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Reduced formulation and efficient algorithm for the determination of equilibrium composition
and partition functions of ideal and nonideal complex plasma mixtures
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The system of coupled nonlinear Saha equations supplemented by electroneutrality and conservation of
nuclei for complex plasma mixtures is reformulated into a reduced form, which allows the development of an
efficient numerical algorithm to solve the set of nonlinear equations. The efficient algorithm is based on the
solution of an equivalent single transcendental equation. Nonideality corrections have been taken into consid-
eration in terms of depression of ionization potentials and truncated partition functions. Implementing this
simple efficient methodology simplifies the problem and considerably reduces the computational effort needed
to compute the detailed plasma composition for different cases. The algorithm is analytically known to be safe,
fast, and efficient. It also shows no numerical instabilities, no convergence problems, and no accuracy limita-
tions or lack of change problems, which have been reported in the literature. A nontrivial sample problem has
been worked in detail showing the usefulness of the method for applied and industrial plasma physicists.
Effects of the nonideality corrections and the exclusion of excited states are quantified and presented. A
criterion for the validity of the assumption of local thermodynamic equilibrium is applied to the results from
the sample problem to show the region of the temperature-density phase space over which the assumption is
valid.
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[. INTRODUCTION wheren, is the number density of free electrons, is the
number density of alt-fold ionized atomsU, is the state-

Precise and reliable information about thermodynamicdependent partition function offold ionized atomsm is
transport, and radiative properties of complex plasma mixthe mass of an electro, is Planck’s constant, ant:fﬁ=lr
tures in a wide range of temperatures and densities is neededAl, is the effective ionization energy for the ionization pro-
for the solution of many scientific and technological prob-cessr—(r+1), Al, is the lowering of ionization potential.
lems arising in industrial plasma engineering and high-Equation(1) can be derived from thermodynamic principles
energy density physics. However, the quantitative investigathrough the minimization of Gibbs free energy, and therefore
tion of these properties necessitates information about thig can be considered a mass action law for the process of
detailed plasma composition at a specified temperature andi@nization. The system of Saha equatidfiy supplemented
fixed number density of heavy particles. Particle densities oby the condition of electro-neutrality,
plasma componentgharged particles as well as neutral par-
ticles) are required for the calculation of plasma kinetic pres- z
sure, internal energy, enthalpy, sound speed, adiabatic expo- 2 inj=ng, 2
nent, as well as transport properties such as electric =1
conductivity, viscosity, thermal conductivity, opacities, and L .
ion stoppinyg power. yGas mixtures in plas)r/na F'zorches, mix-am.j requiring a constant ngmb_er of heavy part!tﬁtm_nser-
tures in plasma display pandls,2], shielding gas mixtures vation of nuclei in the ionization and recombination pro-
in laser welding of metalf3], dense-plasma lasers, plasmascesse)s
generated from Teflon, polyethylene, and Lexan polycarbon- z
ate in electrothermal-chemical plasma g(#is 6] are a few E n.=n, 3)
examples of plasma mixtures for which computing the de- r=0
tailed plasma composition is required for the development,
functioning, and optimization of these devices. If the as-is sufficient for the calculation of the composition of a
sumption of local thermodynamic equilibriufTE) is ap-  plasma generated from a single chemical species. However,
plicable, the distribution of atoms and their ionization prod-plasmas generated from compound materials or from mix-
ucts(ions and electronbeys the Saha equatipn]. Taking  tures of gases are more complex than plasmas generated
into account the lowering of ionization potentials due to non-from a single chemical species. For these complex plasmas,
ideal effect{8—11], the Saha equation—for a single elemen-the equations for different chemical species are linked

tal species plasma—can be written as through the electron number density and the common tem-
perature. According to GlowackB], “the case of the mon-

