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Reduced formulation and efficient algorithm for the determination of equilibrium composition
and partition functions of ideal and nonideal complex plasma mixtures

Mofreh R. Zaghloul
Advanced Energy Technology Group, Center for Energy Research, University of California San Diego, 9500 Gilman Drive

La Jolla, California 92093-0438, USA
~Received 14 September 2003; published 26 February 2004!

The system of coupled nonlinear Saha equations supplemented by electroneutrality and conservation of
nuclei for complex plasma mixtures is reformulated into a reduced form, which allows the development of an
efficient numerical algorithm to solve the set of nonlinear equations. The efficient algorithm is based on the
solution of an equivalent single transcendental equation. Nonideality corrections have been taken into consid-
eration in terms of depression of ionization potentials and truncated partition functions. Implementing this
simple efficient methodology simplifies the problem and considerably reduces the computational effort needed
to compute the detailed plasma composition for different cases. The algorithm is analytically known to be safe,
fast, and efficient. It also shows no numerical instabilities, no convergence problems, and no accuracy limita-
tions or lack of change problems, which have been reported in the literature. A nontrivial sample problem has
been worked in detail showing the usefulness of the method for applied and industrial plasma physicists.
Effects of the nonideality corrections and the exclusion of excited states are quantified and presented. A
criterion for the validity of the assumption of local thermodynamic equilibrium is applied to the results from
the sample problem to show the region of the temperature-density phase space over which the assumption is
valid.
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I. INTRODUCTION

Precise and reliable information about thermodynam
transport, and radiative properties of complex plasma m
tures in a wide range of temperatures and densities is ne
for the solution of many scientific and technological pro
lems arising in industrial plasma engineering and hig
energy density physics. However, the quantitative invest
tion of these properties necessitates information about
detailed plasma composition at a specified temperature a
fixed number density of heavy particles. Particle densities
plasma components~charged particles as well as neutral pa
ticles! are required for the calculation of plasma kinetic pre
sure, internal energy, enthalpy, sound speed, adiabatic e
nent, as well as transport properties such as elec
conductivity, viscosity, thermal conductivity, opacities, a
ion stopping power. Gas mixtures in plasma torches, m
tures in plasma display panels@1,2#, shielding gas mixtures
in laser welding of metals@3#, dense-plasma lasers, plasm
generated from Teflon, polyethylene, and Lexan polycarb
ate in electrothermal-chemical plasma guns@4–6# are a few
examples of plasma mixtures for which computing the
tailed plasma composition is required for the developme
functioning, and optimization of these devices. If the a
sumption of local thermodynamic equilibrium~LTE! is ap-
plicable, the distribution of atoms and their ionization pro
ucts~ions and electrons! obeys the Saha equation@7#. Taking
into account the lowering of ionization potentials due to no
ideal effects@8–11#, the Saha equation—for a single eleme
tal species plasma—can be written as

nr 11ne

nr
52

Ur 11

Ur
F2pmeKBT

h2 G3/2

expS 2
I r

eff

KBTD ,

r 50,1,...,~Z21!, ~1!
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wherene is the number density of free electrons,nr is the
number density of allr-fold ionized atoms,Ur is the state-
dependent partition function ofr-fold ionized atoms,me is
the mass of an electron,h is Planck’s constant, andI r

eff5Ir

2DIr is the effective ionization energy for the ionization pr
cessr→(r 11), DI r is the lowering of ionization potential
Equation~1! can be derived from thermodynamic principle
through the minimization of Gibbs free energy, and theref
it can be considered a mass action law for the proces
ionization. The system of Saha equations~1!, supplemented
by the condition of electro-neutrality,

(
i 51

Z

ini5ne , ~2!

and requiring a constant number of heavy particles~conser-
vation of nuclei in the ionization and recombination pr
cesses!,

(
r 50

Z

nr5nh , ~3!

