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Optical breathers in anisotropic media
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Anisotropic crystals are shown to have three different mechanisms of the formation of breathers depending
on the direction of the wave propagation and on the symmetry of the medium. Explicit analytic expressions for
the parameters of breathers and the effective nonlinear susceptibilities for extraordinary waves are obtained. All
uniaxial crystals with quadratic susceptibilities can be divided into three different groups, according to the
crystal classes. Each group is characterized by a universal structure of the breathers zones. The structure of the
breathers zones of the media with cubic susceptibilities depends neither on the crystal éysteimsies nor
on the crystal classes and coincides with the structure of the breathers zones of the crystals with quadratic
susceptibilities and crystal classes 8,34, 4mm, 6, 6mm. The initial-value and boundary-value problems are
considered separately.
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[. INTRODUCTION tically active impurities whose excitation frequency is in
resonance with the frequency of a nonlinear optical wave.
The propagation of optical waves in a medium is accom-The experimental studies of optical resonance nonlinear ef-
panied by various changes of their shape. The main effectiects in crystals LafPr", YAIO;:PP', Y,05:EU,
that change the shape of waves are nonlinearity and dispecawQ,:Nd®**, on diphenyl with impurity molecules of
sion. The most interesting are those wave processes f@jiren, in semiconductors PbTe, InSb are describei® 8.
which the effects distorting the shape of the wave compen- On the other hand, in the propagation of an optical pulse
sate each other exactly and breathers are formed. The exigr 5 dispersive medium, its shape will not remain unchanged:
tence of breathers is one of the most interesting and impofs width will spread 10—14. Depending on the nature of the
tant manifestations of nonlinearity in optical systems. Theynonlinearity, the nonresonance or resonance mechanism of
are of particular interest because they have many solitonlikﬂje formation of breather@FB) is realized. In the case of
propertigs, but unlike so_litons,_ preathers can be excited aIS|‘?onresonance nonlinearity, which is expressed by means of
fr;)irnftliztévgpltk?eznriltla?rﬁi?snr;esncs;gfss}ir?f puIses[l—Z_S]. Deter- ﬂuadratic or cubic susceptibilities, its competition with dis-
g the formation of optica ersion leads to the formation of nonresonance optical
breathers and investigation of their properties in diﬁeremgreathers{l 15

media are among the principal problems of the physics o A tical i be f d with
nonlinear waves. resonance optical nonlinear wave can be formed wi

In the propagation of a pulse in a nonlinear medium thén€ help of the resonandélcCall-Hahn mechanism of the
effects of nonlinearity leads to a progressive deformation oformation of nonlinear waves—i.e., from a nonlinear coher-
the initial pulse profile. The basic sources of the optical non€nt interaction of an optical pulse with resonance impurity
linearity in dielectrics and semiconductors may be the fol-atoms in solids, when the conditions of the self-induced
lowing. transparency,oT>1 and T<T,,, have to be fulfilled,

(i) Nonresonance nonlinearity. Media possess nonlineawhereT andw are the width and frequency of the pulse, and
susceptibilities, the most important of which are nonlineari-T; and T, are the longitudinal and transverse relaxation
ties of secondquadrati¢ and third(cubic) order. There is a times of the impurity atom§16—20. When the area of the
great variety of dielectrics and semiconductors possessingulse,®>, the solitons are generated, but 91 reso-
nonresonance nonlinearity. For example, LiINh@-quartz  nance optical breathers are forn{dd-3]. In the experiments
(Si0,), GaAs, InSb, etc., have quadratic nonresonance norof McCall and Hahn16] in a crystal of ruby AJO5:CrP*
linearity, but melted quartz, GSetc., have cubic nonreso- the excitation of resonance soliton was reached when the
nance nonlinearity4—7]. Unlike the coefficient of nonlinear pulse intensity exceeds some critical value about
susceptibility of the second ordet;,, which is nonzero 100 W/cnf. The necessary intensity for exciting resonance
only for noncentrosymmetric crystals, the coefficient of non-optical breathers of small area is significantly smaller than
linear susceptibility of the third order;;,, is nonzero in any the intensity necessary for exciting a resonance solifon
media—in cubic crystal$Kerr medig and even in isotropic  pulse. Therefore, the breathers can be excited more easily.
media. The resonance optical waves of small a@&1 are particu-

(if) Resonance nonlinearity. A medium which contains op-arly interesting also because they can take part in a wide
variety of nonlinear optical phenomena—for instance, in the
processes of the formation of optical double breathers

*Permanent address: Thilisi State University, Chavchavadze Avg21,27. Resonance breathers of some equations of nonlinear
1, Thilisi, 380079, Georgia. optics are also highly stable. The breather can be also con-
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sidered as a “zero-area pulse” which is experimentally stud- D
ied in Ref.[23] (see alsd24]). S,

The coherent interaction of an optical pulse with impurity
atoms is characterized by the coefficient of a photon-atom
connectiork = 2rw?nyd,, Wheren, andd, are the concen- n
tration and magnitude of the vector of the electrical dipole
moment of the impurity atoms.

For small values ofK, a linear coupling of an optical
pulse with a medium takes place and nonresonance MFB is o
realized. In this case the interaction of a pulse with impuri- IS .
ties does not contribute to the formation of the nonresonance &
breathers, except for a renormalization of their parameters X
[15].

For large values oK, a nonlinear interaction of the pulse  FIG. 1. The direction of the propagation of the extraordinary
with impurities is realized, for instance, under the conditionwave along the; axis making an angle with the principal optical
of a self-induced transparency. In this case resonance MFB B axis of the uniaxial crystal. The vectos D, S, andk lie in the
realized and resonance breathers are forf2esl. yz plane. The opticalO axis and the vector of electrical dipole

