy, Y
chemistry, economics, biology, and many other areas of re-
search. The same is true of the Ornstein-Uhlenb@ak)
procesg1-4], which is the most generalized continuous sta-
tionary Gaussian Markov proceg2|, and can be thought of
physically as an overdamped Brownian particle in a har
monic potential. However, there appears to be relatively Iittleg
discussion on the discrete counterparts of this process. Mo
attempts have been made by considering discrete rando
walks on a lattice and introducing the effect of the potential,. o .
as a spatially varying bias3]. More recently, this approach tion y of the nth St_ep toyy, the initial p05|_t|on O.f the §
has been generalized to include the possibility of long rang S 1)Fh step, much I'k.e a flefi_on an appropriate shppery.bowl
jumps as a basis for the derivation of appropriate generalizefhat Jumps to a C_e”a'F‘ posmqn, then slides down the ,S'de of
tions to the Fokker-Planck equatigésee, for example, Refs. he bOW.' bef_or.e Jumping again, anq so on. If the flea’s mo-
[5,6], and references therginThis work presents a different tion while Sl'd'ng. down the bowl 1S assumed to be over-
approach in which the main effect of the potential is to relo-dampe.d’ thenyy IS the rgsult of sliding down a harmonic
cate the center of the jump distribution. For the harmonid?otential for a fixed time intervat. Clearly, the overdamped

potential this gives rise to a simple generalization of theSduation of motion is
(continuous spagerandom walk which is a discrete time )
analog of the OU process. The characteristic functions and y=—ky thus y(t+7)=e Ky=yy. 2
statistical properties of this discrete OU process can be com-
puted in essentially the same manner as for normal randomhis interpretation is appealingly simple, and opens the pos-
walks [7]. As occurs in the continuous OU process, the dis-sibility of contemplating the effects of more complicated po-
crete process tends to a stationary distribution and the conentials which act on the particle during the intervals between
tinuous OU process is shown to be recovered in a particulagteps; an example of such extensions will be discussed fur-
scaling limit. However, the discrete OU process is also welkher on. From this point of view, the distributid?,(x) is the
defined for step distributions which possess no moments angrobability density of the flea’s landing sites. The actual
the limiting stationary distributio‘n is not Gaussian in this probability density of the position of the flea as a function of
case. These can be interpreted agyl walks on a harmonic  time must be computed together with the sliding motion; this
potential, and the results agree with those obtained from il not be pursued in this work. However, we can also de-
fractional diffusion approacf8]. Finally, a generalization to fine Q,(y) as the probability density for the jump departure
nonharmonic potentials is briefly discussed. sites. Clearly, ifx, is the arrival site of thenth jump, the
departure site of thath+1 jump will bey,, 1= yX,. Thus
Qn+1(y) can be computed directly from,(x) by a simple
rescaling of the variable. This is not the case for more com-
The master equation describing the evolution of the displicated potentials, for which the statistics of the landing
crete OU process is given by the following simple generali-sites and of the departure sites can be qualitatively different.

wherevy is a constant aneb(j) can be interpreted as a “jump
distribution” which will be assumed to have zero mean with-
out loss of generality.

A particle transport interpretation of the process described
Eq. (1) is that it represents a random walk which takes
ace on a harmonic potential. The potential acts during the
Ime interval between jumps by changing the landing posi-

Il. DISCRETE OU PROCESS
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Presently we will be concerned with the process as dethese exist. That is, &,(6) is the cumulant generating func-

scribed by Eq.(l). A further discu;sion .Of the difference _tion associated wittP,(x) and q(6) that associated with
between landing and departure sites will be conducted 'Qﬁ(j) then

reference to extensions to other potentials.
Clearly, for the process under consideration, very different

behaviors will arise depending on whetHet is greater or k()= im"ﬂ(m) gm

smaller than 1: if y|> 1| the process diverges exponentially, A m=0  m!

