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Low-dimensional model of a supersonic rectangular jet
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The proper orthogonal decomposition method is applied to the analysis of particle image velocimetry data
obtained for a supersonic rectangular jet operated at underexpanded conditions. Phase-locked velocity field
data were used to calculate the eigenfunctions and the eigenvalues. It was found that a large fraction of the total
energy is contained within the first two modes. The essential features of the jet are thus captured with only two
functions. A low-dimensional model for the dynamical behavior is then constructed using Galerkin projection
of the isentropic compressible Navier-Stokes equations. The reduced model compares reasonably well with the
experimental findings.
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[. INTRODUCTION However, with direct numerical simulation, it is possible to
resolve spatially a great number of scales within the region
This paper is motivated by our attempt to provide aof interest. But the flows analyzed have been at low Rey-
method of velocity field data analysis aimed at obtainingnolds number$4,7,19. On the other hand, using whole field
low-dimensional approximate description of high speed jetstechniques such as laser induced fluorescence, interferometry
The velocity field data is obtained experimentally using thetomography, and PIV, it is possible to obtain data with high
partic'e image Ve|ocimetrﬂ3|V) technique_ Recent deve'op_ Spatial resolution at h|gh Reynolds nu-mb.ers. In these cases,
ments in the statistical technique of proper orthogonal dethe POD method has shown energy distributed among larger
composition(POD) seems to offer some hope to capture thenumber of modefl4-16, since many scales are captured in
spatial as well as temporal behavior of energetic large-scal@n instantaneous flow field. Most of the previous investiga-
structures in a variety of turbulent shear flows. Data analysi§ons have developed low-dimensional order model using
using POD iS often Conducted to extract “mode Shapes” OrGalerkin prOjeCtion and the flows studied have been in the
basis functions from experimental data for subsequent use iRcompressible regimg3,4,10,18,2Q The only exception is
Galerkin projections that yield low-dimensional modglg.  the work of Rowleyet al. [19], which dealt with compress-
This enables one to build efficient reduced order modelddle flows at subsonic Mach numbers.
based on the first few dynamically important POD modes, [n the present study, POD method is applied to PIV data
thus serving as potential substitute for computationally intenSet that was obtained from the phase-locked measurements
sive simulations. of synoptic velocity field of an underexpanded rectangular
The POD method was originally suggested by Lunjely  jet. The screeching jet is dominated by coherent large-scale
to extract organized large-scale structures from turbulengtructures generated by the inherent global instability set up
flows. The method provides a set of optimized orthonormaby @ feedback mechanisi1-23. The feedback cycle starts
basis functions for an ensemble of data. The most importarith a disturbance in the shear layer that is convected down-
property of POD is its optimality in the sense that it providesStream and come in contact with shock cell boundary. This
the most efficient way of capturing the dominant features ofnteraction, particularly at the end of the shock cell, produces
an infinite-dimensional process with only few functions. ~ intense sound wave. This sound wave propagates upstream
Since the introduction of POD as a tool to extract Coherjn the ambient medium, interacts with the inCipient shear
ent structure in turbulent flows, many studies on the subjed@yer at the nozzle exit and produces a new downstream trav-
have been published. The method has proved to be a powetling disturbance that continues the feedback cycle.
ful tool in educing coherent structures. It has been applied to It is an attempt in our endeavor in providing a low order
many kinds of flows such as, boundary layg8sl], bounded ~dynamic model suitable to predict the main characteristics of
flows [5—7], shear layer§8—10], turbulent jet§11-17, and supersonic jets. In this paper we will apply the technique to
compressible flowg18,19. In most of these cases, it has describe the structure of a screeching rectangular jet.
been found that few modes contain a high percentage of the
energy. It is important to point out that these flows have been Il. THEORETICAL BACKGROUND
mostly at subsonic velocities and the information is limited
due to coarse spatial resolution of the velocity measuring
sensorghot-wire probes As a result, the velocity field gen- In the present study, the procedure outlined in Berkooz
erally yields few modes, which contain most of the energy.et al.[24] is followed. The idea behind POD is to find a basis
function {¢} in which the ensemble datfu} is optimally
represented. In this papeu, is considered a real random
*Present address: Centro de Investigaciones en Optica A.Cvector of lengthM with temporal and spatial dependence.
Mexico. Thus, we are looking for a function that maximizes the inner
TElectronic address: kroth@eng.fsu.edu product withu, which is given as