NeiNe  Upag[27meKgT |2 15 atomic gas mixture is more complicated and has not been
nn U h2 P~ KgT)’ presented in the literature previously.” In Rg8] the case of

an ideal mixture of two monatomic gases has been treated
r=0,1,.(Z2-1), (1)  where the technique by Trayner and Glowad&] has been
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used to solve the equations. However, concerns about nypletely described by the set of nonlinear Saha equations with
merical stability were reported; this is of course in additionthe conservation of electric charge and conservation of nu-
to the accuracy limitationflack of change problem®f the  clei. This is obviously the case for diatomic molecules if the
algorithm used and which are reported in R&2]. Numeri-  plasma temperature is several thousand degrees. However,
cal stability concerns and problems were even reported foand because of the weaker bonds, polyatomic molecules be-
the simplest case of solving a single Saha equatwith gin dissociation at even lower temperatuf@k If one refers
unity as the maximum ionization stateoupled to an energy to the chemical species in the mixture by the subsgraid
equation when a Newton-Raphson technique was [8d the total number of the elemental specieslipen from the

In this paper we clear the complexity of the problem andrequirement ofconstant number of heavy particlésonser-
show a simple, safe and stable, fast, and accurate solution @htion of nuclej one has

this problem. The method depends on the reduction of the set

of nonlinear equations into a simple forfan equivalent z;

single transcendental equatjpmwhich requires minimal nu- 2 n, =N

merical work to be solved. =

Although it is common knowledge that safety in obtaining
convergence and numerical stability are crucial for such a4
problem, it may be useful to clarify why accuracy and com-
putational time are also of interest. Regardless of the well- 5
known fact that better numerical techniquesg., more ac-
curate should replace worse ones if they need the same 21 Nhj="NH
computational efforts or less, accuracy and computational
time are of interest for the following. ] ) .

(i) It is obvious that any procedure does not allow theWhereny; is the number density of heavy particlgzicle)
computations of the populations of different species if theirof €lemental specie§ ny is the total number density of
population does not exceed the accuracy of the procedur8€avy particles of all elemental species in the mixture, and
Therefore, in a weakly ionized gas, if the population of anyZj iS the atomic numbefor the maximum allowed ionization
species does not exceed the accuracy, the method fails. ~ Stage of elemental species Dividing the above two equa-

(i) Time derivative of the ionization state may be alsotlons byny one gets
required in many applicationsee, for example, Ref14]).

If the increment in timedt is small enough such that the Z

change in the ionization is comparable to the accuracy, the 2 a j=Cj, (43
derivative term may assume the opposite sign which may be r=0

catastrophic and seriously impose restrictions on the solution

of the physical problem under consideration. Recalling thaWherea,,j=nr,j/nH andc;=ny, ;/ny are the molar fractions
time derivative is just an example and the argument appliesf the r-fold ionized ions of the elemental specieand the
to the derivative with respect to any other parameter it betotal molar fraction of the elemental speciesespectively.
comes clear that accuracy may be crucial in the calculatiosumming over all elemental species yields

of ionization equilibrium.

(i) Finally, calculating the ionization equilibrium of the 3
plasma is not the ultimate goal. It is needed for the calcula- z c=1 (4b)
tion of thermodynamic functions, transport, and optical prop- =T
erties. In a typical simple self-consistent hydrodynamic
simulation one needs to calculate the ionization equilibriums
several millions of times. Time saving in the calculation of
ionization equilibrium, however small it is, leads to a huge
time savings in the overall time needed for the computations.

imilarly, the condition ofquasineutrality(conservation of
electric chargggives

Hence improvements in terms of solution accuracy and 4
computational time, in addition to safety in obtaining con- Z Nj ;= Ne,j
vergence and stability of the solution, are also valuable and =t
needed.

with

II. AREDUCED FORMULATION FOR PLASMA 3
MIXTURES
12—11 M= Ne;

It is assumed that all chemical compounds and polyatomic
molecules are fully dissociated, i.e., all chemical reactions
other than ionization and recombination are not includedwheren,; ; is the number density affold ionized ions of the
The plasma mixture in this case is effectively a mixture ofelemental species ne; is the number density of free elec-
inert gases and hence the plasma composition can be corttons introduced to the system by ionizing the atoms/ions of
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the elemental specigsandn, is the total number density of
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or

free electrons. In principle, free electrons can take any en-

ergy and, they should be considerdlistinguishable Ac-
cordingly, the subscrigtin the termn, ; must not be misread

as a sort, or quality distinguisher, but rather as a quantity or

share assigner for different sources of free electfelenen-
tal species Dividing the above two equations hyy one
gets

ed ]:ZE,] (5@
i=1
and
J
2 Zoj=Za, (5b)
i=1
whereZ =ne;/ny is the contribution of the free electrons