Besides these two basic mechanisms, in some situatiorifioment of the impurity atomd, are directed along theaxis.
another “blended” MFB can also take place when resonance

and nonresonance mechanisms are acting effectively simulyysials are anisotrop[6,7] and isotropic solids can become
taneously. The condition for the realization of these mechagricaly anisotropic ones in the presence of a constant elec-
nisms of the formation of optical breathers depends on thg: field or under the influence of a deformatif®6]. It is

quantitiesd;j (or piy) andK and is realized when these 54 very important to note that the anisotropic uniaxial crys-

m|
&1

o
=]

vl
g

o

quantities are equal to each other. tals are used in many modern optical devices. Consequently,
The numerical values of the quantitielgy , pij andK  he considered problem has rather general character.
can vary very strongly depending on the medium. Indggd The main goal of this work is to investigate the structure

is of order 1020—10724_(”"‘5 unity and can change two to  of preathers zoneSBZ’s) and the conditions for realization
three orders of magnitudenj is of order 10*-10"**  f the resonance, nonresonance, and “blended” MFB in dif-
(mks unit3 and also changes in a wide regif#8,25. For  ferent anisotropic media and to determine the explicit ana-
most noncentrosymmetric crystatk > pij and usually  |ytic expressions for the parameters of breathers and effec-

third-order nonlinearity can be neglected. The quamidy  tive nonlinear susceptibilities for the extraordinary waves.
can vary in an interval of order H-10'° cm 3, while the

quantityd, is of order 5 102! (cgs unit$ in a crystal of a

ruby, but in some semiconductors it is of order of 10(cgs Il. BASIC EQUATIONS
units) [18]. Because the numerical values of these quantities
can vary very strongly in different media, different solids ,. . . :

will realiie dif¥erent r?]?a/chanisms of the formation of optical tical breathers in the(quadraﬂc_ or C.me n_onlmear_ and
breathers. But even more interesting for the study and Coms_epor?d-order_ (space_ _amd_/or t|_rr)e d'SPeTS'Ve optically
parison of different mechanisms is the investigation of thes<—5"f"ax"ﬁ’?I media contalmng impurity atoms in the casg;xvhere
processes in one and the same crystal. Such a possibility A Opt'c"’.‘l pqlse of W'd.thT{r.le a_nd frequencyw%T '
given if we consider anisotropic uniaxial crystals and inves.Propagating in the positive direction along theaxis. We

tigate processes of the formation of optical breathers for op§hal| consider the optically un|a}X|aI media—trigonal, tetrag_—
tical extraordinary waveg§Fig. 1). It is well known that the c_)n_al, and hexagonal crystals with components of the permit-
properties of extraordinary waves depend on the direction o v_|ty_ter|1$or SXX? ‘iky]y;&‘gzz' 'tltr'] _';hetse crystals, 9dne of.ttrTe
their propagation and therefore for different directions of thePrncipal axes of the permittivity [ensaf;; concides wi

propagation of the waves different relations between théhe axis of the symmetry of third, fourth, _and S').(th order,
quantities d;j,, piji . and K are realized. Hence, if we res_pe_ctwely. This axis is called the .Opt'c‘fi! axis 9f the
change the direction of the propagation of nonlinear Wavesun'ax""lI crys'gal a_nd we assume that Fh's a@s_s pointing
different mechanisms of the formation of optical breathers—é‘long thez aX|§(F|g 1. The corre;pond|ng principal value of
nonresonance MFBK<L), resonance MFBK>L), and the tensore;; is e,,=¢)|. The directions of the two other
“blended” MFB (K =L W'here L=dj in noncentr’osym- prin_cipal axeqin the plang perpendicular with ttzeaxi_s) are
metric media and. = p;j, in Kerr media—will be realized. arbitrary and we determine them ag,=eyy=¢, . Without

Consequently, in uniaxial media we expect the existencépe(zif_ying the physical nature of the _di_spersive process, we
of certain propagation direction@nd zones around thém describe the dependence of the permittivity terspon two

along which one of the above-mentioned MFB will be real-Variables—the wave vectérand frequency» of wave(spa-
ized or not. tially and/or temporally dispersiorf10—12. There are two
Investigation of the breather formation processes and spélifferent cases: the regime of normal dispersion when the
cific peculiarities of the propagation of nonlinear waves ingroup-velocity dispersiory?k/dw?>0 and the regime of
anisotropic media are also of interest because many lasanomalous dispersion when this quantity is negative.

We consider the mechanisms of the formation of the op-
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In uniaxial media, the electric displacement vedioand  Where the polarization of the medium
the vector of the strength of the electric figfdof the pulse
are parallel only itk points in the direction of one of the »ZJ N = _ @ pB LB
principal optical axis, but not in general. There are two sys-P X ) B(7 =X, =) dlydy + P PP
tems of orthogonal vector tripletsB( H, k) and €, H, S). (2)
We assume without any loss of generality that the vedfors

B, andK and the Poynting vectd= (c/4m)[E,A] lie in the  1he first-order susceptibility tensor

singleyz plane perpendicular to the strength of the magnetic

field H:L wherec is the light velocity in vacuum(Fig. 1. _(_1):8”—1

Thenkr =yk,+zk,=kz, wherep=zcosa+ysina. g A7
The wave equation for the strength of the electrical field

E(#.t) of the optical pulse in uniaxial media has the form 55 two independent nonzero Componewg?:)(&i):)(%/)
> > N and X(l):X(l)
PE L JP°E J°P - I Azz .
2 = — 47| — —c2graddivP (1 The components of the second- and third-order nonreso-
at? '

a2 an? nance nonlinear polarizations have the forms

P,®@= j X2 (71, 12,110, 0) El(p— m1,t =t E)(n— m1— mo,t =ty —t5)dtydt,d 9, d 9,

Pj(g): f P3i( 71,12, M3, b1t t3, @) Ex( 9= m1, t =t E(p—m1—mo, t =t — 1)

XE = m1— 2= m3,t—t;—tr—t3)dy,d ,d padt dt,dts, 3
where
€E,meE n
X2 (71, m2,t1,t25 @) = Xjmn( 71, 72,1, t) —S——,
eE,z
€E,m€E nCE,r .
P3,j(771,772:773at17t2:t3ia)=ijnr(771a772,773at11t2:t3)T, J,n,m,r=y,z;
E,z

Xjmn @nd pjmq, are the components of the quadratic and cutheory of self-induced transparency has been constructed in
bic susceptibility tensor$4,6,8,29. e, =6, &y, &, are  Ref.[27]. Another situation of self-induced transparency in
unit vectors directed along the vectrandx,y,z coordinate ~ anisotropic media when the vectds does not coincide with
axes;n,m=E,x,y,z. E=éEE E,=eq ,E. The unit vector the optical axis of the crystal was considered in R28]. In

ec, the direction of polarization of a linearly polarized opti- the present work, we assume that the vedgand the op-
cal wave, is determine(Fig. 1). Although for convenience tical axisO of the matrix coincide and are directed along the
in the equations we are keeping both quantitigs, and  z axis. In such a case the vectBrand the vector of polar-