while if |y|<1 the process is, in some sense, confined and n—1 (m)

becomes stationary. Of course, whens exactly equal to _.on mdtm)

one, the usual random walk is recovered. -y 0x0+l;0 mzzo ! m 7 0" ®)

The continuous OU process is easily recovered from Eq.
(1) by writing time ast=nr, taking y~1—kr, and Epr‘”d' Thus, having assumed tha(j) has zero mean, we have
ing d(X—yy)=d(X—y+[1=yly)=p(x—y) + &"(X

—y)k7ry+---. The right hand side of Eq1) then reads kn(1)=9"%, for m=1,

fm (S(x—y)+d' (X—y)kry+- - Py(y)dy. (3
’°° Kp(m)= g(m) for m>1. (9)

Introducing the change of variabje=x—y and integrating

by parts gives If |y|>1, the above expressions do not convergenas

—oo, However, if|y|<1, then am—, the above expres-
Pn(x—j)dj sions do converge, arfd,(6) tends to the Fourier transform
of the stationary distribution, namely,

* J
[ | 1k

XL e
P.(o)=11 d(y"0). (10

(}l e}
sk [ px- 1P D+ (@
- In what follows, only values of in the interval[ 0,1] will be
considered. It should be noted that even in this case, careless
choices of¢(x) can lead to extremely singular distributions
P..(x). For example, ifp(6) =cosh andy=1/2, the station-
ary distribution is the uniform distribution in the interval
IP(x,1) 52 [—1,1], however, if y<1/2 the stationary distribution has
p T+ = P(x,t)+Drm P(x,t) support on a Cantor sdt2], with fractal dimensiond;
=1In(1/2)/In(y). This amusing behavior is a consequence of
9 the fact thatg(x) is itself singular; however it does suggest
+kT&XP(X,t)+ -+, (5 that no limit theorem is generally applicable in the large
limit.
whereP, (x) has been written as an explicit function of time O the other hand, whep—1~, we can again writey
and the fact that(j) has zero mean has been used. Cancel=1—kr andm=t'/7, so thaty™=(1-kn)"/"—e ¥ asr
ling the P(x,t) on both sides and dividing by yields the =~ —0. If we further assume that the characteristic function of
evolution equation of the OU process. the jump distribution can be written a#(6)~1—1I"7|6|*
However, Eq(1) is a simple enough generalization of the + o(7) when7—0, where 6<a<2 [7], then
random walk, that it can be dealt with by the same tech-

Finally, assuming the distributios(j) to be sharply peaked
at the origin, with a second momemt~ 2D 7, then, to order
7, one obtains

P(x,t)+

nigues developed for that process. A Fourier transform casts n-1 ¢
it into the recursion relation IT & ym0)~exp< —F|0|“f e“'“'dt’). (11
m=0 0
Pni1(6)=3(0)Pn(70), (6)

Thus, in this particular scaling limit, we do reach a stable
with the initial conditionP,(6) =e'?o. The solution to this distribution[2,7], whose characteristic function is given by
recursion relation is easily seen to be

_ ~—akt
. . n-1 ﬁ’(e,t)~ex+e"‘t0xo—l“|0|“(1—k”. (12
P.(0)=¢€" 0Xon£[0 d(y™0), n=123.... (7) @

) _ ) _ If the second moment of the step distribution is finite, then
This eXpreSS|0n allows a direct calculation of the Cumulant%zz and the Characteristic function Of the ou process is
of P,(6) in terms of those of the step distribution function, if again recovere(4].
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It should be remarked that the asymptotic expres§l@h As the system is symmetric we consider the motion on the
coincides with the results derived from the fractional diffu- positive side. The equation of sliding motion will be
sion approach to Levy flights in harmonic potentig&.
Other statistical properties can also be obtained as extensions x=—kxf~1, (15
of the results for random walks. For example, the statistics of
first entrance into an interval for this process. Also, higherThus, if we denote the arrival site byand the site of depar-
dimensional versions of this process can give rise to a ricliure byz for the next jump after a time interval these are
behavior. These courses of inquiry will be pursued elserelated by
where.

