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Scaling properties of self-expanding surfaces
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Scaling properties of self-expanding surfaces are studied with a comparison to those of self-flattening
surfaces Phys. Rev. E66, 040602ZR) (2002]. The evolution of self-expanding surfaces is described by a
restricted solid-on-solid type monomer deposition-evaporation model in which both deposition at the globally
lowest site and evaporation at the globally highest site are suppressed. We find numerically that equilibrium
surface fluctuation has a scaling behavior with a roughness exparehtin one dimensiorilD). In contrast,
2D equilibrium surfaces show the same dynamical scaling behaviorawitB (log) and dynamic exponent
z=5/2 as 2D self-flattening surfaces. Stationary roughness can be understood analytically by relating the
self-expanding growth model to self-repelling random walks. In the case of nonequilibrium growing/eroding
surfaces, self-expanding dynamics cause the fluctuation of surfaces to be charactedizet! yboth 1D and
2D.
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Dynamical scaling properties for fluctuating surfaces unrough, with a=1/3 in one dimensior(1D) instead of the
der thermal white noise have been studied extensively by useormal random walk valuer=1/2.
of the scaling ansatz] Other phases are also expected from the partition function
(2) apart from the SF phase fat>0. Forx=0, equilibrium
L, t>L% surfaces belong to the EW clag8,4] and nonequilibrium
t8,  t<lL? (1) growing/eroding surfaces belong to the KPZ cl@§3F For
k<0, S should have a tendency to expand itself, and the
where W is the root-mean-square fluctuation of surfaceﬁiﬁeéﬂﬁgggggr? brge%‘;;")serg Syoﬂga:i?ﬁé Atr ;jgct?)?;mcl))f- .
heights andB8= a/z. Dynamical scaling properties of such : o " ;
kinetic roughenings are now well documented and classifiedValker by identifying the heighit(x) at each columm with
like the Edwards-WilkinsofEW) universality clas§2], the the positionn(t) at the stept=x. In this mapping, the EW
Kardar-Parisi-ZhangKPZ) universality clas$3], etc.[1]. clz_:lss fork=0 corresponds_ to the normal random walk and
Recently we have introduced a global mechanism to supthis correspondence explains why=1/2 for the EW class.
press surface fluctuations in addition to ordinary local sur-The SF phase fok>0 then corresponds to the so-called
face tensiorf4]. We call it aself-flattening(SP) mechanism  Self-attractingtimid) random walkg9], in which the walker
[5] to reduce the growtkerosion probability at the globally tends to V|§|t previously visited sites, and the corrgspondence
highest(lowes) point on the surface. The SF model is physi- &S0 explainsa=1/3 [5]. The SE phase fok<0 is then
cally related to the various dynamic evolution models with€duivalent to the self-repelling walkS] that visit a new site
global constraints, such as multiparticle-correlated surfacgore heavily than a previously visited site. In the surface
evolution modelg6], dissociative dimer mode[d,8], even- ~ €volution sense a new site means a new height which is not
visited random walkg§7], self-attracting walkg9], random in @ given surface configuration, and the increaseSa$
walks with static trap$10], and the motion of the step on a More favored in the next evolution step. _A 2I_3 SE surface
vicinal surface where its motion is bounded by two neigh-Wh'Ch deals with the membrane fluctuation is completely

boring step$11]. Physically, the partition functiofs,12] for different from a 2D walk model which deals with polymer
equilibrium SF surfaces is fluctuations. 2D SE surfaces could be physically related to

self-avoiding membrang4 3].
In this Brief Report, we want to investigate the scaling
Z= E e “S(S=hpax— Nmint 1), (2 properties of SE surfacex{0) by using a Metropolis-type
RSOS contf. evolution rule from the partition functiof2). In our model
we assume that the heigh(r) at siter on aD-dimensional
hypercubic lattice has only integer values. The RSOS con-

straint|h(r + &) —h(r)|<1 is always imposed, whe is a

W= L (t/L?) =

where the summation is over all height configurations satis
fying the restricted solid-on-solidRSOS condition, and
himax (Nmin) is the globally maximuniminimum) height for a S . . : S
given configuration. SF dynamics is a sort of Metropolis-pr'mltlve I"’m'ce vector in thath Q|rept|on (=1,... D)
type evolution[5,12] based on the partition functiof?), The evolutlon rule for SE dynamics is as foIIov!s. FII’S}, se-
where deposition (evaporation at the site with h  lect a siter randomly. Next, deposit a particke(r)—h(r)
=hmax (hmin) increases$ by one unit, and these attempts are +1 with probability p or evaporate a particla(r)—h(r)
accepted with Boltzmann-type probabiligy © (k>0). This ~ —1 with probabilityg=1—p. Equilibrium surfaces are the
global type suppression makes the equilibrium surface lessurfaces forp=q=1/2, while nonequilibrium surfaces are
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FIG. 1. Effective exponentae; versus 1L for 1D self- 0 3 6 9 12 15
expanding equilibrium surfaces. All data for various valuesuof
converge to 1 rather nicely in the— o limit. System sizes used are Int
L=2%...,2%