Ilberated from the elemental specie® the average charge
per heavy particl&,,, defined aZ,,=n./ny. One can ex-
press the set of nonline&@aha equationsn terms of the

Pri1 avnH

Ay

),

r+1](T Ne,..

where the Saha coefficients, ;;'s have been written in a
general form to account for any possible formulas for the
lowering of ionization potentials. For ideal plasmas the Saha
coefficients are functions of the temperature only. The above
equations give the following recurrence relation:

A= friaj(Tine,..). (6)

ar’J
ZaNy
Substituting from Eq(6) into Eq. (58 one gets
aj— 1,

J
Z (Zany)

Upon successive use of the recurrence relat@ninto the
above equation one can obtain

fl i(Tine,..)=Zq.

proportionsa’s, average charge stafg,, and the total num- o Z_e,i @
ber density of heavy particlas, such that 0™ 7 i : '
I fm’j(T,ne,...)
NN . \ =1 (Zaynp)' m=1
= (T,ng,...
N j e ¢ Substituting from Eq(7) and relation(6) into Eq. (4a) gives
Zj
C':r:o i
i
IT frj(Tine,..))
1+Zj e
= -
NTTE ()
r i
IT frj(Tine,..0) 2 :
A R e S T (s
=7 . : Ne,
T S 2 WY =1 (Zanp) e S
from which
i
B z : Z rT];[1 frnj (TN
Ze _E [T fo(Tone, ..)/ 1+ i ®)
=1 (Zyny)' m=1 i=1 (Zan)
and substituting from Eq38) into Eq. (5b) one gets
i
J Zj i i J rTglfmJTne,...)
Za= D, € 2 Y 11 mj(T,ne,...)/ 1+, : 9
=1 =1 (Zyny)' m=1 =1 (Zany)
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Equationg6)—(9) constitute a reduced formulation of the set In such a case, the Saha coefficiefgsare functions of the

of nonlinear Saha equations subjected to the condition ofemperature only and E@9) is a transcendental equation in
quasineutrality and the requirement of constant number of_,, the solution of which is eminently simple. Many soft-
heavy particles. For the case of a pure single elemental spgrare packages include solvers for transcendental equations
cies J=1), Egs.(9) and (8) become identical withZ,,  or algorithms for finding the zeros of a function. In addition,
=Ze- efficient algorithms that use a combination of bisection, se-
The solution of the set of equations in its current form iscant, and inverse quadratic interpolation methods can also be
very simple and can be performed safely and accurately a®und in Ref.[16]. For cases in which one is only interested
shown below. Since the Saha coefficiefis;s include the  in determining the average ionization stafg,, the solution
state-dependent partition functiob ;, it is appropriate to  of the transcendental equati®®) will suffice. However, if
discuss the computations of the internal partition functionghe interest extends to the determination of the detailed com-
before presenting the method of solution of this system ofosition of different elemental species and different ioniza-

Egs.(6)—(9). tion stages, simple direct back-substitution into E&. (7),
and (6) will be required to determine the detailed composi-
1. CALCULATION OF THE INTERNAL PARTITION tion. The algorithm is simply articulated in the following
The total internal partition functiok), (or the sum over (1) solve the transcendental equati@ for Z,,;

all state$ is a dimensionless quantity, which for an isolated  (2) substitute in Eq(8) to determineZ, ; for the elements
atom/ion can be formally evaluated according to the equatiowf interest;

(3) substitute forZ,,, andZ, ; in Eq. (7) to calculateay;
(proportions of neutral atomdor the elements of interest;
and