Pimnr. in fact only one of them is not zero, and depending onization of the impurity atoms?’, are coupling to each other
this we conS|der*|'t a noncentrosymmetric or Kerr medium. through theirz component§27]. Consequently, we have to
The quantityP is the resonance nonlinear polarization consider the nonlinear wave equation for theomponent of

describing the effects of the one-photon resonance interacé( )

tion of the optical pulse with the optically active impurity e
atoms. We shall assume, as is true of a large class of laser
crystals(see, for example, Ref7]), that the vector of the ©dua a
electric dipole momenﬁo of impurity atoms and the optical transverse, dib =0, we obtain a nonlinear wave equation
axis O of the uniaxial matrix coincide. In such a system thefor E, in the form

Substituting the expression®) and (3) into the wave
tion(1) and employing the condition that the fieltibe
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. €ey
COSOZX(l)H( 71,ty)+sin OZXEI)( 7 ,tl)_eE
Z

(92
_Czﬁf ( o( 1) 8(ty) +4m cosa En— 1, t—t)dn.dt;
Y

02
+EI [8(71)8(t1) +4mx D (m1,t)1E(n— 71, t—t)dp,dty
(92
:_4W§f X221, 12,11, 0)E(n— 91 t— 1)) E(n— n1— 1o, t—t;—ty)dtdt,d 9, d 9,
(92
_4W?J P31, M2, M3ttt @) Ef( =y =1 E(p— 71— mo,t—t1— 1)

9’P)

XEn—m1— m2— 3.t —ti—ty—tg)dn,dn,d padt;dt,dts— 4 2

&2 _
+4Trczﬁ<j[COSZQXZYZ(nl,772,tl,tz;a)-l-COSaSlna)(zyy(nl,nz,tl,tz;a)]
7
XE 7= n1,t=t)E(n— 71— no,t—t;—t5)dt;dt,d 9,d 7/2>
2
+4WCZF<J [coSaps,(n1,m2,m3:t1,t2.t3;@) +COSa SiNapsy(n1, 72, 73,t1 2 t350) ]
7
XE 7= 1 t—t)E(n— 11— 2, t—t1 =) E(n— 91— m2— m3,t—t1—t,—t3)d n,d 5,d ﬂsdtldtzdt3>

(?2
+4wczco§aF(P;>, (4)
Y

where we have used the notatida)= e (7,,t;)g(» the interaction of one impurity atom with another as usual is
—n1,t—17)d»,dt; for any functiong. ignored in the Bloch equatiorfd6-22,27,28

The dependence of the quantify,=nyd,s; on the We can simplify equationg}) and(5) using the method of
strength of the electrical fiel&, is governed by the optical Slowly changing profiles. For this purpose, we represent the
Bloch equations which are based on the representation of tHenctionsg, andP; in the form
resonance impurity atoms by an ensemble of two-level atoms
whose evolution is caused by processes of interaction with

; ; . . nod
optical extraordinary waved6-22: E=> £z, P = 020 D 2d (8146 1), (©)
[ |
dS1 Js, +nE JS3 E
=~ WSy, T =wpyS1TK S3, T =K Sy, ~ . .
dt 072 gt oPLTTOTES ot 0=z whereE andd,;=d, ;+ild, , are the slowly varying complex

5 amplitudes of the optical wave and polarization of the impu-
rities, and | rulnks through the valuest1,=2,...5

where ko=2do /7, s,(t)=(&: (1)) (i=1,2,3); here(&) is =3d,;Z,, Z=€"®7"eY (i=1,2). To guarantee the reality
the average value of the Pauli operafgr and o, is the ©Of the quantitiesE, and P;, we set E,=E%*, and d,
frequency of excitation of the two-level impurity atoms. To =(d-;)*. We note that such a representation of the solution
take into account that we consider coherent interactions d®f @ nonlinear wave equation has been widely used in the
pulses with two-level atoms—i.€T.<T, ,—in the system of theory of nonlinear wavejs,16-22. This approximation is
equations(5) the relaxation effects are neglected. Since webased on the consideration that the enveldpeandd, ; vary
investigate the situation of a small concentration of impuritysufficiently slowly in space and time as compared with the
atoms(as is true of a large class of crystals with impurities carrier wave parts—i.e.,
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ad ;
1%

and is called the slowly varying envelope approximation.

On substituting the expansiori) in the system of non-

linear equationg4) and(5) we obtain for the envelopes the

nonlinear wave equation

. 9E aZE
> z|[ Wi(a) & - la|(a) +ipi(a )&—tl—m( ’o?
9°E
‘W‘)mlt a)— EXH/(OI)El VEp

—2 P| 3 |~(01)E| By Epn—r(@) (8 1+ 8, _1)

IH

=0 (7)
and connect with them the system of Bloch equations
ad, . o
E:Il (wo—w)d|+ il koE_|S3,
(933 || Ko A~ A~
= 5 (dE—do By, (8

where
W, =I 2(Czk2K|(2)_ 0)2K|(1)),
a;=1(c?k?AP + 2k k(D -1 w?AY),
Bi=1(clIk?B(P - 2w k(M1 w?B{Y),
y=120AM+102TN—2¢2kBP - c2k?T(?),
8=cA2%k?D@-1202D(M -2l wBM - k1),

w1 =Cc212k2CA+ k(P + 2c2 kAP — 1202C(Y

(M) (M) 2,.(i)
A 2K g 74 (_ 17k
Dokt T alle) TN 2 k)2’
g L ) o )
= _ e = =
P S i T aaw) 1T

202
(@) =Kii(a)d i, di(@)=1-—cofae (lw,lk),
w

kM=g|(Ik,l o),

PHYSICAL REVIEW E59, 026608 (2004

K|(2)=f [5(7])5(t)+4wco§a

x) (7.

e )
+tanay () n,t)g J el (@t=kndtdy.