is sufficient for the calculation of the composition of
plasma generated from a single chemical species. Howe
plasmas generated from compound materials or from m
tures of gases are more complex than plasmas gene
from a single chemical species. For these complex plasm
the equations for different chemical species are link
through the electron number density and the common t
perature. According to Glowacki@3#, ‘‘the case of the mon-
atomic gas mixture is more complicated and has not b
presented in the literature previously.’’ In Ref.@3# the case of
an ideal mixture of two monatomic gases has been trea
where the technique by Trayner and Glowacki@12# has been
©2004 The American Physical Society02-1
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used to solve the equations. However, concerns about
merical stability were reported; this is of course in additi
to the accuracy limitations~lack of change problems! of the
algorithm used and which are reported in Ref.@12#. Numeri-
cal stability concerns and problems were even reported
the simplest case of solving a single Saha equation~with
unity as the maximum ionization state! coupled to an energy
equation when a Newton-Raphson technique was used@13#.
In this paper we clear the complexity of the problem a
show a simple, safe and stable, fast, and accurate solutio
this problem. The method depends on the reduction of the
of nonlinear equations into a simple form~an equivalent
single transcendental equation!, which requires minimal nu-
merical work to be solved.

Although it is common knowledge that safety in obtaini
convergence and numerical stability are crucial for suc
problem, it may be useful to clarify why accuracy and co
putational time are also of interest. Regardless of the w
known fact that better numerical techniques~e.g., more ac-
curate! should replace worse ones if they need the sa
computational efforts or less, accuracy and computatio
time are of interest for the following.

~i! It is obvious that any procedure does not allow t
computations of the populations of different species if th
population does not exceed the accuracy of the proced
Therefore, in a weakly ionized gas, if the population of a
species does not exceed the accuracy, the method fails.

~ii ! Time derivative of the ionization state may be al
required in many applications~see, for example, Ref.@14#!.
If the increment in timedt is small enough such that th
change in the ionization is comparable to the accuracy,
derivative term may assume the opposite sign which may
catastrophic and seriously impose restrictions on the solu
of the physical problem under consideration. Recalling t
time derivative is just an example and the argument app
to the derivative with respect to any other parameter it
comes clear that accuracy may be crucial in the calcula
of ionization equilibrium.

~iii ! Finally, calculating the ionization equilibrium of th
plasma is not the ultimate goal. It is needed for the calcu
tion of thermodynamic functions, transport, and optical pro
erties. In a typical simple self-consistent hydrodynam
simulation one needs to calculate the ionization equilibri
several millions of times. Time saving in the calculation
ionization equilibrium, however small it is, leads to a hu
time savings in the overall time needed for the computatio

Hence improvements in terms of solution accuracy a
computational time, in addition to safety in obtaining co
vergence and stability of the solution, are also valuable
needed.

II. A REDUCED FORMULATION FOR PLASMA
MIXTURES

It is assumed that all chemical compounds and polyato
molecules are fully dissociated, i.e., all chemical reactio
other than ionization and recombination are not includ
The plasma mixture in this case is effectively a mixture
inert gases and hence the plasma composition can be
02670
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pletely described by the set of nonlinear Saha equations
the conservation of electric charge and conservation of
clei. This is obviously the case for diatomic molecules if t
plasma temperature is several thousand degrees. How
and because of the weaker bonds, polyatomic molecules
gin dissociation at even lower temperatures@9#. If one refers
to the chemical species in the mixture by the subscriptj and
the total number of the elemental species byJ then from the
requirement ofconstant number of heavy particles~conser-
vation of nuclei! one has

(
r 50

Zj

nr , j5nh, j

and

(
j 51

J

nh, j5nH ,

wherenh, j is the number density of heavy particles~nuclei!
of elemental speciesj, nH is the total number density o
heavy particles of all elemental species in the mixture, a
Zj is the atomic number~or the maximum allowed ionization
stage! of elemental speciesj. Dividing the above two equa
tions bynH one gets

(
r 50

Zj

a r , j5cj , ~4a!

wherea r , j5nr , j /nH andcj5nh, j /nH are the molar fractions
of the r-fold ionized ions of the elemental speciesj and the
total molar fraction of the elemental speciesj, respectively.
Summing over all elemental species yields

(
j 51

J

cj51. ~4b!

