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Low-dimensional model of a supersonic rectangular jet

D. Moreno,* A. Krothapalli,† M. B. Alkislar, and L. M. Lourenco
Department of Mechanical Engineering, Florida A&M University and Florida State University, 2525 Pottsdamer Street,

Tallahassee, Florida 32310, USA
~Received 3 February 2003; revised manuscript received 11 August 2003; published 27 February 2004!

The proper orthogonal decomposition method is applied to the analysis of particle image velocimetry data
obtained for a supersonic rectangular jet operated at underexpanded conditions. Phase-locked velocity field
data were used to calculate the eigenfunctions and the eigenvalues. It was found that a large fraction of the total
energy is contained within the first two modes. The essential features of the jet are thus captured with only two
functions. A low-dimensional model for the dynamical behavior is then constructed using Galerkin projection
of the isentropic compressible Navier-Stokes equations. The reduced model compares reasonably well with the
experimental findings.
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I. INTRODUCTION

This paper is motivated by our attempt to provide
method of velocity field data analysis aimed at obtain
low-dimensional approximate description of high speed je
The velocity field data is obtained experimentally using
particle image velocimetry~PIV! technique. Recent develop
ments in the statistical technique of proper orthogonal
composition~POD! seems to offer some hope to capture t
spatial as well as temporal behavior of energetic large-s
structures in a variety of turbulent shear flows. Data analy
using POD is often conducted to extract ‘‘mode shapes’
basis functions from experimental data for subsequent us
Galerkin projections that yield low-dimensional models@1#.
This enables one to build efficient reduced order mod
based on the first few dynamically important POD mod
thus serving as potential substitute for computationally int
sive simulations.

The POD method was originally suggested by Lumely@2#
to extract organized large-scale structures from turbu
flows. The method provides a set of optimized orthonorm
basis functions for an ensemble of data. The most impor
property of POD is its optimality in the sense that it provid
the most efficient way of capturing the dominant features
an infinite-dimensional process with only few functions.

Since the introduction of POD as a tool to extract coh
ent structure in turbulent flows, many studies on the sub
have been published. The method has proved to be a po
ful tool in educing coherent structures. It has been applie
many kinds of flows such as, boundary layers@3,4#, bounded
flows @5–7#, shear layers@8–10#, turbulent jets@11–17#, and
compressible flows@18,19#. In most of these cases, it ha
been found that few modes contain a high percentage of
energy. It is important to point out that these flows have b
mostly at subsonic velocities and the information is limit
due to coarse spatial resolution of the velocity measur
sensors~hot-wire probes!. As a result, the velocity field gen
erally yields few modes, which contain most of the ener
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However, with direct numerical simulation, it is possible
resolve spatially a great number of scales within the reg
of interest. But the flows analyzed have been at low R
nolds numbers@4,7,19#. On the other hand, using whole fiel
techniques such as laser induced fluorescence, interferom
tomography, and PIV, it is possible to obtain data with hi
spatial resolution at high Reynolds numbers. In these ca
the POD method has shown energy distributed among la
number of modes@14–16#, since many scales are captured
an instantaneous flow field. Most of the previous investig
tions have developed low-dimensional order model us
Galerkin projection and the flows studied have been in
incompressible regime@3,4,10,18,20#. The only exception is
the work of Rowleyet al. @19#, which dealt with compress
ible flows at subsonic Mach numbers.

In the present study, POD method is applied to PIV d
set that was obtained from the phase-locked measurem
of synoptic velocity field of an underexpanded rectangu
jet. The screeching jet is dominated by coherent large-s
structures generated by the inherent global instability se
by a feedback mechanism@21–23#. The feedback cycle start
with a disturbance in the shear layer that is convected do
stream and come in contact with shock cell boundary. T
interaction, particularly at the end of the shock cell, produ
intense sound wave. This sound wave propagates upstr
in the ambient medium, interacts with the incipient she
layer at the nozzle exit and produces a new downstream t
eling disturbance that continues the feedback cycle.

It is an attempt in our endeavor in providing a low ord
dynamic model suitable to predict the main characteristics
supersonic jets. In this paper we will apply the technique
describe the structure of a screeching rectangular jet.