E,z

The effective susceptibilities of the second and third order in
uniaxial media forE, have the form

X1 (@) =4m120? (@) (xzyfeofat xzz)
+NCOFa( Xyy st Xyzy) — XyyyCOta COSaNE],
9
P| ", |~(a) A7120? (a
+ (@) przar Wi(a@)\Pp,yyLota
+NCOS a(pyyzzt Pyzyzt Pyzzy

+cofa cofalPpyyy,~ coSa cota(pyyy,

)\COIZa(pzzy Pzyyz szZ))

*+ Pyyzyt Pyzyy))\|2]1 (10

where

g)|(Ik,lw)

1= m Xijn=Xijn(IK,J 0, 1K, 1" w),

Pijnm=Pijnm(IK,l0,1I'K,l" 0,1"K, 1" ), i,j,n,m=Yy,z.

It is easy to make sure that all the quantities in E@s-(10)
depend on the direction of wave propagation—i.e., from the
quantity «. The system of equationd) and (8) is for the
slowly varying variables in a sufficiently general form and
can describe various processes of the formation and propa-
gation of the nonlinear waves in the anisotropic, nonlinear,
and dispersive media containing small concentrations of the
optical active impurity atoms. A lot of effects that were con-
sidered earlier can be investigated, as special cases, by these
equatlons For instance, under the condition wlyﬁi (or

pI 3 I,,)<r| we obtain a situation of self-induced transpar-
ency in anisotropic media which was conS|dered in R&T],

but for the situation when condmo;al(z) (or p, 3 I,,)>r, is
fulfilled we obtain nonresonance solitons and breathers
which were considered in Refs4,15].

In the media with quadratic susceptibility and first-order
dispersiork?zIZ/aw2=pl(y?l’),yl,,= r,=0, for the direction of syn-
chronism the requirement of phase matching is satisfied and
second-harmonic generation is effectid®-14, if we take
into account the wave equation for tBg¢ component too.

Unlike second-harmonic generation, for other relations
between phases of the waves it is possible to realize another
type of interaction: namely, the reactive interaction when the
interacting waves do not exchange any energy and under this
condition can form “bright” (for fundamental modeand
“dark” (for second-harmonic modesolitons[12] and also
many other nonlinear effects can be investigated by Ef)s.
and (8).
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Ill. OPTICAL BREATHERS OF THE EXTRAORDINARY For the determination of the explicit form of the quantity
WAVES P,, we expandd, ands; in a perturbation-theory series in

To further analyze Eqg7) and (8), we make use of the the small nonlinearity parameter

perturbative reduction method, developed in R¢2R,30,

under the condition Y
d=> £@p@ g=> IN@,
0

a=1 a=

10,|<1,

where Substituting these expansions and expresg¢idh into Eqs.
(8), we obtain

t ~
®|(7I,t):Kof_wE|(7l,t’)dt’ I
r|(a)=; Ynﬁ R|(a)2 8“(p|(0,(1)

is the area of the optical pulse envelope.

The solution of Eqs(7) and(8) can be carried out by two
different methods, depending on whether we investigate the -&°R, 0(a)<,oI " n,_m(,Dl(ln),(p(l|)m +0(&%).
problem of the evolution of the initial perturbatidmitial-
value problem or we consider the propagation in the me- (13
dium of a pulse, which is specified on the boundary of the

medium (boundary-value problem Although the corre-

sponding equations appear different, we must note that iAnalogously we can obtain an expression '_Ri”” the case
some sense they are identical to each other. of the boundary-value problem using E42):

In the case of an initial-value problerﬁi can be repre-

sented a$29,30 I
r(a)=2 Yoo Ri(@) 2, &°f(
Ei(n0)=2, E 2 YL, 7), (11)
W I,n _83R|,O(a)f|(ln) nr_mf|(ln)ff(l) +O(84),
where Y,=e"@Q7"  r=cQ(y—vt), =%, v (14)

=dQ/dQ, ande is a small parameter.
In the case of a boundary-value problem, we can represent

the quantityE, as where

. oo (@)y (@) 47Tn0dgw270
Bpt)=2 2 X fEn, 12 Ri(a)= ——o—— (),
a=1n=—w
where X, =e"Q@7=8)  ¢—g(t— p/U), v=825, and U 8 i’
AN 0‘” To

—(d?)/dﬁ)*1 Such a representation allows us to separate R o @)= —3%(&). (15)
from E, the still more slowly changing quantities$) and (h€2)
f{e) Consequently, it is assumed that the quantifiesQ,

0, 0, (p , andf(“) satisfy the inequalities The plus sign of the quantity, corresponds to the initial
condition in which the impurity atoms are initially in the
w>Q, k>0Q, >0, k=0, ground state—i.e., at—«,s;=—1 (attenuating medium

The minus sign corresponds to the case wheré—at,s;

PC a(p(a) =+1; i.e., all the impurity atoms are initially in the excited
Ln <09, <Q|¢(a)| state(amplifying medium. From Egs.(13) and(14) we can
at ' In see that the resonance nonlinear polarizaf®jnor r; for
{@ (@ one-photon processes contains not only nonlinear but linear
of vl ofy vl
(;t,n <Q|f|(,cf1) ’ ‘ <Q|f|(f}‘1)| parts too.

In the interaction of an optical pulse with a resonantly ab- A. Initial-value problem

sorbing medium, the most significant effects are usually ob- We begin by considering the solution of Eq%) and (8)
served at exact resonance. Therefore, for simplicity, we conin case of an initial-value problem. In this analysis we use
sider the system of Bloch equatio(® at exact resonance— the expansior{11). On substituting Eqs(11) and (13) into
i.e., with = wy. Eq. (7), we obtain the nonlinear wave equation
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to Eq.(18), only the following terms of all the quantities )

<P|(a) differ from zero: cp‘fiﬂ or <p(+11+1 The relation between
the quantitied) andQ, for fixed values of andn==*1, is
determined from Eq(18):

d 32 d
W|n+8J|na§+8 H|n é’ 8h|n&

> s“zlvn[

a,l,n

B 2 e’ [F”'@I I,n— n’gol(’an)’

o I/ ’ ”I,,V n”

|
anQ+ BnQ— Q0+ u, Q%+ 502+ R|ﬁ:O. (19

_sa’)\ . (01)/ " , (Ia : :/1)/] ) o ) ] ) )
LI =17 n=nt = P17 P17y Since all the coefficients in this equation are functionsepf
the relation betweef)) and Q will depend on the angle,
I o (a) too.
+% Z\Yn o (8126 -1) Rlz &0 We have to consider the situation wheft') .,=0 and

o) _,#0 separately from the situation whept?) .,#0
and qo+%+1 0. First we consider the situation when
qo(+1 +1=0 and<,o+1 -1#0. Then the relation betwedn and
Qis determmed from Eq20) atl=—n==*1.

