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Plane waves with negative phase velocity in Faraday chiral mediums
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The propagation of plane waves in a Faraday chiral medium is investigated. Conditions for the phase
velocity to be directed opposite to the direction of power flow are derived for propagation in an arbitrary
direction; simplified conditions which apply to propagation parallel to the distinguished axis are also estab-
lished. These negative phase-velocity conditions are explored numerically using a representative Faraday chiral
medium, arising from the homogenization of an isotropic chiral medium and a magnetically biased ferrite. It is
demonstrated that the phase velocity may be directed opposite to power flow, provided that the gyrotropic
parameter of the ferrite component medium is sufficiently large compared with the corresponding nongyrotro-
pic permeability parameters.
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[. INTRODUCTION tropic mediums, as has been indicated by considerations of
uniaxial dielectric-magnetic mediun40,13,14. The focus
Homogeneous mediums which support the propagation abf the present paper is the propagation of negative phase-
waves with phase velocity directed opposite to the directiorvelocity plane waves in Faraday chiral mediutiRCMs)
of power flow have attracted much attention latgly-3]. [15,16. These mediums combine natural optical activity—as
The archetypal example of such a medium is the isotropiexhibited by isotropic chiral mediumsl7]—with Faraday
dielectric-magnetic medium with simultaneously negativerotation—as exhibited by gyrotropic mediunth$8—-20. A
real permittivity and negative real permeability scalars, as=CM may be theoretically conceptualized as a homogenized
first described Veselago in the late 196@4. A range of composite mediumHCM) arising from the blending to-
exotic and potentially useful electromagnetic phenomenongyether of an isotropic chiral medium with either a magneti-
such as negative refraction, inverse Doppler shift, and ineally biased ferrit¢21] or a magnetically biased plasrf22].
verse @renkov radiation, were predicted for this type of The HCM component mediums are envisioned as random
medium[3,4]. Recent experimental studies involving the mi- particulate distributions. The homogenization process is jus-
crowave illumination of certain composite metamaterialstified, provided that the particulate length scales in the mix-
[5,6]—which followed on from earlier works of Pendeg al.  ture of components are small compared with electromagnetic
[7,8]—are supportive of Veselago’'s predictions and havewavelengths. A vast literature on the estimation of constitu-
prompted an intensification of interest in this area. In particutive parameters of HCMs exists; see Rdf3,24, for ex-
lar, a general condition—applicable to dissipative isotropicample. The constitutive relations of FCMs have been rigor-
dielectric-magnetic mediums—has been derived for theously established for some tinj&6], although inappropriate
phase velocity to be directed opposite to power fl@ly and  use still occurg25].
this condition shows that the real parts of both the permittiv- In the following sections, wave numbers and correspond-
ity and the permeability scalars do not have to be negativeing electric field phasors are delineated from eigenvalue/
A consensus has yet to be reached on terminology. For theector analysis for plane-wave propagation in an arbitrary
present purposes, a medium supporting wave propagatiatdirection. Simplified expressions for these quantities are de-
with phase velocity directed opposite to power flow is mostrived for propagation parallel to the biasingquas)-
aptly referred to as aegative phase-velocityedium. How-  magnetostatic field [19], p. 71. A general condition for the
ever, the reader is alerted that alternative terms, such as lefthase velocity to be directed opposite to power flow is es-
handed material[3], backward medium[10], double- tablished. The theoretical analysis is illustrated by means of a
negative mediun 1], and negative-index mediufiil], are  representative numerical example: the constitutive param-
also in circulation. A discussion of this issue is availableeters of FCMs arising from a specific homogenization sce-
elsewherd 12]. nario are estimated and then used to explore the wave propa-
The scope for the phase velocity to be directed opposite tgation characteristics.
power flow may be greatly extended by considering noniso- As regards notation, vectors are underlined whereas
dyadics are double underlined. All electromagnetic field
phasors and constitutive parameters depend implicitly on
*FAX: +44 131 650 6553; email address: T.Mackay@ed.ac.uk the circular frequency of the electromagnetic field. Unit
TFAX: +1 814 863 7967; email address: axl4@psu.edu vectors are denoted by the superscriptsymbol, while
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|=XX+9Yy+2Z is the identity dyadic. The complex conju- tor P(r)=3RgE(r)xH*(r)]. The combination of the
gate of a quantityg is written asq*; the real part ofg is  constitutive relationg2) with the source-free Maxwell curl
written as Réq}. The free-spacéi.e., vacuum wave num-  postulates

