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Effect of inertia in Rayleigh-Bénard convection
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We have investigated the influence of the Prandtl number on the dynamics of high Rayleigh number thermal
convection. A numerical parameter study in a three-dimensional Rayl€igarBeonfiguration was carried
out, where we varied the Prandtl number between®¥0Pr<10?. The Rayleigh number was fixed at a value
of Ra=10°. Our main focus lay on the question how the value of the Prandtl number affects the spatial
structure of the flow. We investigated the functional dependence of the Nusselt number and the Reynolds
number and compared our results with a recent theoretical approach of Grossmann and LBhsé Mech.
407, 27 (2000; Phys. Rev. Lett86, 3316(2001)].
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[. INTRODUCTION results. And up to now widely overlooked property of the
flow is the ratio of toroidal to total energy which is strongly
Vigorous thermal convection is a fundamental phenom-decreasing with increasing Prandtl number. We consider this
enon, largely governing the dynamics of natural systems likéo be characteristic for the different type of dynamics at low
the atmosphere, oceans, and planetary interiors. It also playd high Prandtl numbers.
an important role in technical applications like process tech-
nology. The past years saw active research in the field where Il. MODEL AND NUMERICAL SETUP
many efforts centered around scaling laws between the con- , o . ,
trol parameter Rayleigh number Ra and the output param. Ve studied Rayleigh-Beard convection of a Boussinesq
eters Nusselt number Nu and Reynolds number Re. While stid in a three-dimensiondBD) Cartesian domain by means
far no universal scaling law for the Nusselt-Rayleigh numbef @ numerical model. The describing set of equations, de-
relation could be found1] it became clear that an under- duced from conservation of mass, energy, and momentum is
standing of the output parameters on the other control paran§iVen in nondimensional form by
eter, i.e., the Prandtl number Pr is crucial to fully understand 2 _
the dynamics. Systematic investigations on thg influence of VPK(au+u-Vu)+Vp=Viu-Rare,=0, @

Er on the flow dynamics were hampergd by the relative dif- 4 T+u-VT—V2T=0, ©)
ficulties to perform appropriate experiments in the labora-
tory. Also numerical approaches today still face considerable V.u=0 @)

problems to deal with high Rayleigh number convection with

varying Prandtl number. However, the situation has recentlyyhere u is the velocity vectorp the pressure without the
improved. Laboratory exp_eriments using appropriate “C]Uid%ydrostatic component; denotes the temperature, aedis
and gases can span a significant range of Prandtl numbejge unit vector inz direction. The equations have been made
[2-95]. Especially numerical studies have been applied tq,ondimensional using the heigtitof the box, the tempera-
study effects of largely varying Prandtl numb¢€4. This is {1 differenceA T=Tp,o— T;op between the bottom and the
of special interest in the geophysical context, since thqop and the thermal diffusior? time, = d2/ x. The similarity

Prandtl number in different geophysical systel@g., for the  h3rameters, the Rayleigh number Ra and the Prandtl number
molten Earth’'s core and the viscous Earth’s mantsnges p; are defined by

between rather extreme valuésom 0.1 to virtual infinity
for the specified systemsdn particular recently a new theory Ra= agATd vk, Pr=vlk, (4)
was pushed forward by Grossmann and Lofi&8] making
several predictions with respect to global output parametergherea is the thermal expansivity is the acceleration due
but also with respect to the development of thermal and visto gravity, v denotes the kinematic viscosity, ardrepre-
cous boundary layers and their influence on the scaling lawsents the thermal diffusivity. At the upper and lower surfaces
In the present study we have fixed the Rayleigh number to &e employed no-slip conditions for the velocity while the
value at 16 and have varied the Prandtl number in a range otemperature was kept constafft,(,= 1,Ti,p=0). The side-
10 3<Pr<10%. We analyze some assumptions forming thewalls were adiabatic and free-slip conditions were adapted
basis of the Grossmann-Lohse theory and show that thefor the velocity. The aspect ratio was setde-2. In numeri-
assumption of the type of the viscous boundary layer is notal experiments it is common to use free-slip conditions for
in accordance with our results. Nevertheless key predictionthe velocity field on the vertical walls in order to minimize
of the theory came out to be in close agreement with ousidewalls effects, in particular to avoid the generation of vis-
cous boundary layers at the sidewdlt. Ref.[1]). The nu-
merical integration of Eqg1)—(3) was performed by a finite
*Electronic address: breuerm@earth.uni-muenster.de volume multigrid method, with a time-stepping scheme,
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based on an explicit Adams-Bashforth and the implicit
Crank-Nicolson method. The solution method is essentially
based on that of Trompert and Hangéf with some modi-
fications described in Schmalet al. [6]. Due to the exis-