where the coefficients Substituting Eq(19) into Eq.(17), we easily see that the

following relation holdsJ. +,=0.
_ _ 2 22 202 1,51
Win=Wi+anQ+ BinQ = »n“QQ+un"Q%+ §n°Q%, To second order ig, from Eq.(16) we obtain the relation

(2) (1 .
Jin=—iQ[ e+ Biug+2nQu +2n5Quy betweene's -, and g -
- FiZ,il
1n(Q+Quy)], ‘P(+2%+z_r2_2(¢(¢1%,:1)2- 20)

H, = 2 _ . 2 ,
n=Q (nvgmi—dvg) Substituting Eqs(19) and ("20) into Eq. (16), we obtain the
=i(B+2nQ6-nQy), well-known nonlinear Schuinger equation(NSE) for the
(A ~nQm quantity ¥, ,=e/q¢(2, (for I=x1):
F|’|/:47T|2w2)(|(2|), y

Ay 1 Yy
s 2. @3) == +h, 1|24, -1=0, (21
)\|Y|ry|rr:477| w p||’|”’ (17) |

depending ore. To determine the values af{%) we equate where
to zero the terms corresponding to like powerssofAs a ot IH 1 520
result, we obtain a chain of equations: to first ordee,n V= 7Y ,pi= iH, - - '

| Vi hy, —|Q2 2 IQ?

_ (H—

Wi (@) + -Ri(a) |¢{=0. (18) MR

. . o - DT205-18-Qn
In dispersive medi&Vy=W..,=0 andW);-.;#0. The equa-

tion W, .,=0 provides the dispersion law for extraordinary The quantityq, contains terms coming from the resonance
waves. In what follows, we shall also be interested in aR, ; and nonresonana@, nonlinear terms, where the quan-
breather which vanishes &t> = . Consequently, according tity

16W2w4(X|(?2 i+ Xl(zz?)X(zf)l

m| = M 1=
1
W, — 2l Q—21 80— 4%,QQ+4602+4u,Q%— E(ﬁﬂldo)szm
for quadratic nonlinearity crystals and
=Li=4m0’(p(7_ 1 +p{¥ )

for crystals with cubic nonlinearity.
The NSE(21) under the conditiom,q,>0 has the soliton solution

efil P1)

_ 22
cosh 2p¢y; 22

h,—1=2il mo
where
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Eq. (12 for the solution of Eqs(7) and(8). On substituting

0 =—— §o77 2(§0 )— fovg t— g, Egs.(12) and(14) into Eq.(7), as was done in the preceding
\/E \/E section, we obtain the NSE in the form
7 Vg L OX1 - 7 X1, -
P21=—="1 4§o——)t—)’o- (23) =+ +xi-ilPx,-1=0, 1==1, (25
Vp Vpr n Tt
The quantitiesty, 79,9, andy, denote the scattering data where
of the inverse scattering transfortiST) [1,30,31 when ap-
plied to the nonlinear equation. Substituting the soliton solu- - n
tion for the superenvelope, E?2), into Eq.(11), we obtain 1) U
for the envelope, the breather solutiofl—3,15,30—3p xi—(nT)=e\@ff,, 1=-n=x1 T= 5y
; —il (¢ +Qt—Qn)
A,—ZII%e - . (24) _ IH® M+l —Rip
\/a cosh 27]0902,| p= h(o) ’ q = ilh I(f)zl y

Using the IST, we can obtain the breather soluti@d) for

any initial vaIueE(tzo,n). The appearance in expression HO— _ i( U+6U2)

(24) of the factore' (R7~2V indicates the formation of peri- n =T 2 e U9,

odic beats(slow in comparison with coordinates and time,

with characteristic parametefsandQ), as a result of which hl(on): —i(a;— ynQ+2nu Q). (26)
the soliton solution(22) for ¢, _, is transformed into the ’

solution(24) for complex envelop&; . This is exact regular |n this case, the relation between the quantifieandQ, at
time (and/or spaceperiodic solution of the nonlinear wave fixed values ofl andn, has the format|=+1)
equation(7) called a breathe(pulsing soliton which loses
no energy in the process of propagation through the medium ~ ~ ~o . mo ~ = I
[1-3,30—32 Equation(24) is a breather under the condition nQ+BnQ+m Q™+ Q=% QQ+R —=0. (27)
of phase modulation¢;,;#0). From Egs.(9), (10), (15),
(19), (23), and (24) we can see that all parameters of the Substituting the solution of NSE25) into Eq. (12), we
breather depend on the direction of the wave propagation. can obtain the breather solution of E@) in the form

A situation similar to Eq(7) occurs with the sine-Gordon

equation; namely, the breather for a small amplitude of the 110y, +0t-Q2)

2|| 7o e

ine- i i E= : 28
sine-Gordon equation corresponds to the soliton of the NSE ! VG, cosh2y,6, (28)
(see, for examplg,1-3,37). Indeed, if we consider the case
when there is no phase modulatiop,(=0), then the com- | hare
plex quantityE, reduces to the real quantity R&j and
expressiorn(24) goes over to the more usual form of a small- 2&,
amplitude breather which is proportional to €( 61,= \/?H A&~ o) — —=— \/~_U 7~ o,
—Qmn)sech 209, [1-3,33. At the same time, we have to Pi
note that Eq(24) is a breather solution of Eq7), but is not
a breather solution of the NSRinlike Eq. (24), because 5 = LJF ag,— 1 B 29
breather solutions of the NSE are unstalde,31]]. Z ) 0 Uvp, 7~ Yo

In the case Wherqp(tl%:laﬁo andqo()_}%;fO, the relation

between() and Q is determined from Eq(19) at I=n Using the IST, we can obtain the breather solu{i@8 of

==+1. Expression§21)—(24) are valid in this case also if we Eqgs. (7) and (8) for any boundary value of the quantity

make the changes E(t,=0).
| Under the condition=n= =1 expression$26)—(29) are
iH valid in this case also if we make the changes