Similarly, the condition ofquasineutrality~conservation of
electric charge! gives

(
i 51

Zj

ini , j5ne, j

with

(
j 51

J

ne, j5ne ,

whereni , j is the number density ofi-fold ionized ions of the
elemental speciesj, ne, j is the number density of free elec
trons introduced to the system by ionizing the atoms/ions
2-2
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the elemental speciesj, andne is the total number density o
free electrons. In principle, free electrons can take any
ergy and, they should be consideredindistinguishable. Ac-
cordingly, the subscriptj in the termne, j must not be misread
as a sort, or quality distinguisher, but rather as a quantity
share assigner for different sources of free electrons~elemen-
tal species!. Dividing the above two equations bynH one
gets

(
i 51

Zj

ia i , j5Z̄e, j ~5a!

and

(
j 51

J

Z̄e, j5Zav, ~5b!

whereZ̄e, j5ne, j /nH is the contribution of the free electron
liberated from the elemental speciesj to the average charg
per heavy particleZav, defined asZav5ne /nH . One can ex-
press the set of nonlinearSaha equationsin terms of the
proportionsa’s, average charge stateZav, and the total num-
ber density of heavy particlesnH such that

nr 11,jne

nr , j
5 f r 11,j~T,ne ,...!
02670
n-
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a r 11,jZavnH

a r , j

5 f r 11,j~T,ne ,...!,

where the Saha coefficientsf r 11,j ’s have been written in a
general form to account for any possible formulas for t
lowering of ionization potentials. For ideal plasmas the Sa
coefficients are functions of the temperature only. The ab
equations give the following recurrence relation:

a r 11,j5
a r , j

ZavnH
f r 11,j~T,ne ,...!. ~6!

Substituting from Eq.~6! into Eq. ~5a! one gets

(
i 51

Zj

i
a i 21,j

~ZavnH!
f i , j~T,ne ,...!5Z̄e, j .

Upon successive use of the recurrence relation~6! into the
above equation one can obtain

a0,j5
Z̄e, j

(
i 51

zj i

~ZavnH! i )m51

i

f m, j~T,ne ,...!

. ~7!

Substituting from Eq.~7! and relation~6! into Eq. ~4a! gives
cj5(
r 50

Zj

a r , j

5a0,j
S 11(

i 51

Zj )
m51

i

f m, j~T,ne ,...!

~ZavnH! i
D

5Z̄e, j
F S 11(

i 51

Zj )
m51

i

f m, j~T,ne ,...!

~ZavnH! i
D Y (

i 51

Zj i

~ZavnH! i )m51

i

f m, j~T,ne ,...!G
from which

Z̄e, j5cj3
F (

i 51

Zj i

~ZavnH! i )m51

i

f m, j~T,ne ,...!Y S 11(
i 51

Zj )
m51

i

f m, j~T,ne ,...!

~ZavnH! i
D G ~8!

and substituting from Eq.~8! into Eq. ~5b! one gets

Zav5(
j 51

J

cj3
F (

i 51

Zj i

~ZavnH! i )m51

i

f m, j~T,ne ,...!Y S 11(
i 51

Zj )
m51

i

f m, j~T,ne ,...!

~ZavnH! i
D G . ~9!
2-3
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Equations~6!–~9! constitute a reduced formulation of the s
of nonlinear Saha equations subjected to the condition
quasineutrality and the requirement of constant numbe
heavy particles. For the case of a pure single elemental
cies (J51), Eqs. ~9! and ~8! become identical withZav

5Z̄e, j .
The solution of the set of equations in its current form

very simple and can be performed safely and accuratel
shown below. Since the Saha coefficientsf m, j s include the
state-dependent partition functionsUr , j , it is appropriate to
discuss the computations of the internal partition functio
before presenting the method of solution of this system
Eqs.~6!–~9!.

III. CALCULATION OF THE INTERNAL PARTITION
FUNCTION

The total internal partition functionUr ~or the sum over
all states! is a dimensionless quantity, which for an isolat
atom/ion can be formally evaluated according to the equa

Ur5 (
n51

`

gr ,n expS 2
Er ,n

KBTD , ~10!

whereEr ,n is thenth excitation energy of speciesr ~counted
from the ground state! andgr ,n is its statistical weight. In the
calculation of the internal partition function, all equilibrium
populations ~ground/excited states! have to be included
Equation~10!, in which gr ,n52Jn11 whereJn is the total
angular momentum, implies that the populations of the
cited states follow a Boltzmann distribution. For an isolat
~free! atom/ion,Ur diverges and finite values are obtain
only when interaction with the environment are accoun
for in order to truncate the sum. Recalling that in a plas
environment, the ionization energies are reduced such
excitation states with very highn do not exist, and the par
tition function actually converges. The summation in E
~10! is thus limited to a maximum ofn5n* , which corre-
sponds to a maximum energyEn* . In the computations of
the partition function the summation is performed over
the available spectroscopic data@15# for the excitation ener-
gies and terminated at energy levelEn* , which is related to
the effective ionization energyI r