II. THEORETICAL BACKGROUND

A. Brief remarks on the POD method

In the present study, the procedure outlined in Berko
et al. @24# is followed. The idea behind POD is to find a bas
function $w% in which the ensemble data$u% is optimally
represented. In this paper,u is considered a real random
vector of lengthM with temporal and spatial dependenc
Thus, we are looking for a function that maximizes the inn
product withu, which is given as

.,
©2004 The American Physical Society04-1
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max

w

u~u,w!u2

iwi2 , ~1!

where~,! represents the inner product in the Hilbert space
square integrable functions,i i is the corresponding norm
and the overbar represents an ensemble average in time
lution of Eq. ~1! is a problem of calculus of variations@25#
and it can be represented as

E E
D

Ri j ~x,x8!wj
~n!~x8!dx85l~n!wi

~n!~x!, ~2!

whereD is the two-dimensional domain of the velocity fie
and the kernelR is the average autocorrelation function d
fined by

R~x,x8!5ui~x!uj* ~x8! ~3!

The symbol* corresponds to the complex conjugate.
The solution of Eq.~2! represents a setw(n) of basis func-

tions with special properties attractive for the purpose of
riving dynamical equations via Galerkin projection. Th
eigenfunctions form an orthogonal system, which can be n
malized as

~wm,wn!5dmnln , ~4!

wheredmn is the Kronecker delta symbol. The systemw(n) is
complete in the sense that velocity fieldu is represented a
expansion of orthogonal eigenfunctions

u~x,tk!5 (
n51

N

zn~ tk!w~n!~x!, ~5!

wherez is the dot product foru and w(n), that is,z is the
projection ofu in the direction represented byw(n). An im-
portant property of eigenfunctionw(n) is that it can be ex-
panded as a linear combination of the instantaneous velo
fields as

w~x!5 (
k51

M21

Aku~x,tk!, ~6!

where the eigenfunctionw possesses the properties of t
velocity field.

In this work the data used are velocity field realizations
833136 vectors and hence a vector length of 11 288. T
corresponding autocorrelation matrix has dimensions
11 288311 288. The solution of the eigenvalue problem f
such a large matrix is quite cumbersome and very time c
suming with the current computers. Sirovich@1# proposed an
equivalent approach to overcome this difficulty in whichRi j
can be expressed as

Ri j ~x,x8!5
1

M (
n51

M

ui
nuj

n . ~7!

Here,M is the number of snapshots~or realizations!.
02630
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If Eqs. ~2!, ~6!, and ~7! are combined, the following is
obtained

CA5lC, ~8!

whereC is anM3M matrix defined as

Cmn5~um ,un!. ~9!

B. Galerkin projection

We are now interested in deriving dynamical equatio
for the evolution of the expansion coefficientsz(t) in time. A
common process is the method of Galerkin projection. T
Galerkin method is a discretization scheme for partial diff
ential equations~PDE’s!, which is generically categorized a
one of the spectral methods or methods of weighted res
als. This method is based on the separation of variables
proach and is an attempt to find an approximate solution
the form of truncated series expansion given by

u~x,tk!5 (
n51

N

z~n!~ tk!w~n!~x!. ~10!

Here, w(n) are known eigenfunctions calculated using t
POD method described earlier. Thus, the original infini
dimensional system is approximated by aN-dimensional sys-
tem, where the order of the reduced model is determined
the truncation velocityu. The method then involves the pro
jection of the truncated velocity represented by Eq.~5! on to
the Navier-Stokes~N-S! equations. A brief description of this
procedure is given below.

Suppose we have a system governed by the PDE’s

]u

]t
5D~u!, u:D3~0,̀ !→R, ~11!

with appropriate boundary conditions and initial condition
where D( ) is a spatial operator. On projecting the eige
functions, wn on to Eq. ~11!, the following expression is
obtained:

Xw~n!,S ]u

]t
2D~u! D C50, n51,...,M . ~12!