ber is denoted bk,=w+€gug, Whereey and ug are the

permittivity and permeability of free space, respectively, and VXE(r)=iwB(r),
=\ uol€y represents the intrinsic impedance of free
apace, " 0P i VxH(r)=ioD() ®
yields
Il. ANALYSIS
A. Preliminaries P(r)=3exp(— 2kok0-1)
The propagation of plane waves with field phasors XRE[EoX[ (™ Y)* - (Veouok* UXEE + & -EX) 1}
E(r) = Eoexplikokd 1), ©
for plane wavegl).
H(r)=Hexpikokd-r) (1) In the remainder of this section, the quantyl- P(r) is

. _ _ o . derived for plane-wave propagation in an arbitrary direction;
in a FCM is considered. Such a medium is characterized bithout loss of generality{l is taken to lie in thexz plane

the frequency-domain constitutive relatioiis] (i.e., G=%sin#+2cosf). Further manipulations reveal the

D(r)=e-E(r)+£ H(r) simple formkg0-P(r) adopts for propagation along the
R FCM distinguished axigi.e., 0=2).
B(r)=—¢-E(r)+u-H(r), 2

B. Propagation in the xz plane

with constitutive dyadics o N . . .
y For 0= Xsin 6+2cos#, the dispersion relatiofb) may be

e=¢€gl el —iegzX]+(€e,— €)22], represented by the quartic polynomial
£=ieomdl £~ £2X 1+ (£,- £)22], aik® + agk™+ agk™+ ark +a0=0, (10
L. s with coefficients
= pol L —TpgZX [+ (=~ p)22]. €

=(esifo+ in? 6+
Thus, the distinguished axis of the FCM is chosen to be the 8y= (eI 6+ £,C080) (4 SIrP 6+ 41,005'6)

z axis. For FCMs which arise as HCMs, the gyrotropic pa- —(£sif0+ £,080)2, (11
rametersey, &, and ug, in Eq. (3) develop due to the

gyrotropic properties of the ferrite or plasma component me- a;=2 cose{sinze[,ug(efz— €,6) + eg(mé,— psé)

diums. Parenthetically, it is remarked that more general

FCMs can develop through the homogenization of compo- +Eg( et ep,— 26£) ]+ 2 COS 0ég( €y, E7)),
nent mediums based on nonspherical particulate geometries (12)
[22,26].

In general, the relative wave numbein Eq. (1) is com- a,=SIPOf (€5~ €2) + (E2+ £ (e, + eny)

plex valued, i.e.,

— 24 £ &5~ E) + pge gl — 2€g £ mgé— pég)

k=kg+ik; (kg k €R). (4) + uobég]— el €(uP— pd) + 2&,(uéE— pgég) 1}
It may be calculated from the plane-wave dispersion relation +2c020( e, — 52)(353— £2— €gig—€m), (13
def L (ikok0)]=0, (5) a,=4 cOSO( €1, — 2 E(equ+ epuy)
which arises from the vector Helmholtz equation +Eg(E5—E— ep—egpg) ], (14
L(V)-E()=0, © 80= (€= ED[ (2 €5) (WP~ p) + (£~ €92
wherein —2(§g+ E)(ept egug) + A& (epgt pueg) .
LOV)=(VxI+iwf) p (VX1 +iof) -0 (7) (19