eff by the relationEn* <I r
eff

5Ir2DIr . This means that the partition function is a functio
of T andDI (T,r) just like the exponential term of the Sah
coefficients. This means that the solution technique of
Saha equations is the same whether one includes the ex
states in the calculation of the partition functions or just
considering the ground states only. However, the results
differ and the impact of such an approximation on the co
putations of ionization equilibrium needs to be investiga
and quantified.

IV. METHOD OF SOLUTION

The method of solution of the set of Eqs.~6!–~9! depends
on the formula used for the lowering of ionization potentia
Practically, one can face the following cases.

~i! Ideal plasmawith no lowering of ionization potential
02670
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In such a case, the Saha coefficientsf’s are functions of the
temperature only and Eq.~9! is a transcendental equation
Zav, the solution of which is eminently simple. Many sof
ware packages include solvers for transcendental equa
or algorithms for finding the zeros of a function. In additio
efficient algorithms that use a combination of bisection,
cant, and inverse quadratic interpolation methods can als
found in Ref.@16#. For cases in which one is only intereste
in determining the average ionization state,Zav, the solution
of the transcendental equation~9! will suffice. However, if
the interest extends to the determination of the detailed c
position of different elemental species and different ioniz
tion stages, simple direct back-substitution into Eqs.~8!, ~7!,
and ~6! will be required to determine the detailed compo
tion. The algorithm is simply articulated in the followin
steps:

~1! solve the transcendental equation~9! for Zav;

~2! substitute in Eq.~8! to determineZ̄e, j for the elements
of interest;

~3! substitute forZav, andZ̄e, j in Eq. ~7! to calculatea0,j
~proportions of neutral atoms! for the elements of interest
and

~4! use the recurrence relation~6! to calculate all the
a r 11,j ’s of interest.

~ii ! Nonideal plasmawith expressions for the lowering o
ionization potentialsDI r , j that can be expressed explicitly i
terms of Zav and other known quantities such asnH , for
example. In this case also, Eq.~9! is a transcendental equa
tion in Zav. The method of solution is then identical to th
case of ideal plasmas. Examples of such models for the l
ering of ionization potentials can be found elsewhere@10#.

It may be useful at this point to highlight some of th
benefits and advantages gained~for these two cases! by re-
formulating the equations into this reduced form. For the
two cases the solution of the problem is reduced to the tri
problem of solving a transcendental equation. Hereby,
these two cases, the problem of evaluating the plasma c
position is shown to be effectively a one-dimensional no
linear problem with only one independent variable,Zav
~namely, finding the root of a function!. According to Ref.
@16#, ‘‘simultaneous solution of equations inN dimensions is
much more difficult than finding roots in the one
dimensional case. The principal difference between one
many dimensions is that, in one dimension, it is possible
bracket or ‘trap’ a root between bracketing values, and th
hunt it down like a rabbit. In multi-dimensions, you ca
never be sure that the root is there at all until you have fou
it.’’ Moreover, in principle, the zero of a transcendental equ
tion can be determined to any degree of accuracy on
expense of the computational time~i.e., no accuracy limita-
tions!. Therefore accuracy of computations of detail
plasma composition will be only dictated by machine ch
acteristics.

~iii ! Nonideal plasmaand DI r , j cannot be expressed ex
plicitly in terms of Zav and known quantities but rather i
terms of a common parameter~such as the Debye lengt
lD), that depends on the individuala’s. The model proposed
by Griem
2-4



in

d

it

lu
es

n
he
he
le
m

he
n

In
th

ha
t

th
m
or

ed
and
ef.

of
n

o
the
tion
e

o-

e

um

V
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@8# is an example of such a case. In this model the lower
of ionization potentials is given by

DI r , j5
~r 11!e2

4p«0lD
, ~11!

with lD defined as

lD5F«0KBT/e2S ne1(
j 51

J

(
r 50

Zj

r 2nr , j D G1/2

. ~12!