tence of strong vertical gradients of the temperature and ve 4t

locity field near the upper and lower boundariet Sec. IV)

one must assure that these boundary layers are appropriate
resolved. Following Grizbach[10] there should be at least
3-5 grid points in these boundary layers for sufficient accu-
racy. Our method allows for nonequidistant grids in vertical
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whereNZ is the number of control volumes in tlaalirection
andb controls the degree of the refinement. Most model runs
were carried out on a 6464x 32 grid. It turned out that grid
refinement was necessary for Prandtl numbers less than 5 ig
order to fulfill the criterion mentioned above. In experiments &
with Pr=5 boundary layers were accurately resolved by as=
uniform grid. In order to check our results for under-
resolution we compared the temporal evolution of the Nus-
selt number for two grid configurations. For both, a low 5|
value of the Prandtl numbdrPr=0.001, Fig. 1a)] and a
higher valug Pr=30, Fig. 1b)], we monitored the evolution
of the flow on a 6& 64x 32 and on a finer grid consisting of
128%x128x 64 nodes. In all cases the Rayleigh number was
set to Ra= 10°. Figures 1a) and b) display the time history
of Nu. Clearly both resolutions provide satisfactory agree-
ment. We conclude this also from the observation that the
mean values of Nu, averaged over the time span shown ir
Fig. 1, deviate by less than 3% for both Prandtl numbers.
Grotzbach[10] points out that specially Nu is a sensitive :
indicator of under-resolution. The close agreement of th&Yolution of the Nusseit number f¢a) Pr=0.001 and(b) Pr=30.
mean values thus points towards proper resolution. Anothe = compare runs de.vel(’ped on &684>x 32 grid against runs with

. .. a higher grid resolution of 128128x 64.
useful test to check the results against under-resolution is to
compare the Nusselt number, averaged over the depth of the
fluid layer, Ny, =/1_odz((WT)n—(9/92)(T)p), with the
Nusselt number at the upper surface, (JN& —(d/92)

Nusse
~

1
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1 1
0.81 0.82

time

0.83

(b)

FIG. 1. The influence of the spatial resolution on the temporal

Ill. SPATIAL STRUCTURE OF THE FLOW

In order to investigate the influence of the Prandtl number
X{(THnl,=1 ({+)n denotes the horizontal mearFor proper on the flow properties in thermal convection, we carried out
resolution the time averaged values should yield the sama numerical parameter study in a three-dimensional
result. In all runs we found the two values to be virtually Rayleigh-Baard configuration with an aspect ratio &f
identical, and thus this constraint to be well satisfied. For all=2, subject to rigid conditions at the upper and lower
model runs the conductive state with a superimposed tenboundaries and stress-free sidewalls. The Rayleigh number
perature perturbation was employed as initial condition. Thevas fixed at a value of Ral(®, high enough to get strong
calculations were evolved until transients faded away and &ime dependent flow dynamics. We varied the Prandtl num-
statistically stationary state was reached. To do so the calciber over a wide range from Prl0 2 up to Pr=100.

lations were carried out for at least 70 large-eddy-turnover In order to explore the effect of inertia on convection it
times(defined asr=d/U, s [11], U,ms being the root-mean- seems useful to first look at the spatial structure of the flow
square velocity. before applying more sophisticated diagnostics. Visualization
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FIG. 2. (Color Snapshots of the temperature field, illustrated by the temperature isosurface for the nondimensionalfalds aind
temperature cross sections at three side walls, for the values of the Prandtl ngant&r=0.025, (b) Pr=0.1, (c) Pr=1, and(d) Pr
=100.

is a powerful tool and the relative ease with which it can bepushed by the large-scale flow towards the sidewalls of the
used is certainly one of the advantages of numerical studiebox. At Pr=100 [Fig. 2(d)] the plumes are fully developed

In laboratory experiments visualization can be a formidableand give rise to a multicellular structure of the flow. The
task. In Figs. 22)—2(d) snapshots of the temporal evolution largest scale of the flow is now given by the size of the cells
of the temperature fields for four different values of therather than by the full length of the box. Our finding agrees
Prandtl number are showiPr=0.025(a), 0.1(b), 1 (c), 100  Well with the results of Verzicco and Camu$sR] who per-

(d)]. Temperature is dimensionless and varies betwgen formed numerical experiments in a cylindrical cell. They
—1 at the bottom and'=0 at the top. We picked th& also report a change from a large-scale flow dominated heat