A. Brief remarks on the POD method
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maxm If Egs. (2), (6), and (7) are combined, the following is
— = (1)  obtained

¢ el
) . ) CA=\C, 8
where(,) represents the inner product in the Hilbert space of
square integrable function§,| is the corresponding norm, whereC is anM XM matrix defined as
and the overbar represents an ensemble average in time. So- c
lution of Eq. (1) is a problem of calculus of variatiof25] mn= (U, Un)-
and it can be represented as

(€)

B. Galerkin projection

We are now interested in deriving dynamical equations
for the evolution of the expansion coefficiertd) in time. A
common process is the method of Galerkin projection. The
whereD is the two-dimensional domain of the velocity field Galerkin method is a discretization scheme for partial differ-
and the kerneR is the average autocorrelation function de- ential equationgPDE’s), which is generically categorized as
fined by one of the spectral methods or methods of weighted residu-

als. This method is based on the separation of variables ap-
R(x,x’)zui(x)u]*(x’) 3 proach and is an attempt to find an approximate solution in
the form of truncated series expansion given by

f f Rij(x.X )" (x)dx =AM (x),  (2)
D

The symbol* corresponds to the complex conjugate.
The solution of Eq(2) represents a sei™ of basis func- - -
tions with special properties attractive for the purpose of de- U(X’tk>=n§1 M) e ™ (x).
riving dynamical equations via Galerkin projection. The
eigenfunctions form an orthogonal system, which can be norHere, ¢ are known eigenfunctions calculated using the
malized as POD method described earlier. Thus, the original infinite-
dimensional system is approximated bi-aimensional sys-
(@™ ¢") = Smrn, (4)  tem, where the order of the reduced model is determined by
the truncation velocityl. The method then involves the pro-
wheresy,, is the Kronecker delta symbol. The syste#? is  jection of the truncated velocity represented by &jy.on to
complete in the sense that velocity fialds represented as the Navier-Stoke$N-S) equations. A brief description of this
expansion of orthogonal eigenfunctions procedure is given below.

Suppose we have a system governed by the PDE’s

N
(10

N
u(X,t) = "t ) M (), 5 au
(xt)= 2, "(t)e™(x) (5) MW, wDx(0m) R )
where { is the dot product fou and ¢, that I'ﬁg is the  with appropriate boundary conditions and initial conditions,
projection ofu in the direction rep(rssgnted by™. Anim-  \hereD() is a spatial operator. On projecting the eigen-
portant property of eigenfunctiog'™ is that it can be ex- functions, ¢" on to Eq.(11), the following expression is
panded as a linear combination of the instantaneous velocityyizined:

fields as

Ju
M—1 (go(”), E—D(u)))=0, n=1,..M. (12)
e(0)= 2, AlXty), (6)
k=1 The operation above leads to a set of ordinary differential

where the eigenfunctiop possesses the properties of theequatlons of the form

velocity field. dzm

In this work the data used are velocity field realizations of T Fi(Zh... 0™, (13
83x136 vectors and hence a vector length of 11288. The
corresponding autocorrelation matrix has dimensions ofvhere (=(Z?,...,(M) and F:RN—RN. By solving the re-
11 288x11 288. The solution of the eigenvalue problem forduced order model represented by EtB) and substituting
such a large matrix is quite cumbersome and very time conback into Eq(10) we get an approximate solution fofx,t).
suming with the current computers. Sirovidi proposed an  This procedure will avoid solving the infinite-dimensional
equivalent approach to overcome this difficulty in whiRl ~ system given by the original PDE’s and it provides a practi-