The operation above leads to a set of ordinary differen
equations of the form

dz~n!

dt
5Fi~z1,...,zM !, ~13!

where z5(z1,...,zM) and F:RN→RN. By solving the re-
duced order model represented by Eq.~13! and substituting
back into Eq.~10! we get an approximate solution foru(x,t).
This procedure will avoid solving the infinite-dimension
system given by the original PDE’s and it provides a prac
cal procedure for studying the evolution of the flow field
time.

C. Equations of motion

The method developed by Rowleyet al. @19# is followed
for applying scalar-valued POD/Galerkin to compressi
4-2
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LOW-DIMENSIONAL MODEL OF A SUPERSONIC . . . PHYSICAL REVIEW E 69, 026304 ~2004!
flows using the isentropic N-S equations. Since, the orig
compressible equations are quite complicated, approxi
tions are made to obtain a simpler set of equations that
be used for Galerkin projection. The detailed derivation
the equations can be found in Rowleyet al. @26#. The result-
ing equations of motion in nondimensional form are

ut1uux1vuy1
1

M2

2

g21
aax5

1

Reh
~uxx1uyy!,

v t1uvx1vvy1
1

M2

2

g21
aay5

1

Reh
~vxx1vyy!,

at1uax1vay1
g21

2
a~ux1vy!50, ~14!

FIG. 1. A Cartesian coordinate system and general feature
the supersonic jet.
02630
l
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wherea is the local sound speed,g51.4 is the specific hea
coefficient, and Reh5Ujh/n is the Reynolds number withn as
the kinematic viscosity. Velocities have been normalized
the fully expanded jet velocityU j , a is normalized by the
ambient sound speeda0 , x andy by the nozzle heighth, and
time by h/U j .

In order to apply Galerkin projection to the phase r
solved experimental data, the velocity and speed of soun
Eq. ~14! were decomposed by the method followed by Re
nolds and Hussein@27#. Any time variablef describing a
parameter of an oscillating flow can be defined as a com
sition of a mean, a periodic, and a random component
given below

f 5 f̄ 1 f̃ 1 f 8, ~15!

where f̄ is the global mean,f̃ and f 8 are the periodic mean
and random component, respectively. The experimental
were taken at several phases of a screech cycle. The ph
averaged component is given by the following expressio

^ f &5 f̄ 1 f̃ , ~16!

where^ & is the phase average. The POD method is applie
the periodic componentf̃ and it can be represented in term
of eigenfunctionsw (n) and time coefficientsz (n) as

f̃ 5 (
n51

M

z~n!~ tk!w
~n!~x!. ~17!

of
FIG. 2. ~Color! A typical instantaneous flow field.
4-3
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FIG. 3. Illustration of phase-
locked system for stereoscopi
PIV measurements cycle.

FIG. 4. ~Color! Phase-locked vorticity field at four consecutive phases within the screech cycle.
026304-4



ic

et
im
ra
di
f

th

tion
e

:

s
ata,
by

ity

in
d

exit

y-
sur-
m-

r-
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Following the decomposition given in Eq.~15!, the velocity
and speed of sound can be written as

u5ū1ũ1u8,

a5ā1ã1a8. ~18!

In order to obtain the equations of motion for the period
mean components, first the decomposed variables in Eq.~18!
were substituted in Eq.~14!. Then, the resulting equation s
is averaged separately in phase and time. Finally the t
averaged equations are subtracted from the phase-ave
equations to obtain the equations of motion for the perio
mean components as in Eq.~19!. The detailed procedure o
this derivation can be found in Reynolds and Hussein@27#.