A similar, widely used model proposed by Ebelinget al. @11#
gives the lowering of ionization potentials as

DI r , j5
~r 11!e2

4p«0~lD1LB/8!
, ~13!

whereLB5h/A2pmeKBT is the de Broglie wavelength an
lD is expressed as in Eq.~12!. With a bit of analysis and
insight, the solution in this case can also be obtained w
simplicity and to any desired accuracy. The fact that Eq.~9!
can be simply and accurately solved for any specified va
of lD makes it, effectively, equivalent to an algebraic expr
sion of the form

Zav5 f̄ 1~lD!. ~14!

In the same time, the definition oflD in Eq. ~12! can be
rewritten as

lD2 f 2~lD ,Zav!50. ~15!

Now, upon substitution from Eq.~14! into Eq. ~15! one gets

lD2 f 2„lD , f̄ 1~lD!…50 ~16!

which is a transcendental equation inlD . The bar overf 1
refers to the numerical nature of the functionf 1 . Even for
case~iii !, in which DI r , j cannot be expressed explicitly i
terms ofZav and known quantities but rather in terms of t
common parameterlD , the present analysis shows that t
problem of evaluating the plasma composition for a comp
mixture is effectively a one-dimensional nonlinear proble
~or simply finding the root of a function! with one indepen-
dent variablelD . Therefore, even for such a case, t
plasma composition can be determined with simplicity a
to any desired accuracy. It is interesting that solving Eq.~16!

simultaneously gives the values oflD , Zav, Z̄e, j ’s, Ur , j ’s,
anda r , j ’s and therefore it represents the whole algorithm.
the following section a sample problem that represents
case is worked in detail.

A model in which the nonideal plasma correctionsDI r , j ’s
can neither be expressed explicitly in terms ofZav and
known quantities nor in terms of a common parameter t
depends on the individuala’s is not known to the author a
the present time.

V. A SAMPLE PROBLEM

The current methodology has been applied to compute
composition of many complex plasma mixtures. A heliu
neon-argon plasma mixture is arbitrarily selected to w
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this problem. However, a concentration of@He~0.3! : Ne~0.1!
: Ar~0.6!# is chosen to give better readability of the crowd
figures presented in this section. Necessary atomic data
excitation and ionization energies have been taken from R
@15#. A comprehensive set of energy levels~more than 3000
for the three elements! has been used in the computations
the partition functions. The model for nonideality correctio
~lowering of ionization potential! proposed by Ebelinget al.
@11#, which represents case~iii ! as shown above, is used t
run this sample problem. For this case, all nonlinearity of
problem is reduced into the single transcendental equa
~16! which can be solved with simplicity to the machin
accuracy forlD , Zav, anda r , j ’s in the same time.

A. Results

Figure 1~a! shows the temperature dependence of the m
lar fractions of different ionic species in a 0.1-kg/m3 He/
Ne/Ar plasma mixture with the composition shown in th

FIG. 1. ~a! Temperature dependence of the detailed equilibri
composition of a 0.1-kg/m3 @He~0.3!:Ne~0.1!:Ar~0.6!# plasma mix-
ture. ~b! Density dependence of equilibrium composition of a 5-e
@He~0.3!:Ne~0.1!:Ar~0.6!# plasma mixture.
2-5
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figure. As the temperature increases, the molar fraction
neutral species~He, Ne, and Ar! decrease monotonically as
result of the progressive ionization. With further increase
the temperature, higher ionized ionic species appear at
expense of lower-fold ionized species. Figure 1~b! shows the
detailed plasma composition for a 5-eV plasma~for the same
mixture! at different densities.

An average nuclear charge can be approximately assig
to this plasma mixture and the critical~minimum! electron
number density required for LTE can be determined a
function of temperature. The criterion given by Fujimoto a
McWhirter @17# is adopted and applied for the present co
putations. For each density, a critical value for the aver
ionization stateZc can be calculated by dividing the critica
electron number density by the correspondingnH and one
can verify the validity of the LTE assumption by comparin
both of Zav and Zc as shown in Fig. 2~a!. Figure 2~b! is a
useful representation of the calculated ionization data wh
contours ofZav are presented as functions ofT and r. The
logarithmic axes scales have been used to cover a wide r
of temperatures and densities. As shown in the figure

FIG. 2. ~a! Surface plots of Zav and Zc for
@He~0.3!:Ne~0.1!:Ar~0.6!# plasma mixture.~b! Contours of constan
Zav and the boundary for the validity of the LTE assumption f
@He~0.3!:Ne~0.1!:Ar~0.6!# plasma mixture.
02670
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LTE assumption can be considered for He~0.3!/Ne~0.1!/
Ar~0.6! plasma mixture with densities.1024 kg/m3. From
both parts it can be seen that at very high temperatures
average ionization state approaches its expected theore
limiting value for a fully stripped plasma, i.e.,Zav512.4.