can be expressed as cal procedure for studying the evolution of the flow field in
time.
1 M
Rij(x,x")= an::l uiuj . (7 C. Equations of motion
The method developed by Rowley al. [19] is followed
Here,M is the number of snapshotsr realizations for applying scalar-valued POD/Galerkin to compressible
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Mixing layer wherea is the local sound speeg=1.4 is the specific heat
coefficient, and Re=U;h/v is the Reynolds number withas

the kinematic viscosity. Velocities have been normalized by
the fully expanded jet velocity);, a is normalized by the
ambient sound speey,, x andy by the nozzle height, and
time by h/U;.

In order to apply Galerkin projection to the phase re-
solved experimental data, the velocity and speed of sound in
y‘ Eq. (14) were decomposed by the method followed by Rey-

nolds and Husseifi27]. Any time variablef describing a
parameter of an oscillating flow can be defined as a compo-

Shock cell structure

ZE sition of a mean, a periodic, and a random component, as
& given below

FIG. 1. A Cartesian coordinate system and general features of -~ .,
the supersonic jet. f=f+f+f', (15

flows using the isentropic N-S equations. Since, the originalyheref is the global meanf andf’ are the periodic mean
compressible equations are quite complicated, approximasng random component, respectively. The experimental data

tions are made to obtain a simpler set of equations that c
be used for Galerkin projection. The detailed derivation Oﬁ\ﬂere taken at several phases of a screech cycle. The phase-

the equations can be found in Rowleyal.[26]. The result- averaged component is given by the following expression:
ing equations of motion in nondimensional form are

fy=f+1, 16

+ Ul +ou,+ 1.2 ! (Uyyt+ Uyy) v "

Ui+ uugtouy+ — ——aa,==—(Uy+U,), _ _ .
OO T IME y—17 Rg Y where() is the phase average. The POD method is applied to

the periodic componerft and it can be represented in terms
12 L of eigenfunctionsp™ and time coefficientg™ as
vt+UUX+va+Wmaay=ﬁ(vxx+vyy), g Sp
M
1 F=S /1) o™
a;tua,tvay,+ YTa(uX+vy)=0, (14 f_nz:l ¢t @™ (X). 17)

09 -0.4 0.1 0.6

=
Qz h/Uj 24 -19 -14 -
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FIG. 2. (Color) A typical instantaneous flow field.
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FIG. 4. (Color Phase-locked vorticity field at four consecutive phases within the screech cycle.
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——a—— axial velocity, u
———O0—— transverse velocity, v
——&—— vorticity, ®

z

TABLE I. The first 10 eigenvaluegenergy represented in per- 14
cent of the total energy ]
i Mu) M) Moy 075
1 45.87 57.41 39.91 :a?
2 35.43 32.00 29.76 ‘§
3 4.33 1.70 413 § %57
4 2.66 1.44 3.25 H
5 2.06 1.18 3.15 © -
6 1.57 0.92 2.40 0-25
7 1.34 0.89 2.40
8 1.20 0.86 2.19 ]
9 1.07 0.69 2.14 ot
10 0.96 0.57 2.03

Following the decomposition given in E(L5), the velocity
and speed of sound can be written as

u=u+t+u’,

—T
8 12 16
Number of Modes

S

FIG. 5. POD cumulative energy distribution.

equation different from the usual Reynolds average equation
for turbulent flow and give the effect of the oscillation on the
mean flow.

Substituting Eq.(17) in Eqg. (19) and applying Galerkin

a=a+a+a’. (18

In order to obtain the equations of motion for the periodic
mean components, first the decomposed variables 1By
were substituted in Eq14). Then, the resulting equation set
is averaged separately in phase and time. Finally the time
averaged equations are subtracted from the phase-averaged
equations to obtain the equations of motion for the periodic
mean components as in E@.9). The detailed procedure of

where

projection, the following equation is obtained in vector form:

A=B+C+D+E+F+G+H, (20)

A={25.23)
B={by by ,b}},

this derivation can be found in Reynolds and Hus$&ifi.