ũt1ūũx1ũūx1 v̄ũy1 ṽūy1ũũx2ũũx1^u8ux8&2u8ux8

1 ṽũy2 ṽũy1^v8uy8&2v8uy81
1

M2

2

g21
~ āãx1ãāx

1ããx2ããx1^a8ax8&2a8ax8!5
1

Reh
~ ũxx1ũyy!,

ṽ t1ūṽx1ũv̄x1 v̄ ṽy1 ṽ v̄y1ũṽx2ũṽx1^u8vx8&2u8vx8

1 ṽ ṽy2 ṽ ṽy1^v8vy8&2v8vy81
1

M2

2

g21
~ āãy1ãāy

1ããy2ãāy1^a8ay8&2a8ay8!5
1

Reh
~vxx1vyy!,

ãt1ūãx1ũāx1 v̄ãy1 ṽāy1ũãx2ũãx1^u8ax8&2a8ax8

1 ṽãy2 ṽãy1^v8ay8&2v8ay8 1
g21

2
~ āũx1ãūx1āṽy

1ãv̄y1ãũx2ãũx1^a8ux8&2a8ux81ãṽy2ãṽy

1^a8vy8&2a8vy8!50. ~19!

In Eq. ~19!, the periodic Reynolds stresses2ũi ũ j are the
terms involving the periodic motion. Those terms make

TABLE I. The first 10 eigenvalues~energy represented in pe
cent of the total energy!.

i l (u) l (v) l (vz)

1 45.87 57.41 39.91
2 35.43 32.00 29.76
3 4.33 1.70 4.13
4 2.66 1.44 3.25
5 2.06 1.18 3.15
6 1.57 0.92 2.40
7 1.34 0.89 2.40
8 1.20 0.86 2.19
9 1.07 0.69 2.14

10 0.96 0.57 2.03
02630
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equation different from the usual Reynolds average equa
for turbulent flow and give the effect of the oscillation on th
mean flow.

Substituting Eq.~17! in Eq. ~19! and applying Galerkin
projection, the following equation is obtained in vector form

At5B1C1D1E1F1G1H, ~20!

where

A5$zk
u ,zk

v ,zk
a%,

B5$bk
u ,bk

v ,bk
a%,

C5$cik
u ,cik

v ,cik
a %z i

u ,

D5$dik
u ,dik

v ,dik
a %z i

v ,

E5$eik
u ,eik

v ,eik
a %z i

a ,

F5$ f i jk
u z j

u , f i jk
v z j

v , f i jk
a z j

a%z i
u ,

G5$gi jk
u z j

u ,gi jk
v z j

v ,gi jk
a z j

a%z i
v ,

H5$hi jk
u ,hi jk

v %z i j
a .

In these expressions,b contains terms involving Reynold
stresses that were obtained directly from experimental d
andc, d, e, f, g, andh are constant parameters determined
using calculated eigenfunctions in the preceding section.

III. EXPERIMENTAL APPARATUS AND PROCEDURES

Experiments were conducted in the blow-down jet facil
of the Fluid Mechanics Research Laboratory@28#. This facil-
ity is capable of generating jets with Reynolds numbers
excess of 33106 with exit Mach numbers up to 2.15 an
total temperatures up to 800 K. TheMd51.44, convergent-
divergent nozzle used in this study has a rectangular
with 4:1 aspect ratio and 10 mm in short dimension~h!.

The mean exit velocity profile with laminar boundary la
ers was top hat as the jet was exhausted into a quiet
rounding at ambient conditions. The jet exit Reynolds nu

FIG. 5. POD cumulative energy distribution.
4-5
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FIG. 6. ~Color! Average and first three modes of~a! axial velocity,~b! transverse velocity, and~c! vorticity.
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ber based on the nozzle exit height and the mean
velocity is 3.33105. A Cartesian coordinate system~X,Y,Z!
was chosen with its origin located at the center of the noz
exit plane and withX axis oriented along the centerline of th
jet, Y and Z axes are oriented along the short and long
mensions, respectively~Fig. 1!. The measurements are co
fined to the central plane~XYplane! of the jet containing the
small dimension of the nozzle. Because of the slender c
acter of the jet flow, it is necessary to cover the entire je
several measurement zones. These zones may have diff
sizes to cover the regions of interest. In addition, they ov
lap on each other to ensure the coverage of the whole
and for a proper match.

Nonintrusive measurements of the velocity field we
made using stereoscopic PIV. A detailed discussion of
02630
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application of the stereoscopic PIV technique to superso
jets is given in Alkislar@28–30#. The flow was seeded inter
nally with submicron particles generated by a modifi
Wright nebulizer in the size range of 0.1–1mm. Rosko fog
generator was used to seed the ambient air with particle s
1–10mm.