FIG. 2. Plots of IW against I for 1D self-expanding equilib-

h ¢ h hani q liah rium surfaces ati=0.1 andu=0.6. System size used is=2%,
those forp=q. For the SE mechanism, we need a slig “The solid line represents the relatioN=t? (8=1/4). W for t

variation of the evolution rule at the extremal heights,, < 7 follows EW behavior g=1/4) fairly well. In the inset, we

and hy,n: both the deposition attemptys—hmin+1 ath — piot g versust for 1D self-expanding equilibrium surfaces.
=h,,, and the evaporation attempt,,x—hmn,—21 at h

=ha are accepted only with probability. At u=1, the
ordinary RSOS moddl14] is recovered. Bei(t) =
Physically, SE dynamics is simply Metropolis type evolu- Int—In(t/10)
tion with the partition function(2) with k<0 to reach equi-
librium. Deposition(erosion at hi, (Nma Which decreases Ber(t) for u=0.1 and 0.6 are plotted in the inset of Fig. 2.
S by 1 is accepted with the Boltzmann type probability After initial EW behavior (3=1/4), B« seems to vary con-
—e I« Any other attempts are always accepted, because tinuously until the saturation regime begins. Unlike SF
—el®AS~ 1 |n contrast, SF dynamid$] suppresses depo- growth models, a stabilized time zone gfs for both u
sition (erosion attempt ath,a (hmin), Which increases. =0.1 andu=0.6 hardly exists. This result means titof
To see the scaling properties of SE surfaces, we perfordD SE surfaces does not seem to follow the power Vaw
numerical simulations, starting from a flat surface of linear=t~.
size L with periodic boundary conditions. We measure the To see the time-dependent behavior more carefully we
surface widthW. First we report the numerical results for study the time evolution of the surface configuration. Figure
equilibrium surfacesf=q). In 1D, we run simulations for 3(a) shows the time evolution of 1D equilibrium SE surfaces
L=25 ...,2"Y and variousu. Numerical data are obtained for u=0.5 in a typical simulation sample. Initially the con-
after averaging over at least 300 independent samples. liigurations are nearly the same as those in other growth mod-
order to extract the stationary property, we should estimatéls which satisfy the scaling lawl). But soonW grows
W,(L) [=W(L,t—=)]. For efficient estimation ofr, we  rapidly and surfaces form groove structures like thosé at
introduce an effective exponent =(25,100,500xK 10*. The more specific structure of the
groove is shown in the inset of Fig(a8, which is a snapshot
of the surface configuration whaf¥ has the maximal value
among the fluctuatingV’s in the saturation regimea¥$1).
The grooved structure is very similar to the surface morphol-
ae(L) for variousu are plotted in Fig. 1. Close to=1, our  ogy of other growth models with=1 like the multiparticle-
data show large corrections to scaling as expected, due to therrelated surface growth modeé,12] and conserved RSOS
presence of the EW fixed pointvE1/2) atu=1. However, (CRSOS model [15]. The CRSOS model is a stochastic
the asymptotic estimates seem to be independent ¥e  model which is believed to follow a Lai—Das Sarma—Villain
obtain «=1.00(1) for allu. (LSV) equation[16,17. Recently, a similar phenomenon to
For the early-time dynamical behavior, we sh@wWL,t) our case, i.e., rapid unstable growth, was found in a study of
for u=0.6 andu=0.1 in Fig. 2. To see whethdV grows the discretized LSV equationl8]. However, the rapid
algebraically asV~t#, we introduce another effective expo- growth for the discretized LSV equation originated from the
nent Beg nonlinear term in the LSV equation. Furthermore, the rapid

INW(t) — InW(t/10)

4

(L) = IN[Wg(2L)/W(L)]/In2. 3)
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FIG. 4. Plots ofa.s against 1L in 1D and 2D nonequilibrium

/\// growing surfaces gv=1 andu=0.5. All the data converge to 1 in

the L—oo limit. System sizes used ate=2° 2Yin 1D and

= /_\// L=2% ...,22in 2D. The upper inset shows the early-time behav-

f/\ ior of W. Solid lines represent the early-time KPZ behaviors with
B=1/3in 1D andB=1/4 in 2D. Fort< r¢pz W for both 1D and 2D
/_,_,.._\\/_ nonequilibrium surfaces follows the KPZ behavior fairly well. We

plot B¢« againstt for the nonequilibrium growth in the lower inset.

dynamical behavior fot> 7, that deviates fronW=t” is
from the SE mechanism. The dynamical behavior directly
! 256 from the SE mechanism is hard to understand analytically,
X because the continuum equation for SE dynamics must con-
FIG. 3. (a) Time evolution of 1D equilibrium SE surface for ~ tain a global type nonlinear term. Further study in this direc-
=0.5 in a typical simulation sample. Typical surface configurationtion is left for future research into SF dynamic.
with a maximalW is shown in the upper right corner. Used system  The 2D equilibrium SE surface is found to satisfy the
size isL=28. (b) The same figure for the 1D nonequilibrium grow- dynamic scaling relation
ing SE surface fou=0.5. The numbers in the bottom of each
figure denote Monte Carlo times when each configuration is taken.