Of particular interest is the orientation of the phase velocHence, four relative wave numbéks «;, «;; , i , andx;,

ity, as specified by the direction &k, relative to the direc- may be extracted—either algebraically or numericpaiyl—
tion of power flow given by the time-averaged Poynting vec-as the roots of Eq.10).
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Upon substituting=Xsin #+2zcosé¢ into Eq. (9) and
combining with Eq.(3), the component o (r) aligned with
0 emerges straightforwardly as

1>

1 5
P(r)= Z—%eXp(—Zkok@-[)

1 | |
X Re{ — (k*sin 0|Eqy|*—i & EqyEg,)sin 6

Mz

+— 5 K (¥ (|Eoxl® +[Eqyl?)
=) [1* (|Eoxl*+ | Eoyl

+ipg (EoxEdy— EoyEf,) ] cOS 0+ u* |Eqy|*sin? 6
—[u* (EOZE3X+ EOXESZ) +i 1“3 (EOZESy
—EqyEf,)15in60 cost)+ (u* & — s €[ (|Eqxl?

+ |Eoyl ) cos0— B Ef,sin 01— (u* & — s )
X[ (EoxEgy — EoxEoy)cOS6—Eo,Eq sind]] , (16)

Wherein EOX ,Eoy !EOZ) = EO .
Let the quantity

w=27n0exp(2kok 0-1)|Eqy| %kgl-P(r)  (17)
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L=iko{[L]1 XX+ [L]oyY+[L]s2Z+ [L]1AX§—IX)

+[L11a(X2+2%) +[L 123(Y2—29)}, (21
with components
2ugél — n(£2+17)
[Lly=e+ ——— : (22)
M _:u’g
K2sirP0  2uq el — u(£2+T?)
[Llp=e- ", (23
z M Mg
£ uk3sirte
(L= e — 5 (24)
Mz Mo~ g
. pg(E2+T2) =20
[L_] 12= | Eg+ 2 2 ’ (25)
M _Mg
T pgé-
[I=_]13=M2—M2§ksin 0, (26)
M _Mg
r— -
[Llps=i “gz—”f—é Ksin g, 27)
Iy Mz

be introduced such that the fulfillment of the negative phase-

velocity condition

ke

ft)

-P(r)<0 (18

is signaled byw<0.

Substitution of Eq(16) in Eq. (17) yields the expression

~ 1 .
w=krRe, — (k*sing—i & B*)sing+ ————
e{u? ’ (u*)?=(ug)?

X[K* (p* (|al?+ 1) +ius (a—a*)]cos o+ u*|BI?
XSiPO—[u* (a* B+aB*)+ius (B~ B*)]sin6 coss)

+(u* & — g €)1 al?+1)coso— a* B sinb]

—i(w* &~ pgE5)(a—a¥) coso—Bsind]]f. (19
The ratios of electric field components
o= EOX/EOy y
B= EOz/EOy (20

in Eq. (19) are derived as follows. As a function &f the
dyadic operatot. of Eq. (7) has the form

wherel’ = §g+120030. It follows from the vector Helmholtz
equation(6) that

o= [L]id Llsst[L]ad Ll2g
[LlidLliz—[L]ulL]ss’

_ [L]idL]os—[L]dL]2
[LlidL]ost[L]ad L]ss’

(28)

C. Propagation along thez axis

The results of the preceding analysis simplify consider-

ably for plane-wave propagation along thexis(i.e., 6=0).
The quartic dispersion relatiofi10) yields the four relative
wave numbers

Ki=\e+egptug— =&,
ki = e~ egp—ng+ é— &g,

and Eq.(19) reduces to

(29
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W;RR%ﬂaF+1XW#*—M§€*4f§@+ﬂa—a*ﬁwﬂﬁ—ﬂ*?+ﬂéﬁ)
— PR

. (30

(W*)2=(pg)?