A typical instantaneous velocity field obtained in the ce
tral plane containing the small dimension of the nozzle, c
ering the region from the nozzle exit to about 10h, is shown
in Fig. 2. The uniformly scaled velocity vectors superim
posed with the contours of the out of plane component of
vorticity are also shown in the figure. The convective velo
ity of vortical structures is subtracted from the whole velo
ity field to show the details of the shear layer. The data w
obtained using an 833136 ~X,Y! Cartesian grid. The jet was
4-6
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LOW-DIMENSIONAL MODEL OF A SUPERSONIC . . . PHYSICAL REVIEW E 69, 026304 ~2004!
operated at the underexpanded jet condition correspondin
the fully expanded jet Mach number of 1.69. The jet displa
organized vortical structures that are generated by the
known feedback mechanism. The large structures in scre
ing jets typically appear at a periodic rate, giving rise to t
opportunity of acquiring the phase-locked velocity field da

The near field microphone signal is used for the timi
reference for the phase averaging of the PIV data at spe
phases of the driving signal as illustrated in Fig. 3. Cor
sponding to each phase, there is a composite snapshot o
flow field starting at some reference time given by the m
crophone signal. The composite snapshots approximate
sonably the instantaneous flow field for the purposes of
tracting the large-scale coherent vortical structures in the
PIV results suggest that 30 samples are sufficient to ach
statistical convergence of the velocity field at constant pha
The data was sampled at 22.5° intervals within the first h
of the screech cycle. It was found that the selected data ta
in the second half of the screech cycle was simply a refl
tion of the data. In total 560 instantaneous velocity fields
obtained. The details of the phase-locked system are give
Alkislar @28#.

FIG. 7. Time coefficients for mode 1~filled square! and 2;~a!
axial, ~b! transverse velocity.
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IV. RESULTS AND DISCUSSIONS

The global mean velocity of the flow is first obtaine
using 560 instantaneous velocity fields. The periodic veloc
field is then obtained from subtracting the global mean fr
each of the phase-averaged velocity fields. The periodic
locity field realizations are used to compute the eigenval
and eigenfunctions using the method outlined in Sec. II
The data covers the regionx/h50.1– 32.4. At each phase, 3
realizations are considered. Sixteen phases within the scr
cycle are used. The mean vorticity at constant phase is
culated using the expression

^vz&5
]^v&
]x

2
]^u&
]y

. ~21!

The contours of the normalized vorticity magnitude at fo
different phases within a screech cycle are shown in Fig
The vorticity contours seen in the figure are a clear indi
tion of the presence of large-scale coherent vortical str
tures. The large vortical structures are convected downstr
at half the jet exit velocity. They appear at a periodic rate
a frequency of 4200 Hz. The vortical structures are hig
three dimensional in nature and as a result, the vorticity c
tours appear to be fragmented. The source of three dim
sionality can be attributed to the generation of strea
wise vortices in the shear layers@21#. The periodic shock
cell structure commonly seen in underexpanded jets
also evident in this figure. More detailed description
the large-scale structure dynamics for this flow is giv
in Alkislar @30#.

A. Energy distribution

The energy associated with different eigenfunctions
contained in their corresponding eigenvaluel. In Eq. ~9!, C
is a real symmetric matrix, it has positive real eigenvalu
and A can be structured in decreasing order of the cor
sponding eigenvaluesl1.l2.,...,ln.0. The relative val-
ues ofln reflect the amount of energy in each eigenfuncti
~or mode!, that is,

En5
ln

(n51
M ln

~22!

is a fraction of the data set energy that is contained in
direction of thenth eigenfunctionw.

Table I lists the relative energy of the eigenvalues
the first 10 modes for the axial and transverse componen
the velocity and the corresponding vorticity fields. The c
mulative energy of the eigenvalues is shown in Fig. 5. It
observed from the data that the first two modes contain
nificant percent of the total energy. Accordingly, the analy
of the mode shapes to be discussed later is confined mo
to these dominant modes.