Figure 3~a! shows a surface plot of the nonideality effe
on the computations of the average ionization state. As
very clear from the figure, the nonideality corrections~low-
ering of ionization potentials! have a significant effect at low
temperatures and relatively high density. Figure 3~b! shows a
surface plot of the percentage relative difference between
average ionization state calculated including the excitat
states in the computations of the partition functions and th
calculated approximating the partition functions to the sta
tical weighs of the ground states. A maximum percenta
difference less than 10% can be seen from the figure. Hig
difference values are also relevant to the region of low te
perature and/or high density. Therefore it can be conclu
that considering the nonideality effects and detailed com
tation of the partition functions becomes important for t
region of low temperature and/or high density in ther-T
phase space.

FIG. 3. ~a! Nonideality effects on the computations ofZav for
@He~0.3!:Ne~0.1!:Ar~0.6!# plasma mixture.~b! Effect of excluding
the excited states from the computations of the partition function
the computations ofZav for @He~0.3!:Ne~0.1!:Ar~0.6!# plasma mix-
ture.
2-6
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B. Discussion

The results presented above have some interesting
marks that need some discussion. For example, a pec
behavior is to be seen in Fig. 2~b! where a large ‘‘gap’’ opens
in the region between 11.2 and 11.3 forZav in ther-T plane.
This gap occurs at temperatures where both of the He and
atoms are mostly fully stripped with the remaining spec
(Ar116) having the heliumlike stable configuration@see Fig.
1~a!#. Accordingly, this gap is expected to occur in the vici
ity of Zav5(0.3)321(0.1)3101(0.6)316511.2, which is
in agreement with Fig. 2~b!. Due to its stable configuration
the curve for F116 shows a wide distribution function o
temperature@see Fig. 1~a!#. Similar behavior can be also rec
ognized with Ne18 for the aforementioned reason~He-like
configuration!. Another important point is in regard to th
effect of excluding the excited states on the computation
Zav. As shown in Fig. 3~b!, the effect is considerable in th
region of high density and/or low temperature. There is
significant effect in the region where the density is lo
and/or where the temperature is high enough. This beha
can be understood if we bear in mind that the effect of
cluding the excited states on the computations ofZav, de-
pends on both of the values of the partition functions a
more importantly, on the population of the bound excite
states. At high temperatures and low densities, recombina
is weak and high ionization states occur with the result t
the population of the bound/excited states is low. Acco
ingly, excluding the excited states in this region of ther-T
phase space does not have a recognized impact on the
putations ofZav. On the other hand, for low temperatu
and/or high densities, ionization is inhibited by recombin
tion and atoms and ions become more fully excited bef
they ionize resulting in a dense population of bound/exci
states. Under these circumstances, the exclusion of the
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cited states in this region of ther-T phase space will consid
erably impact the computations as shown in Fig. 3~b!.

VI. CONCLUSIONS

The system of coupled nonlinear Saha equations sup
mented by electroneutrality and conservation of nuclei
complex plasma mixtures is reformulated into an equival
reduced form, which allows the development of an efficie
numerical algorithm to solve the set of nonlinear equatio
Nonideality corrections have been taken into consideratio
terms of depression of ionization potentials and trunca
partition functions. In most practical the cases the solution
the set of 11( jZmax,j coupled nonlinear equations in
1( jZmax,j unknowns is reduced to the simple problem
solving a single transcendental equation. Implementing
simple efficient methodology simplifies the problem a
considerably reduces the computational effort needed
compute the detailed plasma composition for different cas
The method is analytically known to be safe, fast and e
cient. It also shows no numerical instabilities, no conv
gence problems and no accuracy limitations or lack
change problems, which have been reported in the literat
The present analysis and methodology supports the b
that computational success crucially depends on analysis
insight rather than numerics. A nontrivial sample proble
has been worked in detail showing the usefulness of
method for applied and industrial plasma physicists.
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