T+ Ut vy +TUy+ T, — Ul + (U uy) —u'uy
+ 5Ty~ Ty + (v Uy —v U+ L
vyvyvyvywy_lxx
o Em et o L
+3da,—da,+(a'a,)—a’a,)= @(UXX‘F Uyy),

T+ UTx+TUo Ty + T, HUT— T+ (U vy) —U'vy
NSk S S
U0y =00y + (v vy)—v vy VL y_l(aay aa,

!

_ 1
== , _
+aay—aay+<a’ay)—a’ay)—@(vxﬁvyy),
&, +ua,+la,+va, +va,+Ta,—Ta,+(u'ay)—a'ay
I I PN I e s A Ak (S
+78,~78,+(v'ay)—v ay+T(auxﬂw;\ueravy
+dv, +8l,—aly+(a'uy,) —a'u, +av, —av,

+(a'vy)—a’v,)=0. (19

In Eq. (19), the periodic Reynolds stressegi;l; are the

C={Cix.Cik .Ci} ¢
odiddd

E={ei. el e}l

D:{diuka

G={gij{j 9ii& I I
H={hij .} & -

In these expressionb,contains terms involving Reynolds
stresses that were obtained directly from experimental data,
andc, d, e, f, gandh are constant parameters determined by
using calculated eigenfunctions in the preceding section.

IIl. EXPERIMENTAL APPARATUS AND PROCEDURES

Experiments were conducted in the blow-down jet facility
of the Fluid Mechanics Research Laboratf2g]. This facil-
ity is capable of generating jets with Reynolds numbers in
excess of X 10° with exit Mach numbers up to 2.15 and
total temperatures up to 800 K. Tivy=1.44, convergent-
divergent nozzle used in this study has a rectangular exit
with 4:1 aspect ratio and 10 mm in short dimension

The mean exit velocity profile with laminar boundary lay-
ers was top hat as the jet was exhausted into a quiet sur-

terms involving the periodic motion. Those terms make theounding at ambient conditions. The jet exit Reynolds num-

026304-5



MORENO et al. PHYSICAL REVIEW E 69, 026304 (2004

| - .
b) wU;:-0.12_-0.10 -0.09 -0.07 -0.06 -0.04 -0.02 -0.01 0.01_0.02 0.04 0.06 0.07 0.09 0.10 0.12

e EEE——— | - .
a) @/U;0.00 0.07 014 0.21 028 0.35 042 0.49 056 0.63 070 0.77 0.84 0.91 0.98 1.05

0

FIG. 6. (Color) Average and first three modes @ axial velocity, (b) transverse velocity, angt) vorticity.

25 5 7.5 10 125 15y /p17.5 20 225 25 275 30 325

ber based on the nozzle exit height and the mean ex@pplication of the stereoscopic PIV technique to supersonic
velocity is 3.3 10°. A Cartesian coordinate systefi,Y,2 jets is given in Alkislaf28—-30. The flow was seeded inter-
was chosen with its origin located at the center of the nozzl@ally with submicron particles generated by a modified
exit plane and withX axis oriented along the centerline of the Wright nebulizer in the size range of 0.1+dn. Rosko fog
jet, Y and Z axes are oriented along the short and long di-generator was used to seed the ambient air with particle sizes
mensions, respectivelfFig. 1). The measurements are con- 1-10 um.
fined to the central plangXY plane of the jet containing the A typical instantaneous velocity field obtained in the cen-
small dimension of the nozzle. Because of the slender chatral plane containing the small dimension of the nozzle, cov-
acter of the jet flow, it is necessary to cover the entire jet inering the region from the nozzle exit to abouthl@s shown
several measurement zones. These zones may have differémtFig. 2. The uniformly scaled velocity vectors superim-
sizes to cover the regions of interest. In addition, they overposed with the contours of the out of plane component of the
lap on each other to ensure the coverage of the whole fieldorticity are also shown in the figure. The convective veloc-
and for a proper match. ity of vortical structures is subtracted from the whole veloc-
Nonintrusive measurements of the velocity field wereity field to show the details of the shear layer. The data was
made using stereoscopic PIV. A detailed discussion of thebtained using an 88136 (X,Y) Cartesian grid. The jet was
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a) IV. RESULTS AND DISCUSSIONS