Since the dyadic operator componefits];3 and[L],; are
null valued for#=0, the electric field ratios are given as

a=—[L]2/[L]11,
B=0. 31)

Note that a further consequence [df];3=[L],3=0 is that
the time-averaged Poynting vector is parallel to zhexis.

By substituting Eq(29) into Egs.(22) and(25), the ratio
a emerges as

Hence, negative phase-velocity propagation alongztaris
occurs, providedv<<0, where

w=w;=2 Re{\e+eg\ut pg— =&}

for ’Rz Kij, Kijj
~ (32
for k= Kiii »Kiyp -

AR
XR — for k=«k;, (33
VHT T+ g
W=W;; =2 R Ve+ egu+ pgt &+ Egh
Ve* + e -
XR — for k=«k;j;, (34
Vu© g
W:Wiii:2quf_egVM_ﬂg+§_§g}
€ — €y ~
XR ﬁ for k= «;j; , (35
W:Wivzzque—egVM_Mg_§+§g}
AR
xRe{*—g* for k=«;, . (36)
VI — Mg

III. NUMERICAL RESULTS

In order to further examine the negative phase-velocity
conditions derived in Secs. Il B and Il C, let us consider a wb=1,
FCM produced by mixing(@ an isotropic chiral medium

described by the constitutive relatiofs7]
D=€oe’E+iveouoé®t,

B=—iVeouoé*E+ pou®H, (37)

D=eoe’E,

B=pol uPl—inl2X 1+ (u2—u®22]-H. (39

Both component mediums are envisioned as random distri-
butions of electrically small, spherical particles. The result-
ing HCM is a FCM characterized by the constitutive dyadics

EHCM:GO[EHCML_iegCM?XL+(EZHCM_eHCM)'_Z\'_z],

EHOM =i eopuol €11 iy Mo |+ (&M= MM 2z,

&HCM:MO[MHCML_iMSCMfzxL+(MZHCM_MHCM)??]_
(39)

Incidentally, a FCM with constitutive dyadics of the form
(399 may also be developed via the homogenization of an
isotropic chiral medium and a magnetically biased plasma
[22].

The constitutive dyadics ETY, andy are es-
timated using the Bruggeman homogenization formalism for
a representative example. Comprehensive details of the
Bruggeman formalismi28,24] and its implementation in the
context of FCMs[21,22,29 are available elsewhere. Ini-
tially, we restrict our attention to nondissipative FCMs; the
influence of dissipation is considered later in this section.

HCM fHCM HCM

A. Nondissipative FCMs

The parameter values selected for nondissipative compo-
nent mediums are as follows:

€=3.2, =24, u?=2; =22,

pP=35, ud=1, uge[04.

The permeability parameters for component mediumay
be viewed in terms of the semiclassical ferrite model as

WoWm

)
wg_ w2

/J,b=1+

(40

whereinwg is the Larmor precessional frequency of spinning
electrons andw,, is the saturated magnetization frequency
[18,19. Thus, the parameter valugd=3.5 andﬂge[0,4]
correspond to the relative frequency rangevg(w)
€[0.625¢).

Let f, denote the volume fraction of the isotropic chiral

and(b) a magnetically biased ferrite described by the consticomponent mediuna. In Fig. 1, the estimated constitutive

tutive relations([19], Chap. §

parameters of the HCM are plotted as functionsf gffor

026602-4
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FIC. 1. Bruggeman estimates gf'®"’, ¢ b. and,gb = FIG. 2. Bruggeman estimates gf'®, £1CM and u"M as
functions off, when e2=3.2, £2=2.4, u?=2, =22, u"=3.5, G. e bugg SUI er—, £, ©
ud=1, and,ug:4. functions ofuy . The constitutive parameters of the component me-