(4) use the recurrence relatioi®) to calculate all the
whereE, , is thenth excitation energy of speciegcounted @ 1;'s of interest.
from the ground stajeandg, , is its statistical weight. In the (i) Nonideal plasmawith expressions for the lowering of
calculation of the internal partition function, all equilibrium ionization potentialsl, ; that can be expressed explicitly in
populations (ground/excited statgshave to be included. terms ofZ,, and other known quantities such ag, for
Equation(10), in which g, ,=2J,+1 where], is the total ~example. In this case also, E@®) is a transcendental equa-
angular momentum, implies that the populations of the extion in Z,,. The method of solution is then identical to the
cited states follow a Boltzmann distribution. For an isolatedcase of ideal plasmas. Examples of such models for the low-
(free) atom/ion, U, diverges and finite values are obtained ering of ionization potentials can be found elsewhdr@].
only when interaction with the environment are accounted It may be useful at this point to highlight some of the
for in order to truncate the sum. Recalling that in a plasméaenefits and advantages gainéor these two casgdy re-
environment, the ionization energies are reduced such th&ermulating the equations into this reduced form. For these
excitation states with very high do not exist, and the par- two cases the solution of the problem is reduced to the trivial
tition function actually converges. The summation in Eq.problem of solving a transcendental equation. Hereby, for
(10) is thus limited to a maximum ofi=n*, which corre- these two cases, the problem of evaluating the plasma com-
sponds to a maximum enerd« . In the computations of position is shown to be effectively a one-dimensional non-
the partition function the summation is performed over alllinear problem with only one independent variablg,,
the available spectroscopic ddib] for the excitation ener- (namely, finding the root of a functipnAccording to Ref.
gies and terminated at energy lew®}. , which is related to  [16], “simultaneous solution of equations kdimensions is
the effective ionization energhf™ by the relationE«<I"  much more difficult than finding roots in the one-
=1,—Al,. This means that the partition function is a function dimensional case. The principal difference between one and
of TandAl (T,p) just like the exponential term of the Saha many dimensions is that, in one dlmens_lon, it is possible to
coefficients. This means that the solution technique of théracket or ‘trap” a root between bracketing values, and then
Saha equations is the same whether one includes the excit8gnt it down like a rabbit. In multi-dimensions, you can
states in the calculation of the partition functions or just bynever be sure that the root is there at all until you have found
considering the ground states only. However, the results maf-” Moreover, in principle, the zero of a transcendental equa-
differ and the impact of such an approximation on the com£ion can be determined to any degree of accuracy on the
putations of ionization equilibrium needs to be investigatecexpense of the computational tinfiee., no accuracy limita-

- E
Ur:nZl Or.n eX% - K;-T— ) (10

and quantified. tions). Therefore accuracy of computations of detailed
plasma composition will be only dictated by machine char-
acteristics.

IV. METHOD OF SOLUTION .
(iii) Nonideal plasmaand Al, ; cannot be expressed ex-

The method of solution of the set of Ed§)—(9) depends  plicitly in terms of Z,, and known quantities but rather in
on the formula used for the lowering of ionization potentials.terms of a common parametésuch as the Debye length
Practically, one can face the following cases. \p), that depends on the individuals. The model proposed

(i) Ideal plasmawith no lowering of ionization potential. by Griem
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[8] is an example of such a case. In this model the lowering 27
of ionization potentials is given by

0.6 Ar Arns -
(r+1)e? A : Azt
Alrj= 4mehp (D 0.5(%.
with A\ defined as 0.k
3z 112 o
Ap=|eoKpT/e?| no+ 21 20 rznr'j” . (12) 0.3
j=1r=

A similar, widely used model proposed by Ebeliegal.[11] |

gives the lowering of ionization potentials as

0.1
2 L\
Al, = (r+le , (13) ol 9.7 Y\l‘\?’“}:&i» ‘
1 4meg(Np+ Ag/8) 1 10 100 600
(2) T (eV)

whereAg=h/\27mKgT is the de Broglie wavelength and
Ap is expressed as in E¢12). With a bit of analysis and 0.55
insight, the solution in this case can also be obtained with
simplicity and to any desired accuracy. The fact that @g.

can be simply and accurately solved for any specified value
of A\p makes it, effectively, equivalent to an algebraic expres- 0.4f