The global mean velocity of the flow is first obtained
using 560 instantaneous velocity fields. The periodic velocity
field is then obtained from subtracting the global mean from
each of the phase-averaged velocity fields. The periodic ve-
locity field realizations are used to compute the eigenvalues
and eigenfunctions using the method outlined in Sec. Il A.
The data covers the regiorth=0.1—-32.4. At each phase, 35
realizations are considered. Sixteen phases within the screech
cycle are used. The mean vorticity at constant phase is cal-
culated using the expression

o) _ Hw)
(o= o Ty

uMode 1,2
o
L

U
N
1

(21)

— —T The contours of the normalized vorticity magnitude at four
0 0.05 0.1 0.15 0.2 0.25 different phases within a screech cycle are shown in Fig. 4.

time (ms) The vorticity contours seen in the figure are a clear indica-
b) tion of the presence of large-scale coherent vortical struc-
tures. The large vortical structures are convected downstream
at half the jet exit velocity. They appear at a periodic rate at
a frequency of 4200 Hz. The vortical structures are highly
three dimensional in nature and as a result, the vorticity con-
tours appear to be fragmented. The source of three dimen-
sionality can be attributed to the generation of stream-
wise vortices in the shear layefg1]. The periodic shock
cell structure commonly seen in underexpanded jets is
also evident in this figure. More detailed description of
the large-scale structure dynamics for this flow is given
in Alkislar [30].

vMode 1,2
<

-2
A. Energy distribution

! 1 ! 1 ! 1 ! 1 ! 1
0 0.05 0.1 0.15 0.2 0.25 The energy associated with different eigenfunctions is
time (ms) contained in their corresponding eigenvaludn Eq. (9), C
FIG. 7. Time coefficients for mode (filled squarg and 2;(a) IS @ real symmetric matrix, it has positive real eigenvalues,
axial, (b) transverse velocity. and A can be structured in decreasing order of the corre-
sponding eigenvalues'>\2> ... \">0. The relative val-
ues of\" reflect the amount of energy in each eigenfunction

operated at the underexpanded jet condition corresponding r mode. that is

the fully expanded jet Mach number of 1.69. The jet displaysE% 9 ’

organized vortical structures that are generated by the well An

known feedback mechanism. The large structures in screech- En=3w ~ (22)

ing jets typically appear at a periodic rate, giving rise to the
opportunity of acquiring the phase-locked velocity field data.is a fraction of the data set energy that is contained in the
The near field microphone signal is used for the timingdirection of thenth eigenfunctiony.
reference for the phase averaging of the PIV data at specific Table | lists the relative energy of the eigenvalues for
phases of the driving signal as illustrated in Fig. 3. Corre-the first 10 modes for the axial and transverse components of
sponding to each phase, there is a composite snapshot of tttee velocity and the corresponding vorticity fields. The cu-
flow field starting at some reference time given by the mi-mulative energy of the eigenvalues is shown in Fig. 5. It is
crophone signal. The composite snapshots approximate reabserved from the data that the first two modes contain sig-
sonably the instantaneous flow field for the purposes of exnificant percent of the total energy. Accordingly, the analysis
tracting the large-scale coherent vortical structures in the jeof the mode shapes to be discussed later is confined mostly
PIV results suggest that 30 samples are sufficient to achiewe these dominant modes.
statistical convergence of the velocity field at constant phase. In the context of fluid mechanics problems, it has been
The data was sampled at 22.5° intervals within the first halbuggested that a 99% of the total energy be used as cutoff for
of the screech cycle. It was found that the selected data takaepresenting the flow field accuratégly]. On the other hand,
in the second half of the screech cycle was simply a reflecPalaciog 31] suggests that 75% of the energy may be suffi-
tion of the data. In total 560 instantaneous velocity fields areient for a good representation of the system. In the present
obtained. The details of the phase-locked system are given tudy, to quantify the accuracy of the reconstructed phase-
Alkislar [28]. averaged flow field, the mean square error in the velocities
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FIG. 8. (Color) The comparison of original flow field with POD reconstructiofa. Axial velocity, (b) transverse velocity, antt)
vorticity.