diums are the same as in Fig. 1, but wiﬁﬁe[0,4] and f,

pg="4. The uniaxial and gyrotropic characteristics of a FCM =0-35.
are clearly reflected by the constituents of the permeability . i cM
dyadic 2"CM and the magnetoelectric dyaditM. In con-  °f Hg :(():["\AfaZO.?;S. The HCM gyrotropic paramete§§'
trast, the HCM is close to being isotropic with respect to itsaﬂg,\//fg o€ obseLvCe'\? to increase steadilygsincreases;
dielectric properties. Significantly, eight of the nine scalars€g ~ + ég . andug " all vanish in the limitu,— 0. Also,
appearing in Eq(39) are positive, whileeH!°M is negative  asuq increases, the degree of uniaxialityith respect to the
only for f,<0.32; however,|egCM|<|eHg'\"| and |ef/°M|  zaxig increases fog"“M but decreases fou "V
<| M| for all values off,<[0,1]. The relative wave number&=«;_;, for propagation

The permeabi”ty parametemHCM and /'LSCM are equa| anng thez axis, as SDECiﬁEd in E(ng), are dlsplayed in Flg
at f,~0.25, it being clear from the right-hand side of Eq. 3 as functions of ,, for ug=2,3, and 4. The relative wave
(19) that this equality has an important bearing on the stabilnumbersk;>0 andx;; <0 for all f,[0,1] for ,ug=2,3, and
ity of w. Further calculations withug=2 andug=3 have 4. Similarly, for ug=2 and 3, the relative numbers;; >0
confirmed thatu"M# ud“M for all volume fractionsf, — andx;,<0.
e[0,1]. This matter is pursued in Fig. 2 where the estimated However, the equality.™™= M, which occurs at
constitutive parameters of the HCM are graphed as function,~0.25 fOI’,ug:4, results ink;; andk;, acquiring nonzero
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FIG. 3. Calculated values of the relative wave numbeyrs;, as functlons off when =0 and ,ug 2,3, and 4. The constltutlve

parameters of the component mediums afes3.2, £2=2.4, u®=2, °
=2,3, and 4 are represented by the solid lines, dashed lines, and broken dashed lines, respectively. Heavy lines indicate those relative wave

=2.2, u®=3.5, andu’=1. ;_;, values corresponding tp

numbers which have nonzero imaginary parts; the real parts of such complex-valued relative wave numbers are plotted.

imaginary parts a$, falls below 0.25 for,ug=4. Only the

been conceptualized as a homogenized composite medium.

real parts of these complex-valued relative wave numbers are In Fig. 5, the relative wave numbeks and;;; for 6=m/2

plotted in Fig. 3.

Observe that;, «j;, andk;,>0 in Fig. 3, whereas;;
<0 in the volume fraction range 0.25,<<0.42 with ,ug
=4. Furthermorex;, Re{KI,,} and Réx;,}>0 while «;
<0 for f,<0.25 Wlth,ug 4. In the limit f,— 0, the relative
wave numbersk;_,— = e\ uP=ud (ie., the relative
wave numbers of a ferrite biased along wrexis[19]). Also,
as f,—1, the relative wave numbers _;,— * \e?u?=* &

(i e propagation along theaxis) are plotted against, for
=2,3 and 4. The graphs of; and K,U need not be pre-
sented smcek, —kii and k;;; =—k;,.> For all f,e[0,1]
with ,ug 2 and 3, the relative wave number<$>0 and
;i <0. Similarly, x<;>0 for,u =4. However, Whemg ,
it is found thatk;; <O for f >0 42 butk;; possesses a non-
zero imaginary part and Re“i}=0 for f,<0.42. In the
limt f,—0, the relative wave numbersk;_;,—

(i.e., the relative wave numbers of an isotropic chiral me- +\/eb/,ub\/(,ub)2 (,u,g)2 and * \/eﬁ,uz5 (i.e., the relative

d|um)

wave numbers of a ferrite biased along thaxis[19]). Also,

The values ofv corresponding to the relative wave num- as f,— 1, the relative wave numberns _;,— = Jeu®+ &2

bersk;_;, of Fig 3, namelyw; _;, , are plotted againdt, in
Fig. 4 for,u =2,3, and 4. The quant|t|ew, 5i=0 for all

volume fracnonsf 2€[0,1] with ,ug 2,3, and 4. Thus, for
the relative wave numbers;_;; , power flows in the same

(i.e., the relative wave numbers of an isotropic chiral me-
dium).