—0.6 isosurface because it nicely displays the structure df2nsport at low values of the Prandtl number to a regime at
the warm up-wellings. Further, color coded cross sections o, igh Prandtl numbers where the heat transport is mainly due

the temperature on three sidewalls illustrate the distributiorﬁjoor:i'r?;r:fé c?#ltjr:g ?%aﬁ;uﬁxfseuE?ﬁ ?éaglaé[tigmggyterggggowgt

of temperature. The down-welling currents behave Symhigh Pr has been described by Cilibegtbal. [13]

metnpally and are not sh%wn here. Qn a first glance, we can To further investigate the thermal flow structure we have
identify some obvious differences in the thermal structure, e jated the spatial temperature probability density func-
between low and high values of the P_randtl number. At low;jon, (PDP for different values of the Prandtl numbgigs.
Prandtl number$Pr=0.025 and 0.1, Figs.(3) and 2b)] a  3(a)-3(d)]. The PDF’s can be derived from the histogram of

large-scale circulation develops, extending from one side ofhe spatial temperature distributiph4] with
the box where an up-welling has developed to the down-

welling at the opposite side. At a value oft [Fig. 2(c)] df(T)~ i ®)
plumelike structures have developed. They are, however, still P YONAT
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FIG. 3. The spatial temperature probability density functiBF averaged in time in a log-lin scale for the Prandtl numi@rPr
=0.025(the dashed line represents the Gaussian(kii Pr=0.1, (c) Pr=1, and(d) Pr=100.

n; being the number of registrations in the inter¥a| Nthe =~ mostly disappeared and a more laminar flow has emerged. In
total amount of registrations, antl is the bin width. The Wwhat follows we will demonstrate that the appearance of
PDF's have been time averaged over time intervals, suffismall horizontal vortices is related to the toroidal component
ciently long to exhibit quasistationary behavior. These spatiaff the flow. Due to incompressibilityu is solenoidal the
PDF's should not be mixed up with the PDF’s commonly velocity field can be decomposed into a poloidal and a tor-
derived from experimental measurements of the tempora@idal component

evolution of the temperature at fixed poirts5—-17. We

employ the PDF’s as a tool to characterize the spatial struc- U= VXVX(pe)+VX(Je,), (7)

ture of the temperature field. For low Prandtl numbjgPs

=0.025, Fig. 8a)] the spatial PDF shows a clear Gaussian®, ¥ are the poloidal and the toroidal scalar fields, respec-
shape. For Rr0.1 and P# 1 [Figs. 3b) and 3c)] the PDF tively, ande, is the unit vector ire direction. From the rela-
starts to deviate from a pure Gaussian shape. In the highon between thez component of the vorticityw,:=dv/dx
Prandtl number cagéPr= 100, Fig. 3d)] the PDF possesses —du/dy and the toroidal scalar fielg

a more exponentially behavior with long tails. This implies

that the temperature field is spatially uncorrelated for low wz:—VﬁlJ/, (8)
values of the Prandtl number, while the exponential shape at

high Pr indicates that the temperature field possesses spat{@Z denotes the horizontal Laplaciait is obvious, thaty
coherent structurg4.8]. We will show subsequently that this describes the horizontal vortices in the flow field, called the
change of the PDF’s is associated with the presence of theteroidal motion. At a first glance, Fig. 4 leaves already the
mal boundary layers. The change of flow structure with in-impression that the small scale vortices, i.e., the toroidal mo-
creasing Pr is also revealed in Fig. 4. Here snapshots dfon, gradually decreases with increasing Prandtl number.
streamlines in the horizontal plaze- 0.5 are displayed. For This result is corroborated in Fig. 5 showing the ratio of
low Prandtl numberg§ Pr=0.025, 0.1, and 1, Figs.(@—  toroidal energyE,,, and total kinetic energ¥;, as a func-
4(c)] we observe fine structures characterized by small locaiion of the Prandtl number. The total kinetic enefgy,, and
vortices. At a Prandtl number of PrL00 the vortices have the toroidal fractiorg,,, are derived from
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Exin:={U%)y, Ewr:=< ((9_ p [2,20,21. The behavior of these boundary layers has a strong
X y influence on the global transport processes and such for the

Nusselt and the Reynolds numdér22]. In this section we

Wil discuss the influence of the Prandtl number on the thick-

ness of the viscous and thermal boundary layers. Figure 6

(91//)2 (59’/)2> and has been thoroughly investigated by different groups
— ). €)
\%