U o1—eNQereM Ly, p|Hh—Qza g
. B iH®  _ M+L—R
= s — — .
M+ L+ R e . Fa X1,-1—¢€ ] P h(o) °]] Ih(o)
a ith,, » My=(F |2|)WI |

IV. STRUCTURE OF THE BREATHER ZONE

B. Boundary-value problem In the present paper we have shown that in the propaga-

Here we consider the same problem in case of dion of intense optical radiation throughuadratic or cubic
boundary-value problem. In this case, we use expansion inonlinear and second-ord@patially and/or temporaljydis-
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persion (?k/dw?+0) anisotropic uniaxial crystals contain- ~ The NSE is the fundamental equation to describe solitary
ing small concentrations of optical resonance impurity atomdvaves, which occur when dispersion is balanced by nonlin-
optical breathers can arise. The explicit form of the breathe/€arity, when both group velocity dispersion and nonlinearity

when we consider the initial-value problem, is given by Eq_play an important role simultaneously. The condition for the

(24), and if we investigate the boundary-value problem, thetXistence of the soliton of the NSE is

form of the breather is given by expressi@®). The disper- 5

sion equation and the relation betwe@nandQ () andQ) T2q|||§|(o,o)|2=a—k2,
are given byW. ;=0 and Eq.(19) [and Eq.(27)]. Jo

The physical interpretation of the formation of a breather .
is the following. In the propagation of the pulse in a disper-where the quantitylE,(0,0)|* is proportional to an input
sive medium, its shape will not remain unchanged. Thepower of the soliton. An analogous relation for the quantity
width of the pulse will increase during propagation. This isqj is valid, too. The input power of the soliton necessary for
due to the fact that waves of different wavelength propagatéhe excitation of the soliton by means of the quantity,
in a dispersive wave with different velocities. In the NSE, 9°k/dw?—i.e., from the dispersion propertiéfw) of the
this effect is taken into account through the termsmedium—is determined. The experimental study of solitons
19y} andd®y, _1dTF. On the other hand, the effects described by means of the N$&3] in an AlGaAs sample is
of nonlinearity lead to a progressive deformation of the proreported in Ref[34]. In these experiments for the solitons,
file of the pulse, which increases with increasingn the  the maximum total power of the pulse inside the sample was
NSE, the nonlinear effects are taken into account by thénaintained at 500—600 W.
termsy, | 1|2 and|x; _i|%x._ . As a result of the com- Without phase-matching conditions no accumulation of
petition between thénonresonance and/or resonanoen-  honresonance nonlinearity along the optical path occurs. In
linearity, which increases the curvature of the profile of theorder to get the evident nonlinear effect, a very high power
pulse, and the dispersion, which causes the profile to spredf radiation is necessary. When the phase-matching condition
out, the shape of the nonlinear wave is stabilized—an opticadp not fulfilled exactly the efficiency of the cascaded nonlin-
breather state is formed. earities is low and for the realization of the soliton regime of

It should be noted that these results and their interpretaPropagation a high-power pulse has to be uggsl. Such
tion are applicable to pulses with sufficiently smooth enve-solitary waves have been observed experimentally in
lopes, under the condition that the size of the pulse be largBotassium-titaynl-posphate and in a LiNpOniaxial crystal
in comparison with the wavelength—i.&A>1, whereA is ~ [36]-
the length of the breather. Moreover, the length of the We have to note that the input powgntensity of the

breather should be significantly greater than the characterigvaves varies very strongly in different nonlinear optical ex-
tic length of the periodic beats, Q> 1 (A(~g>1) periments. For instance, for the excitation of the resonance

We considered the case of exact resonameew. and solitons in ruby, the pulse intensity is of order 100 Wfcm
0 [16], but for parametric amplification of the waves in the

homogeneous broadening of the spectral line. Extension t . : . . .
the casaw+# wy and inhomogeneous broadening of the spec-CryStal LINbO; an input intensity of 5 10° w/cn? is used

tral line do not present difficulties. It is obvious that in this [6]. Single-soliton fofmaﬁon in pptassium-titanyl—phosphate
case we should not expect qualitatively new results comhas been observed in R¢87], W'th peak_lntensny thre_sh-
pared to those given above. olds_ of about 3 G\./\_//cﬁ? Multlple—sohtqn generation
We note that the NSE contains not only one-solit8), med|a_ted by_ the amplification of asymmetries, with an input
but alsoN-soliton solutions with a more complicated behav- peak intensity 23 GW/cfhas been recently observed in
ior. In particular, for many-soliton solutions of the NSE there Ref. [38]. T . .
are characteristic oscillations of the envelope and strong FO the breathers the situation is different. The input in-
compression of the pulse peaks already in the initial stage gENSity for breather generatioh, is proportional to the
propagation of the wave. Under these conditions, we canndtuantity 3°Q/dQ? (or 4°Q/9Q?) and it can be determined
always use the slowly varying envelope approximati6p  from the relation19) for Q andQ [or relation(27) for O and

and still less Eq.11) and(12) (the separation frorg, of the Q] The quantities) andQ ({) andQ) characterize “internal

more slowly varyingsp({%) andf{%)). Therefore, the scheme properties” of the breather. Unlike solitons, the intensity of

presented above is not valid for such solutions, and for that axcitation of the breather is determined not only by the dis-

completely different method is needddee, for example, persive properties of the medium, but also by the internal

[5]). parameters of the breather, the direction of wave propaga-
The stability of the breathers solutiolt®4) and (28) is  tion, and the symmetry of the medium.

connected with the stability of the sech-soliton solutions of We can make estimations of the optimal laser poRgr

the NSE which have been investigated in detail. It is wellfor nonresonance breather generafibreather zonéBZz) I].

known that the soliton solutions of the NSE are highly stable=or example, let us take typical humerical values for optical