X

IIl. NONHARMONIC POTENTIALS 7=
(1+(B—2)xP~2%k7)(E~2)

=f(x,7). (16)

We now discuss how to generalize the approach to the
case of nonharmonic potentials. The idea simply consists oﬁ
substituting the sliding stage of the process, in the sliding_
flea interpretation, to the overdamped motion of a particle in[h

an ar_bitrary potential/(x). Given an "!i“a' po?nty and a of ¢(x), all the moments of the distribution of departure
R m the departure point wil be.g|ven by za sites are finite. This is in contrast with the distribution of the
=f(y,7), solution to the overdamped equation of motion  ayrival sites which may not have even have finite second
=—V'(x). The recursion relation for the distribution of ar- moment, which would be the case if the jump distribution
rival sites then reads corresponds to that of a' kg walk: following the same lines
of the argument given above, shoutt{x)~ 1/x|1"¢ for
. large ||, then alsoP,,(x)~1/x|*" ¢ in this limit (since the
Pn+1(X)=f d(x—f(y,7))Py(y)dy. (13 support of the departure sites is boundethus, both the
- distribution of departure sites and of landing sites differ
_ o _ ) strongly from each other and from those obtained in frac-
The continuum limit attained by taking—0 must now be tjonal diffusion in steep potential®,10]. The reason for this
taken carefully. The usual approach would be to writegiscrepancy comes not only from the possible divergence of
f(y,7)~y—=V’(y)7 and then to expand(x—y+V'(y)7)  the integral in Eq(14), but also from the fact that the ap-
~¢(x—y)+ ¢’ (x=y)V'(y)7, as before, leading to proximation f(y,7)~y—ky|y|#~27 only holds over the re-
gion |y|<(k7)Y%¥~2) in the integral of Eq.(13), and the
Y remaining terms do not necessarily vanish fast enough to
pnﬂ(x)%f d(x—y)P,(y)dy yield a fractional Fokker-Planck equation as a consistent
- continuous limit.
. In summary, we have presented a simple generalization of
+ Tf ¢ (x—y)V'(y)P,(y)dy. (14)  the master equation for random walks which gives rise to a
— discrete Ornstein-Uhlenbeck process. The generalized master
equation can be analyzed using the same techniques as those
However, there is no guarantee that the second integral offeveloped for normal random walks. If the second moment
the right hand side converges. It is easy to see Bh@x) is  of the jump distribution is finite, the continuum limit of the
at least as “wide” as¢(x) for any potential: the most con- discrete process recovers the continuous Ornstein-Uhlenbeck
fining potential would be one which brings the particle to theprocess; however, the discrete process is well defined also
origin, say, after each step, and in this c@&gx)=¢(x);  for long tailed jump distributions, and the continuum limit in
less confining potentials allow the departure sites to be disthis case coincides with the results obtained from the frac-
tributed around the origin, leading to a landing site distribu-tional diffusion approach. The approach presented in this
tion which is wider thanp(x). Thus, the convergence of the work provides a simple physical picture for random walks in
integral is especially troublesome in processes in which théhe presence of a potential, which can be easily generalized
step distribution has long tails. On the other hand, if the jumpo other potentials. However, we have shown that the simi-
distribution is sufficiently localized, the integral does con-larities with the results obtained from the fractional diffusion
verge, and the usual scaling arguments can be applied leadpproach do not hold in steeper potentials.
ing to the appropriate Fokker-Planck equation. Further generalizations to higher dimensions and to dis-
An example that illustrates the problems of convergenceributed sliding times may also be interesting. But at least the
in Eq. (14), is the case of Ley walks in potentials of the former represents a rather difficult mathematical task.
form V(y)=(k/B)|y|? with =2, for which some beautiful

is worth emphasizing that astends to infinity,z— 1] (B
2)kr]¥B=2) and, thus, the support of the distribution of
e departure sites is always bounded. Thus, for any choice
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