0.5
0.45F

sion of the form 0.35F
Za=f1(Np). (149 =%

0.25}F

In the same time, the definition ofy in Eq. (12) can be oal
rewritten as )

0.15F

Ao—fa(Ap,Za)=0. (15) ol
Now, upon substitution from Ed14) into Eq.(15) one gets o.05F
Ao~ f20p, f1(\p))=0 (16) 10° 0" 0, 10 107

S L (d) p (kg/m’)
which is a transcendental equationNp . The bar overf;
refers to the numerical nature of the functibp. Even for FIG. 1. (a) Temperature dependence of the detailed equilibrium
case(iii ), in which Al, ; cannot be expressed explicitly in composition of a 0.1-kg/fM[He(0.3):Ne(0.1):Ar(0.6)] plasma mix-
terms ofZ,, and known quantities but rather in terms of the ture. (b) Density dependence of equilibrium composition of a 5-eV
common parametexy, the present analysis shows that the[He(0.3):Ne(0.1):Ar(0.6)] plasma mixture.
problem of evaluating the plasma composition for a complex

mixture is effectively a one-dimensional nonlinear problemyq problem. However, a concentration[6fe(0.3) : Ne(0.1)

(or simply finding the root of a functignwith one indepen- . Ar(g g is chosen to give better readability of the crowded
dent variableNy. Therefore, even for such a case, the

| i be determined with simolicit dfigures presented in this section. Necessary atomic data and
plasma composition can be determined with SIMpICIty anGy, itation and ionization energies have been taken from Ref.
to any desired accuracy. It is interesting that solving &6)

i ) [15]. A comprehensive set of energy levémore than 3000
simultaneously gives the values Bb, Zay, Ze;'S, Ur 'S for the three elementdias been used in the computations of
anda, ;'s and therefore it represents the whole algorithm. Iny e nartition functions. The model for nonideality correction
the fo_llowmg se_ctlon a sample problem that represents th'ﬁowering of ionization potentialproposed by Ebelingt al.
caseIs worked in detail. . . , [11], which represents cagéi) as shown above, is used to
A mo_del in which the nonldeal_p_lasrr_\a correctiokl ;'s run this sample problem. For this case, all nonlinearity of the
can neither be expressed explicitly in terms 2y, and roblem is reduced into the single transcendental equation

Iénown dquanttlﬂes r:jqr_:jn ;j,”*.‘s oftakcomm?ntﬁaran:ﬁter tthagm) which can be solved with simplicity to the machine
epends on the individuars 1S not known to the author a accuracy forp, Z,,, anda, j's in the same time.

the present time.

V. A SAMPLE PROBLEM A. Results

The current methodology has been applied to compute the Figure Xa) shows the temperature dependence of the mo-
composition of many complex plasma mixtures. A helium-lar fractions of different ionic species in a 0.1-kg/He/
neon-argon plasma mixture is arbitrarily selected to workNe/Ar plasma mixture with the composition shown in the
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FIG. 3. (a) Nonideality effects on the computations 8§, for
[He(0.3):Ne(0.1):Ar(0.6)] plasma mixture(b) Effect of excluding
the excited states from the computations of the partition function on

FIG. 2. (a Surface plo_ts of Zy, and Z. for the computations oZ ,, for [He(0.3):Ne(0.1):Ar(0.6)] plasma mix-
[He(0.3):Ne(0.2):Ar(0.6)] plasma mixture(b) Contours of constant

Z,, and the boundary for the validity of the LTE assumption for
[He(0.3):Ne(0.1):Ar(0.6)] plasma mixture.