[1,30,31. Taking into account that the effects of anisotropy media and radiation parameters necessary for realization

do not stimulate any specific instability, special consideratiorof ~ the  breather  regime: w=3x10"Hz, nj (o)

of the stability of the breathers of Eq¥) and(8) in aniso- =1.462234n,(w)=1.498931, a=#/12, T=3 ns, and

tropic media is not required. w/Q=3X10?, whereP,,=I,A, n andn, are components
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of the tensor of the refractive index at frequengyandAis  susceptibilities containing ak,y,z indexes thajy,;;#0 and
the cross-sectional area of the medium, at Wi€/9Q?  Pxijk* 0, Where (,j,k=x,y,z). Itis because in the breather
=10"Y &/cm. In the Kerr medium the total index of re- regime of propagation, different modes realize reactive inter-

fraction has an additional term'| proportional to the laser actions without a mutual exchange of enefd?]; i.e., the
intensity I. Using these estimations, far' ~ 1010 m%/W extraordinary waves do not exchange their energy with the

we obtain the minimum power for nonresonance breatheprdinary waves. If the ordinary wave is not excited at the
generation,P,,~520 W, in the cubic medium. The power begining of a wave excitation, the breather of the extraordi-

for breather generation in a noncentrosymmetric mediumf@ry wave does not provide excitation energy for ordinary
P,~350 W, when the effective susceptibility ig2,;  Waves:

~5%10"2 (m/V)? and the values of the other parameters Of course we have neglected all transition processes and

of the pulse and medium are the same as above. These edpSumed that the medium is entered by the pulse already in

mations for the “blended” breatherBZ 1) are valid, too. the form of the breather. Hence we are considering breathers

All these estimations are based on the assumption that, fo¥hich are always linearly polarized, lying in thez plane,
simplicity, the medium has temporal dispersion, cross sectio@nd do not become elliptically polarized waves.
A=10"*cn?, and the direction of the wave propagation Therefore Eq.(3) is valid under the condition when the
does not coincide with the direction of synchronism. extraordinary wave does not excite ordinary waves ancthe
Because numerical values of the nonlinear susceptibilitiesomponent ofE is equal to zero. Consequently, elliptically
can vary very strongly in different media, in different solids polarized waves do not arise and we consider the situation by
th.e minimum intensity fo_r nonresonance breather generatiop, oo ns of Eq(3) when vectorE is always lying in theyz
will be different, too. It is clear that usually the minimum Rlane

intensity for resonance breather generation is smaller thal Problems of the rotation of the plane of the polarization

the minimum intensity for nonresonance or “blended and conditions for the generation of elliptically polarized

breather generation because in the BZ Il alw&yg>m; . : : . . .
In the general case, in a uniaxial nonlinear medium Ordi_states for solitary optical waves are considered in detail in
' ef. [39].

nary and extraordinary optical waves can propagate simultd? , _ ) )

neously, which are connected to each other by means of non- | "€ quantityq; () contains terms coming both from the
resonance susceptibililties when componegts#0 and ~"€SONANceR; o and nonresonancen nonlinear terms. De-
pxijk*0, wherei,j,k=x,y,z. Independent of the kind of p_endmg on the vaIL_Jes of the_se quantities, different mecha-
initial (or boundary polarizations of the waves, during the NisSms of the formation of optical breathers can take place.
process of propagation elliptical polarized waves will arise, (& M=R, o andmR, (<0. This is the condition of the
because alk, y, andz components of the vectd will be realization of the blended MFB when both the nonresonance
excited. This statement is valid when the direction of the@nd resonance nonlinearities are simultaneously effective and

propagation of the waves coincides or is very close to thécCt together with the dispersion in the process of the forma-
direction of syncronizm and phase-matching conditions ardion of resonance optical breathers of the small area.
fulfilled. Under this condition the effect of second-harmonic  (b) M <R, . The pulse interaction with optical impurities
generation is realized and an intensive exchange of energigg@s nonlinear character and nonresonance interactions are ig-
between different modes takes place. nored. This situation corresponds to the self-induced trans-
But the situation will be different when the soliton or Parency and resonance optical breathers of the small area
breather regime of the propagation of the waves is satisfied2.3l.
In the general case, their group and phase velocities are dif- (€) M>R, . The pulse interaction with optical impurities
ferent and the phase-matching condition is not fulfilled. Un_has linear character and does not contribute to the formation
der this condition the interaction between different mode<f the nonresonance breathers except for a renormalization of
has the character of the mechanism of cooperative self-actidheir parameter$15]. In particular, in Eqs.(20) and (28)
and a reactive interaction between waves takes pla2e  which determine the connection betwe@randQ (or (2 and

During propagation the breatheisolitong do not exchange Q) we should substitut&® ,=0 (see[15]).
energies between different modes and their amplitudes are From expressiong9), (’10), and (15) it is clear that the
not changed. The polarization of the breather depends on thﬁlantitiesm and R, o depend not only differently on the
initial (or boundary polarization of the wave. If the polar- djrection of wave propagation, but also essentially on the
ization was elliptical at the begining, then breathers appeagymmetry of the medium. Hence the mechanisms of the for-
for Ordinary as well as for eXtraOfdinary waves. These wavegation of the Optica| breathers of extraordinary waves,
will be propagating without energy exchange. which are determined by means of the quantitiesand

In the present work a special case is considered, whep, ; will depend both on the direction of propagation of the
initially (or at the boundafythe waves are linearly polarized pyises and on the symmetry of the medium. Thus we expect
and lying in theyz plane. Consequently, during propagation that several wave propagation directions exist in uniaxial
of the waves only extraordinary waves, for whigthas only  crystals at which different mechanisiig), (b), and(c)] of
two nonzero components, andE,, will exist. An ordinary  the formation of the optical breathers are effectively contrib-
wave, for which the quantityfe, is not zero, will not be uting. In order to find these directions we have to analyze the
excited independently of the components of the nonlineasymmetry of the media.
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Gl G2 G3

FIG. 3. Three different SBZ realizations for the G1, G2, and G3
of crystals with quadratic nonlinearity. For crystals with cubic non-
linearity the SBZ coincides with the SBZ of G2 of the quadratic
nonlinearity crystals. The optical breathers of the small area are
formed in the zones |, II, and Il{BZ) by means of three different
(@, (b), and(c) mechanisms as shown in the figures. These zones

FIG. 2. T_hree different chosen directioBs, B,, andB, s_hown are hatched. The width of the zones depends on the nonlinearity
as dashed lines. The BZ correspond to the hatched regions. In ”bearameters

FZ the MFB is suppressed.