was calculated. Considering only two modes, which corremagnitude between this pair of eigenvalues and the next
spond to 90% of the total energy, the mean square error isnes. The same observation was also made by Rerivpifer
found to be 0.03% for the axial and 1.2% for the transverséRajaeeet al. [10], and Rowleyet al. [19]. Figures 6 and 7
velocities. Hence, the reconstructed flow field using twoshow clearly the reason for this behavior. For the axial and
modes is a good representation of the flow field. transverse velocities mode shapes 1 and 2 are nearly identi-
cal, where mode 2 shifted in the streamwise direction by
approximately one quarter-wavelength in space and the cor-
The characteristics of the POD modes are now examinetesponding time coefficients are analogously phase shifted in
to understand the large-scale structure dynamics. Figure #me by 7/2. It is known that structures represented by the
presents the first three mode shapes corresponding to tleégenfunctions are fixed in space. However, when one mode,
axial velocity, transverse velocity, and the vorticity. Also in- in the pair, is in the maximum energy stage the other is in the
cluded in the figure are their experimentally determined glo-minimum energy stage, and this relation reverses after one
bal mean distributions. The color contours in the figure rep-quarter of a period in time, that is, the energy is exchanged
resenting the mode shapes have both posities) and between the two modes thereby propagating the flow pattern
negative(blue) values. The mode shapes are simply a patterrconsisting of the sum of the two in the positive streamwise
that may not provide a direct connection to the large-scal@lirection.
structure physics. However, upon close examination, it is ob- Using the dominant POD mode shapes, the velocity and
served that the peak magnitude locations in the first twovorticity fields at a constant phase are reconstructed as
mode shapes appear to coincide with the corresponding peakown in Fig. 8. Reconstruction is carried out using &.
periodic Reynolds stressg26]. Hence, it is believed that the The original experimental data at the corresponding phase is
mode shape structure may have some relationship with calso included in the figure for comparison. From the recon-
herent structure dynamics. structed data, it appears that the first two modes capture the
It is interesting to observe that the eigenvalues occur in aelocity and vorticity fields with fidelity. The flow recon-
pair of almost equal value, whereas there is a large gap iatruction using more than the first two modes appears to add

B. Mode shapes and reconstruction
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vMode 1,2
o

-
o

aMode 1,2
o

-
L
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t(ms)

first mode and “#” second mode. Galerkin prediction, “--” first mode, and-

wn

FIG. 9. Time traces of first 2 modes for axial velocity, transverse velocity, and sound speéd=dt—10. Experimental: symbol,l”
second mode.

little information. Therefore, the two energetic modes areanalysis. The speed of sound has been calculated approxi-
the region where the large structure dynamics are most IMrelationship[32] which is valid for a boundary layer flow

portant. Based on this observation, the two dominant modeg;itn a Prandtl number Rl and constant pressure
are used in the low-dimensional modeling using the above-

described Galerkin procedure.