-3 -2 -1
log (o) (kg/m")

(b)

LTE assumption can be considered for (Bl8)/Ne(0.1)/

. . .y 74
figure. As the temperature increases, the molar fractions (@r(O.G) plasma mixture with densities 10~* kg/m?. From

neutral specieéHe, Ne, and Ar decrease monotonically as a POth Parts it can be seen that at very high temperatures the
result of the progressive ionization. With further increase of2Ve€rage ionization state approaches its expected theoretical

the temperature, higher ionized ionic species appear at tHéniting value for a fully stripped plasma, i.€Z,,=12.4.

expense of lower-fold ionized species. Figutb)shows the Figure 3a) shows a surface plot of the nonideality effect
detailed plasma composition for a 5-eV plastfea the same 0N the computations of the average ionization state. As it is
mixture) at different densities. very clear from the figure, the nonideality correctiqitsw-

An average nuclear charge can be approximately assignegfing of ionization potentiajshave a significant effect at low
to this plasma mixture and the criticahinimum) electron  temperatures and relatively high density. Figufie) 3hows a
number density required for LTE can be determined as aurface plot of the percentage relative difference between the
function of temperature. The criterion given by Fujimoto andaverage ionization state calculated including the excitation
McWhirter [17] is adopted and applied for the present com-states in the computations of the partition functions and those
putations. For each density, a critical value for the averagealculated approximating the partition functions to the statis-
ionization stateZ, can be calculated by dividing the critical tical weighs of the ground states. A maximum percentage
electron number density by the correspondimg and one difference less than 10% can be seen from the figure. Higher
can verify the validity of the LTE assumption by comparing difference values are also relevant to the region of low tem-
both of Z,, and Z. as shown in Fig. @). Figure Zb) is a  perature and/or high density. Therefore it can be concluded
useful representation of the calculated ionization data wherthat considering the nonideality effects and detailed compu-
contours ofZ,, are presented as functions ©fand p. The  tation of the partition functions becomes important for the
logarithmic axes scales have been used to cover a wide rangegion of low temperature and/or high density in thd
of temperatures and densities. As shown in the figure thphase space.
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B. Discussion cited states in this region of theT phase space will consid-

The results presented above have some interesting r&rably impact the computations as shown in Fig)3

marks that need some discussion. For example, a peculiar
behavior is to be seen in Fig() where a large “gap” opens VI. CONCLUSIONS
in the region between 11.2 and 11.3 iy, in the p-T plane.

(Ar ) having the heliumlike stable configuratipsee Fig.
1(a)]. Accordingly, this gap is expected to occur in the vicin-
ity of Z,,=(0.3)x2+(0.1)x 10+ (0.6)x 16=11.2, which is

reduced form, which allows the development of an efficient
numerical algorithm to solve the set of nonlinear equations.
) g , ) : , Nonideality corrections have been taken into consideration in
in agreement with Fig. ®). Due to its stable configuration, ermg of depression of ionization potentials and truncated

the curve for E ¢ shows a wide distribution function of 4 ifion functions. In most practical the cases the solution of
temperaturg¢see Fig. 13)]. Similar behavior can be also rec- o set of 13,70 coupled nonlinear equations in 1

ognized with Ne for the aforementioned reasdhle-like 5 7 “uynknowns is reduced to the simple problem of
configuration. Another important point is in regard o the g|inga single transcendental equation. Implementing this
effect of exclud!ng 'ghe excited states_on the.computa}tlons °§imple efficient methodology simplifies the problem and
Zay- As shown in Fig. &), the effect is considerable in the qngjderably reduces the computational effort needed to
region of high densﬂy and/o_r low temperature. T.herge IS NGompute the detailed plasma composition for different cases.
significant effect in the region where the density is 10WThe method is analytically known to be safe, fast and effi-

and/or where the temperature is high enough. This behaviqfjent |t also shows no numerical instabilities, no conver-
can be understood if we bear in mind that the effect of '”'gence problems and no accuracy limitations or lack of

cluding the excited states on the computationZ@f, de-  change problems, which have been reported in the literature.
pends_ on both of the values of 'ghe partition functmns_and;rhe present analysis and methodology supports the belief
more importantly on the population of the bound excited 4t computational success crucially depends on analysis and
states. At high temperatures and low densities, recomblnathrﬁsight rather than numerics. A nontrivial sample problem

is weak and high ionization states occur with the result tha <" peen worked in detail showing the usefulness of the

the population of the bound/excited states is low. Accordy,ethod for applied and industrial plasma physicists.
ingly, excluding the excited states in this region of {k&

phase space does not have a recognized impact on the com-

putations ofZ,,. On the other hand, for low temperature ACKNOWLEDGMENT
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