In the context of fluid mechanics problems, it has be
suggested that a 99% of the total energy be used as cutof
representing the flow field accurately@1#. On the other hand
Palacios@31# suggests that 75% of the energy may be su
cient for a good representation of the system. In the pres
study, to quantify the accuracy of the reconstructed pha
averaged flow field, the mean square error in the veloci
4-7
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FIG. 8. ~Color! The comparison of original flow field with POD reconstructions.~a! Axial velocity, ~b! transverse velocity, and~c!
vorticity.
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was calculated. Considering only two modes, which cor
spond to 90% of the total energy, the mean square erro
found to be 0.03% for the axial and 1.2% for the transve
velocities. Hence, the reconstructed flow field using t
modes is a good representation of the flow field.

B. Mode shapes and reconstruction

The characteristics of the POD modes are now exami
to understand the large-scale structure dynamics. Figu
presents the first three mode shapes corresponding to
axial velocity, transverse velocity, and the vorticity. Also i
cluded in the figure are their experimentally determined g
bal mean distributions. The color contours in the figure r
resenting the mode shapes have both positive~red! and
negative~blue! values. The mode shapes are simply a patt
that may not provide a direct connection to the large-sc
structure physics. However, upon close examination, it is
served that the peak magnitude locations in the first
mode shapes appear to coincide with the corresponding
periodic Reynolds stresses@26#. Hence, it is believed that th
mode shape structure may have some relationship with
herent structure dynamics.

It is interesting to observe that the eigenvalues occur
pair of almost equal value, whereas there is a large ga
02630
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magnitude between this pair of eigenvalues and the n
ones. The same observation was also made by Rempfer@4#,
Rajaeeet al. @10#, and Rowleyet al. @19#. Figures 6 and 7
show clearly the reason for this behavior. For the axial a
transverse velocities mode shapes 1 and 2 are nearly id
cal, where mode 2 shifted in the streamwise direction
approximately one quarter-wavelength in space and the
responding time coefficients are analogously phase shifte
time by p/2. It is known that structures represented by t
eigenfunctions are fixed in space. However, when one mo
in the pair, is in the maximum energy stage the other is in
minimum energy stage, and this relation reverses after
quarter of a period in time, that is, the energy is exchan
between the two modes thereby propagating the flow pat
consisting of the sum of the two in the positive streamw
direction.

Using the dominant POD mode shapes, the velocity a
vorticity fields at a constant phase are reconstructed
shown in Fig. 8. Reconstruction is carried out using Eq.~5!.
The original experimental data at the corresponding phas
also included in the figure for comparison. From the reco
structed data, it appears that the first two modes capture
velocity and vorticity fields with fidelity. The flow recon
struction using more than the first two modes appears to
4-8
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FIG. 9. Time traces of first 2 modes for axial velocity, transverse velocity, and sound speed atx/h50 – 10. Experimental: symbol, ‘‘j’’
first mode and ‘‘l’’ second mode. Galerkin prediction, ‘‘--’’ first mode, and ‘‘̄’’ second mode.
r
in
im
d
ve

re
D

roxi-
little information. Therefore, the two energetic modes a
sufficient to capture the complete structure of the flow with
the region where the large structure dynamics are most
portant. Based on this observation, the two dominant mo
are used in the low-dimensional modeling using the abo
described Galerkin procedure.

C. Low order modeling

The scalar-valued POD/Galerkin method is applied to p
dict the flow field using computed eigenfunctions from PO
02630
e
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analysis. The speed of sound has been calculated app
mately, through the temperatureT̄, by using the Crocco’s
relationship@32# which is valid for a boundary layer flow
with a Prandtl number Pr51 and constant pressure

T̄

T0
5

T`

T0
1S 11

T`

T0
DUc1~g21!M2Uc

~12Uc!