Figure 6 shows the plots of; ;; corresponding to the
relative wave numbers; ;; of Fig. 5. The graphs ofwv

direction as the phase velocity. This is the case regardless &fw;; ;, corresponding to the relative wave numbeys, are

whether the phase velocity is directed along the positive not displayed since the equalitias=w;; andw;;

=w;, hold

axis (as in modess; andk;;;) or directed along the negative for =n/2—as may be inferred from Eq$19)—(28). The

z axis (as in modex;;). Bothw;; andw;, are null valued in

quantltlesw, iii=0 at all volume fractionsf,e[0,1] with

those regions where the corresponding relative wave nuny =23, and 4. As remarked earlier fa: _;;; propagation
bers «;; and «;,, respectively, have nonzero imaginary along thez axis, here we have that power flows in the same

parts. In additionw,,lﬂoo andw;,— — in the vicinity of
f,=0.25 for,u =4,
S|gn|f|cantly, w;, <0 for ,u =4 at volume fractionsf,

direction as the phase velocity, regardless of whether the

€ (0.25,0.42) in Fig. 4. This means that the negative phase-'When ¢=/2, the dispersion relatiofi0) reduces to a quadratic
velocity condition then holds in the chosen FCM which haspolynomial ink?.
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0=0°

FIG. 4. Calculated values of;_;, as functions off, when =0 and ,ug—2 3, and 4. The constitutive parameters of the compo-
nent mediums are the same as in Figwg.;, values correspondlng tpg 2,3, and 4 are represented by the solid lines, dashed lines,
and broken dashed lines, respectively. Heavy lines indicate tioselues that devolve from relative wave numbé&rswvith nonzero

imaginary parts.

(f cosecssasoams,

-0.2
-0.4
-0.6

iiz -0.8
-1

-1.2
-1.4

FIG. 5. Same as Fig. 3, but for relative wave numbeys;
when §=m/2.
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-0.2
-0.4
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0 0
FIG. 7. Real parts of relative wave numbets as functions of FIG. 8. Calculated values af;, as functions ofg (in degrees

¢ (in degreesfor the dissipation parameté0, 0.1, and 0.2 when o the dissipation parametéx=0, 0.1, and 0.2 whefi,=0.35. The
fa=0.35. The constitutive parameters of the Comp‘_)nembmed'uméonstitutive parameters of the component mediums are as in Fig. 7.
are e’=3.2, fab:2-4v_l“a: 2, =2.2+i5, :“b:3-_5+'5' #z=1 W, values corresponding t6=0, 0.1, and 0.2 are represented by
+i0.56, and ug=4+1i246. «;, values corresponding t6=0, 0.1,  the solid lines, dashed lines, and broken dashed lines, respectively.
and 0.2 are represented by the solid lines, dashed lines, and brok§fe heavy line on the graph fai=0 indicates thosev;, values

dashed lines, respectively. The heavy line on the graphéfed  which devolve from relative wave numbets, with nonzero imagi-
indicates those relative wave numbets, which have nonzero nary parts.

imaginary parts.
IV. DISCUSSION AND CONCLUSION

phase velocity is directed along the positivaxis (modex;)

or along the negativa axis (mode «;;;). Furthermore, it is

found thatw;; =0 in the region where the corresponding

relative wave numbek;; is purely imaginary(i.e., for f,

In isotropic dielectric-magnetic mediums, plane waves
can propagate with phase velocity directed opposite to the
direction of power flow under certain, rather restrictive, con-
b ditions [9]. However, the constitutive parameter space asso-
<0.42 with pug=4). ciated with anisotropic and bianisotropic mediums provides a

wealth of opportunities for observing and exploiting negative
B. Dissipative FCMs phase-velocity behavior. General conditions are established
o o . here for the phase velocity to be directed opposite to power