(0.002, 0.02, 0.1, 5, 25, 100, 500 ) X 104

W2(L,t)= In[Lg(t/L?)] (5)

growth was found to induce instability, so that seems to
grow indefinitely and thus never saturates. In contrast, the
time-dependent behavior of the SE surfaces is quite different )
as shown in Figs. 2 and@. Initially, when the SE mecha- With z=2.5 andK5=0.916, whereWs=(1/27Kg)InL, and
nism is still immature, the growth follows 1D EW behavior W?(t<L?)=(1/2mKs2z)Int. These scaling properties of 2D
W=tY4 This EW behavior is clearly seen in the time region SE surfaces are exactly the same as those of 2D SF surfaces
t<7gw in Fig. 2, whereW(t) for u=0.6 is nearly the same [5]. In particular, the logarithmic behavior of2 with the
as that foru=0.1. Fort> ¢, the SE mechanism becomes sameKg (K%=0.916) [19] is very surprising in that it oc-
mature and make®/(t) behave differently from the power- curs for both SE and SF surfaces, even though the SE
law behaviorW=t#. But the SE mechanism mak®¥¢satu- mechanism is physically the completely reverse of the SF
rate as shown in Figs. 2 anda® to satisfy W =L. This = mechanism. Furthermore, we find redependent correc-
means the SE mechanism never induces unstable growth. tions to the logarithmic scaling as in the dimer mofi20].
Stationary properties of 1D SE surfaces can be understoothe common dynamical scaling behavior of both 2D SE and
analytically. The 1D SE surface can be mapped to selfSF surfaces also means that EW-like logarithmic behavior of
repelling walks[9] that tend to visit a new site with heavier W§ is very robust against both SE and SF mechanisms. Re-
weights. Since the mean number of si{& of L-step self- cently, a theory has been suggested for the stationary prop-
repelling walks scales linearly with[9], a 1D SE surface is erties of general SF surfac¢&1]. In that theory, the SF
also expected to show the scaling behaWér(S)=L. The  mechanism is argued to induce hedependent corrections
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when W, without the SF mechanism is logarithmiar ( law behavioW=t#, as in the 1D equilibrium case. The time
=0). The theory also seems to hold for the SE mechanism ievolution of nonequilibrium surface configurations as shown
2D. in Fig. 3(b) is also very similar to that of 1D SE equilibrium
We now discuss the simulation results for nonequilibriumsurfaceqFig. 3(@)]. From Figs. 8) and 4 we can see that
growing/eroding SE surfacep{q). We report the numeri- the SE mechanism appears to be enhanced by external bias
cal results fop=1 andu=0.5. The system sizes used are of growth. The scaling behavior of SE growing surfaces is
L:25, A ,211in 1D andL=24, e ,23 in 2D. In Flg 4, we nea”y the same in both 1D and 2D.
plot acr against 1. From Fig. 4, we can estimate=1 for In summary, we studied the scaling properties of self-
both 1D and 2D surfaces. The resuit=1, for the nonequi-  expanding surfaces in 1D and 2D. Scaling behavior with
librium 1D and 2D surfaces is the same as that for 1D equiz= 1 gistinct from the EW class is shown for 1D equilibrium
librium surfaces. This fact tells us that the SE mechanism i§,taces. The result can be understood analytically from

apparently enhanced by external bias of the grofethero- mapping to 1D self-repelling walks. The dynamical behavior

sion), so that nonequilibrium SE surfaces in 2D as well as e . }
1D satisfy a=1. This kind of enhanced SE behavior can of 1D SE equilibrium surfaces deviates from the power-law

: . . behaviorw=t# and shows an anomalously rapid growth of
also be seen from Fhe early-t|me.dynam|cal behavior. As Or]€/\/ beforeW saturates. In contrast, the SE ¥ne§hangism in 2D
can see from the inset for the time dependenca\eL,t) does not change the EW stationary property. Furthermire,

and the inset forBes of Fig. 4, the early-time dynamical o . i
behaviors of nonequilibrium SE surfaces in both 1D and 2DOf 2D equilibrium SE surfaces shows the same scaling be

are qualitatively very similar to that of 1D SE equilibrium haylor(S) as 2D SF surfaces. In both 1D and 2D’. honequi-
surfaces(see Fig. 2 Initially, when the SE mechanism is !|br|um SE surfaceglsh'ow nearly the same dynammgl'bghav-
still immature, the nonequilibrium growth follows KPZ be- lor as the_ 1D equilibrium SE surface. The nonequmprlum
haviors, W=t2 in 1D andW=t"4in 2D. This KPZ behav- surfaces in both 1D and 2D have the common stationary

ior is clearly seen in the time regidr< 7¢p7z as shown in the propertya=1.

upper inset of Fig. 4. For> 7«p,, the SE mechanism with We thank Professor H. Park for useful discussions. This
the effect of external bias of growth maké4t) grow more research is supported in part by Grant No. R01-2001-000-
rapidly and make$V(t) behave differently from the power- 00025-0 from the Basic Research Program of KOSEF.
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