0

(17Uc)
1+ T) Uct+(y—1M2U———, (23
0

T T. |
2

. To To
C. Low order modeling
The scalar-valued POD/Galerkin method is applied to pre-
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dict the flow field using computed eigenfunctions from PODwhereT,. is the ambient temperaturé, is the center line
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velocity, andT, is the jet temperature. Initially, the calcu- ((™(t) values is shown in Fig. 10. A time length of eight
lated data is limited to the region<Ox/h<<10. The first two  periods was used in the calculation of spectra for both ex-
dominant modes are considered to obtain the time coeffiperimental and simulation data. The experimental data was
cients{(™ of the dynamical equations. A system of six equa-considered as periodically repeating itself. The simulation
tions and six unknowns is solved, since the modeafar, has an oscillatory behavior with a constant frequency, how-
anda are taken separately. The initial conditions to solve theever, it is not periodic because of increasing amplitude even
ordinary differential equation€DE’s) are given by the first after the initial transient. The spectra reveal that the fre-
value of¢* and¢? att=0. They are obtained from the direct quency of oscillation of the simulated flow is commensurate
projection of the first realization on the first two dominant with the experimental data. However, significant deviations
modes. The fourth order Runge-Kutta scheme provided irare found in the amplitude of the peaks between measured
MATLAB software has been utilized. For the simulation a timeand computed spectra. This may be due to the simplified
step of 0.5us was used for an accurate calculation of vari-equations of motion used in the simulation. In addition, the
ables. A direct comparison between experimental data an2D (two-dimensiongl model used to represent the 3D char-
the simulation data is shown in Fig. 9. Here, the computedacter of the real flow may have an important role. With the
values for{("(t) are compared to the direct projection re- simplified assumptions used here, the results from the dy-
sults for the first two modes selected. The simulation result®amical equations agree reasonably well the experimental
shown in Fig. 9 for the axial and transverse velocities and theesults. Including more number of modes does not improve
speed of sound compare reasonably well with the direct prothe results, an observation consistent with that of Rowley
jections of realizations on the eigenfunctions. The simulatiori19].
was computed to larger intervals to show the stability of the When the region of interest is extended upxidh=17,
model. the simulation results begin to deviate further from the POD
The spectral content of the experimental and simulatiorcalculations as shown in Fig. 11. This may be due to the use
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FIG. 12. (Color) Comparison

5 x/h 10 15 5 x/h 10 15 of experimental flow field(left)
with the results of Galerkin pre-
i diction (right), (top) axial velocity,

v/U: -012 -0.09 -0.06 -0.02 0.01 0.04 0.07 0.10 v/U: -0.12 -0.09 -0.06 -0.02 0.01 0.04 0.07 0.10

(bottom) transverse velocity.

| Phase 157.5°

R

of isentropic Navier-Stokes equations that do not includeexperimental and simulation data for four different phases.
the contributions of viscous terms, which may play anBoth the axial and transverse velocity fields are included
increasingly important role further downstream of the jet.in the figure. Although there are some differences in the de-
Figure 12 shows comparisons between the phase-averagtlls, the overall flow field is captured well in the simula-

026304-11



MORENO et al. PHYSICAL REVIEW E 69, 026304 (2004

tions. In particular, the oscillation of the jet column is cap- A simplified version of the isentropic compressible
tured vividly. Navier-Stokes equations is used in the analysis. The projec-
tion of the dominant POD on to these equations resulted in a

V. CONCLUSIONS low-order system of dynamical equations. Solution of this
system of equations provides a description of the coherent

. Th|slwork is motivated by our attempt to develop low- structure dynamics associated with the eigenfunctions. The
dimensional models to calculate supersonic jet flow fields. In_. : . . .
mulation results obtained using these equations compare

) . . i
general, high speed jets at relatively large Reynolds numbe%e” with the experimental results. From this study, it ap-

show vortical structures covering a range of length scales. . . ;
However, in this paper, we confine ourselves in developing #62'S that the low order modeling of self-excited jet flows
low-dimensional model for a jet that is dominated by Iarge-ca” be useful for predictions of global flow characteristics.
scale coherent vortices. These structures are generated by a

self-sustained oscillation of the jet column and are shed at a

single dominant frequency making the application of the ACKNOWLEDGMENTS

technique relatively less cumbersome.
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