The scope of these numerical investigations is now broadgqy for a particular class of bianisotropic mediums, namely,
ened by considering) the effects of dissipation or loss and Faraday chiral mediums. The theory has been explored by
(if) propagation in an arbitrary direction. Let a small amount,,aans of a representative example of FCMs, arising from the
of loss be incorporated into component medibrby select-  pomogenization of an isotropic chiral medium and a mag-
ing the constitutive parameters of the component mediums &setically biased ferrite. For our representative example, the

a_ a_ a_no. _b_ - b_ - negative phase-velocity conditions have been found to hold

€=382, =24, p7=2; €=2.2415, p7=35+19, for propagation in arbitrary directions—for both nondissipa-
tive and dissipative FCMs—provided that the gyrotropic pa-
,u?= 1+i0.58, Mg:4+ i26, rameter of th_e ferrite componen_t medium is suff_iciently Iarg_e
compared with the corresponding nongyrotropic permeabil-
o ity parameters.
where the dissipation paramet®«[0,0.2. We focus our at-  ~ previous studiefl—13 have emphasized the importance
tention on the region of negative phase-velocity propagationy the signs of constitutivéscalay parameters in establishing

along thez axis with relative wave numbey;, , as illustrated  the conditions for negative phase-velocity propagation in ho-
by w;, <0 at 0.25<f,<0.42 in Fig. 4. mogeneous mediuntdn the absence of dissipation, negative

Real parts of the relative wave numbeg,, calculated at  phase-velocity propagation has been predicted)iisotropic
the volume fractionf,=0.35 with 6=0, 0.1, and 0.2, are djelectric-magnetic mediums, provided that both the permit-
graphed as functions afin Flg 7. The relative wave num- t|V|ty and permeabi”ty scalars are negatigﬁ], and (i)
ber «;, for the nondissipative FCMi.e., 6=0) is real valued  uniaxial dielectric-magnetic mediums when only one of the
for <52° but has a nonzero imaginary part #r52°. The  four constitutive scalars is negatiy#0].
relative wave numbers;, for 6=0.1 and 0.2 have nonzero  Also, the conditions for negative phase-velocity propaga-
imaginary parts for all values of. Note that the real part of tion may be fulfiled by dissipative isotropic dielectric-
K, falls to zero atd=/2 in the absence of dissipatidne.,  magnetic mediums when only one of the two constitutive
6=0). scalars has a negative real pgdt. The present study dem-

Plots of the quantityv=w;,, corresponding to the rela-
tive wave numbel;, of Fig. 7, are provided in Fig. 8. The

negative phase-velocity conditiom, <0 is satisfied(i) for %parenthetically, negative refraction is also displayed by certain
6<52° whené=0, (i) for /<76° whend=0.1, and(iii) for ~ purely dielectric mediums, but they must be nonhomogeneous
6<38° whens=0.2. [30,31].
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onstrates thatthe condition for negative phase-velocity directions, the time-averaged Poynting vector has nonzero
propagation can be satisfied by nondissipative FCMs withcomponents perpendicular to the direction of propagation.
constitutive scalars that are all positiv€urthermore, these Further studies are required to explore the consequences of
conditions continue to be satisfied after the introduction of ahe negative phase-velocity conditi&pli- P(r)<0 for such
small amount of dissipation. general propagation directions.

For the particular case of propagation parallel to the fer- To conclude, more general bianisotropic mediums, par-
rite biasing field, the components of the time-averaged Poyniicularly those developed as HCMs based on nonspherical
ting vector are null valued in directions perpendicular to theparticulate components, offer exciting prospects for future
propagation direction. In contrast, for general propagatiorstudies of negative phase-velocity propagation.
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