First we considefnoncentrosymmetrjcmedia with qua- The third important direction is, where the mechanism
dratic nonlinearity in the angle intervgd,=/2]. For a=0, the (@) of the formation of the resonance optical breathers of the
quantityE, vanishes and hence for this direction expressionsmall area is realized. It is obtained from the equatién
(9) and (10) are not determineflve can consider the wave =R, with the conditionM R, (<0.
equation(1) for the anothey component of the vectdE and Thus in crystals with quadr.atic _nonlinearity in the general
instead of Eqs(9) and (10) use analogous expressions for Cas€ we have th'ree chosen directiBas B, andB; (except
E,]. For this directiony(0)=Ry,(0)=0. Therefore along qrystals with CC’s 32, 42242m, and 622. -Whlle the _dlrec-
the z axis and fora close to zercE, is very small and for ~ tions By andB; make angles. and «, with the opticalO

these directions no breathers exfig. 2). With increasingr ~ aXis, theBg direction coincides with thg axis. In Fig. 2
the quantities,, (), andRy;(«) start also to increase these directions are shown by dashed lines. Breather zones

" (BZ’s) correspond to the hatched regions around these direc-

tions where one of the MFB will be most effective. There are
nal, tetragonal, and hexagonal crystal systems except for tr1‘%rbidden zonegFZ’s) located between the BZ’s where the

crystal classe$CC's) 32, 422,42m, and 622 for which all MFB are not or only weakly effective.
considered components of the quanw), equal zerd 13]. In the general case the number of chosen directions de-
When the quantityr, o is very small, then the influence of pends on the symmetry of the crystals. Analyzing expression
the impurities on the wave processes is very small too ango), we can separate all quadratic uniaxial crystals into the
hence they do not contribute to the process of the formatiohree groups: The first grouiG1) contains the crystals with
of breathers. In this region we thus expect only nonresonancge CC's 4 6, and 6n2 of the uniaxial tetragonal and hex-
breathers to be excited, independent of the symmetry of thggona| crystal systems; the second gr¢G@) contains the
medium (except CC’s 32, 42242m, and 622. The corre-  crystals with the CC’s 3, 8, 4, 4mm, 6, and 6nm of the
sponding direction is determined using the condition that therigonal, tetragonal, and hexagonal crystal systems; and the
dispersion length equal the nonlinear lengti3,15. In this  third group(G3) contains the crystals with the CC's 32, 422,
direction the(c) MFB is strongly enhanced. 42m, and 622 of the trigonal, tetragonal, and hexagonal crys-
For a=/2 the quantity,(7/2)=1, and hence the quan- tal systems.
tity R, o(7/2) takes its maximum possible value. Under this  The situation considered in Fig. 2 corresponds to the G1
condition the phenomenon of the self-induced transparenctaking into account that for this group of crystals
[MFB (b)] is the most effective one and resonance opticaly*) («—/2)=0. To investigate the dependence of mecha-
breathers of the small area are formed. When the quaatity nisms of the formation of breathers on the direction of the
is deflected fromw/2 but still is very close tar/2, the quan-  \yave propagation it will be more convenient if we consider
tity R, is also very close to its maximum value. Conse-the single BZ(SB2) in Fig 3.
quently the nonlinear interaction of the optical pulse with  ynjike the G1, the G2 of the crystals realizes another SBZ
impuriti(_as is still dominant. From Eq9) we can see that. (see Fig 3, GP In particular, for the G2 the quantity
d((azp))endlng on the symmetry of the crystals ;he_ quantity, (), /2)#0 and consequently in zone il the direction
Xi(e—ml2) takes different values. For the CC's @ and g1 5 the anglex. appear which are defined through the
6{721)2 of the_ tetragonal and hex_agonal crystal SysteM$quationM, =R, , (but for a different Value(ﬁ)r~xzzzthan
xi 1 (a—ml2)=0 and only MFB(b) will be effective, butfor i, 7one 1. In zones Il and Il resonance optical breathers
the CC’s 3, 3n, 4, 4mm, 6, and 6nmof the trigonal, tetrag-  will be formed by means of mechanisfa but breather pa-
OnzaL and hexagonal crystal systems the quantityameters in zones Il and Ill will be different.
xl(‘l),(a—m-r/Z)#O and depending on the ratim, /R, ; either For the G3 of the crystals the situation is quite different as
(b) or (a) MFB will be realized. compared to G1 and G@ee Fig. 3. In this case all compo-

In this region the quantityfﬁ’, # 0 for all classes of the trigo-
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nents of the quantity(,(zl), equal zero and consequently, _ | _
=0 everywhere and we have only one special direcBgn Mechanismg(a), (b), and (¢)] of the formation of optical

which points along the axis. The quantityR, o(7/2) has a breathers can be realized for different directions of the ex-
maximum value in this direction, meaning that in this singletraordinary wave propagation depending on the symmetry of
BZ the (b) MFB (i.e., self-induced transparenayill be re- the medium. The uniaxial crystals with quadratic nonlinear-

alized. Note that we have ignored the influence of the Wealgzl can be divided into three different groups with each of

cubic nonlinearity in order to study the SBZ in crystals with €M having its own SBZ. The SBZ within one of these
quadratic nonlinearity. groups does not depend on the crystal syst@ysgonies or

From Eq.(10) it follows that all uniaxial crystals with PCINt groups and is determined by means of the CC. Unlike

cubic nonlinearity(Kerr media have the same chosen direc- quadratic media for u_niaxial crystals with cubic nonlinearity
tions and SBZ as those of the crystals of G2 with quadratié’® SBZ depends neither on the crystal systems nor on the

nonlinearity and hence Fig. 2. G2 applies for crystals withCC and one single SBZ is r.eal|zed Wh_'Ch c0|.nC|deTs with the

cubic nonlinearity as well. SBZ of the QZ of crystals with 'quadratlc nonlinearity. Hence
Note that mechanismé) and (c) do not act indepen- the mechanisms of the formation of breathers depend on the
jrection of pulse propagation and this dependence is quali-

Consequently in the anisotropic uniaxial media three

dently but also influence each other. They can support eacHl

other under the condition ¢&) MFB but in other cases when
m— R, o=0—for example, in amplifier media at
T9<0—mechanisn{a) is not realized and consequently the
SBZ will be changed significantly: BZ Il in Fig. 3, G1, and Il
and Il in Fig. 3, G2, will be transformed to the FZ where no
breathers exist.

tatively different for media with quadratic and cubic suscep-
tibilities.
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