2
, ~23!

whereT` is the ambient temperature,Uc is the center line
-
FIG. 10. Comparison of spec
trums of the time traces of ‘‘j’’
experimental and ‘‘-’’ Galerkin
prediction results.
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FIG. 11. Time traces of first 2
modes for axial velocity, trans-
verse velocity, and speed of soun
at x/h50 – 17. ‘‘j’’ experimental
and ‘‘-’’ Galerkin prediction.
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D
use
velocity, andT0 is the jet temperature. Initially, the calcu
lated data is limited to the region 0,x/h,10. The first two
dominant modes are considered to obtain the time co
cientsz (n) of the dynamical equations. A system of six equ
tions and six unknowns is solved, since the modes foru, v,
anda are taken separately. The initial conditions to solve
ordinary differential equations~ODE’s! are given by the first
value ofz1 andz2 at t50. They are obtained from the direc
projection of the first realization on the first two domina
modes. The fourth order Runge-Kutta scheme provided
MATLAB software has been utilized. For the simulation a tim
step of 0.5ms was used for an accurate calculation of va
ables. A direct comparison between experimental data
the simulation data is shown in Fig. 9. Here, the compu
values forz (n)(t) are compared to the direct projection r
sults for the first two modes selected. The simulation res
shown in Fig. 9 for the axial and transverse velocities and
speed of sound compare reasonably well with the direct p
jections of realizations on the eigenfunctions. The simulat
was computed to larger intervals to show the stability of
model.

The spectral content of the experimental and simulat
02630
fi-
-

e

in
e
-
nd
d

ts
e

o-
n
e

n

z (n)(t) values is shown in Fig. 10. A time length of eigh
periods was used in the calculation of spectra for both
perimental and simulation data. The experimental data
considered as periodically repeating itself. The simulat
has an oscillatory behavior with a constant frequency, ho
ever, it is not periodic because of increasing amplitude e
after the initial transient. The spectra reveal that the f
quency of oscillation of the simulated flow is commensur
with the experimental data. However, significant deviatio
are found in the amplitude of the peaks between measu
and computed spectra. This may be due to the simpli
equations of motion used in the simulation. In addition, t
2D ~two-dimensional! model used to represent the 3D cha
acter of the real flow may have an important role. With t
simplified assumptions used here, the results from the
namical equations agree reasonably well the experime
results. Including more number of modes does not impro
the results, an observation consistent with that of Row
@19#.

When the region of interest is extended up tox/h517,
the simulation results begin to deviate further from the PO
calculations as shown in Fig. 11. This may be due to the
4-10
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FIG. 12. ~Color! Comparison
of experimental flow field~left!
with the results of Galerkin pre-
diction ~right!, ~top! axial velocity,
~bottom! transverse velocity.
d
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es.
ed
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of isentropic Navier-Stokes equations that do not inclu
the contributions of viscous terms, which may play
increasingly important role further downstream of the j
Figure 12 shows comparisons between the phase-aver
02630
e

.
ed

experimental and simulation data for four different phas
Both the axial and transverse velocity fields are includ
in the figure. Although there are some differences in the
tails, the overall flow field is captured well in the simula
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tions. In particular, the oscillation of the jet column is ca
tured vividly.

V. CONCLUSIONS

This work is motivated by our attempt to develop low
dimensional models to calculate supersonic jet flow fields
general, high speed jets at relatively large Reynolds num
show vortical structures covering a range of length sca
However, in this paper, we confine ourselves in developin
low-dimensional model for a jet that is dominated by larg
scale coherent vortices. These structures are generated
self-sustained oscillation of the jet column and are shed
single dominant frequency making the application of t
technique relatively less cumbersome.

The commonly used snapshot POD technique is use
obtain the dominant mode shapes from phase-locked ins
taneous velocity fields in a selected plane of the jet in
streamwise direction. The velocity field data is obtained
ing the PIV technique. It was found that most of the fluctu
tion energy is contained within the first two modes. The
construction of the flow field is faithfully represented b
these two modes.
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A simplified version of the isentropic compressib
Navier-Stokes equations is used in the analysis. The pro
tion of the dominant POD on to these equations resulted
low-order system of dynamical equations. Solution of th
system of equations provides a description of the cohe
structure dynamics associated with the eigenfunctions.
simulation results obtained using these equations com
well with the experimental results. From this study, it a
pears that the low order modeling of self-excited jet flo
can be useful for predictions of global flow characteristic
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