(-)yv denotes the spatial mean and — denotes the average
time. In Fig. 5 one can clearly identify two regions: One, for
Pr<1, exhibits a virtual constant value Bf,, of about 30%
of the total kinetic energy. The other, for’PL, is character- 100 grrm
ized by a drastic decrease in the fraction of the toroidal en-
ergy with increasing Prandtl number down to less than 1% al [ o o
Pr=100. We reported the Prandtl number dependence of the
toroidal motion in a former study6], where we derived 1
similar results. In that study we employed stress-free condi-i :
tions, rather than the rigid conditions as used in this study.’s [ °
Thus, it seems to be a fundamental result that, independerf
of the boundary conditions, the flow contains a strong toroi-«=’
dal component, as Pr is low, while at high Pr it is dominated '
by poloidal motion. This result is also consistent with theo- i °
retical considerations. Taking the curl of the equation of mo-
tion [Eq. (1)] it can be shown that in the limit of Pso the
toroidal flow component vanishg¢49], what is also related | Lo 0wl 0t il 4
to the fact that the Reynolds number Re tends to zero with 10° 10"
increasing Prandtl number. We will discuss the Prandtl num-
ber dependence of the Reynolds number in Sec. V. FIG. 5. Ratio of the energy due to toroidal motion to total ki-
netic energy in percent. For low Prandtl numbers<(Bj the frac-
IV. VISCOUS AND THERMAL BOUNDARY LAYERS tion of the toroidal flow motion is nearly constant at a value of
about 30% whereas for Brl there is a strong decrease in the

The existence of thermal and viscous boundary layers iffraction of the toroidal flow motion with increasing Prandtl number

Rayleigh-Baard convection is a well known phenomenon down to less than 1% for Pr100.

o
Ll Ll L]

Prandt] number
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<T> FIG. 7. Temporal averaged depth profiles of the root-mean-

square horizontal velocity,, ;ms for Pr=0.025,0.1,1,100. In addi-
FIG. 6. Temporal averaged depth profiles of the horizontal meartion, the definition of the viscous boundary layer thicknegs,ax is
temperature for Rr0.025,0.1,1,100. For Pr100 the definition of illustrated for Pe=100. A, nax iS defined as the distance between
the thermal boundary layer thickness is illustrated.\t is defined  the position of the maximum value &fy, s in the depth profile
as the depth where a linear fit of the temperature profile near thand the bottom. -
bottom crosses the mean temperafigg .= 0.5.

They assume a large-scale dominated flow together with a
shows time averaged depth profiles of the horizontal meataminar viscous flow of Blasius type in the boundary layer
temperature for different values of the Prandtl number. Twdthe derivation of Eq(11) can be found, e.g., in Landau and
regions can be distinguished. Near the upper and lowekifshitz [23] §39]. We will return later to the question if
boundary layers steep temperature gradients develop adjthiese estimates of; [Eq. (10)] and\ [Eq. (11)] are in a
cent to a well-mixed almost isothermal bulk. Following good agreement with our results. First we will discuss how
Verzicco and Camus§il 2], we defined the thermal boundary the viscous and thermal boundary layers are influenced by
layer thickness\t as the depth where a linear fit of the the value of the Prandtl number. We determined the thickness
temperature profile near the surfaces crosses the mean tenf-the thermal and the viscous boundary layers, according to
peratureT=0.5. The vertical heat transport through thesethe definitions, as given above. The results are compiled in
thermal boundary layers is mainly conductive because th&ig. 8, displaying the thicknesses of both types of boundary
velocity drops to zero near to the walls. Thus one can deduclayers as a function of the Prandtl number. The thermal
an approximative relation between the Nusselt number Nioundary layeh decreases with increasing Prandtl number
and the thickness\; of the thermal boundary laydr20]
given by Ly

o Ap
a u,

,max

1 -1
A= 5Nu ™, (10)

Due to no-slip conditions, as applied here, the velocity drops&g_m_ ° o ©
from a characteristic value in the bulk to zero at the bound-< e
aries. The layer across which this drop takes place define: r o °
the viscous boundary layer. In Fig. 7 depth profiles of the
temporally averaged horizontal root-mean-square velocity - ]
Uy, ms are plotted for various values of the Prandtl number. L .
All profiles show (similar to the temperature profilesa
strong increase in the velocity near the walls with a distinct oprbuel —+wuvd v winud 0w vl v vusnad sl
peak. Similar to Kerr and Herrindl], we defined the thick- 10 1 ] mer 10 10
ness {ymax Py the local maximum in the velocity depth

profile (cf. Fig. 7). A central assumption in the theory of FIG. 8. Thickness of the thermal boundary layef and the

Grossmann and Lohd@] is that the viscous boundary layer viscous boundary layex, .4 Vs the value of the Prandtl number.
\, approximatively scales as For low Prandtl numbers the viscous boundary layer is embedded in

the thermal boundary layer whereas for high Prandtl numbers the
viscous boundary layer exceeds the thermal one with a crossover at
around P+0.3.

A~Re 12 (1)
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FIG. 9. Thickness of the thermal boundary laygrvs the Nus- FIG. 10. Thickness of the viscous boundary laygh,ax Vs the

selt number. The solid line gives a data fit with a power law of Reynolds number. Regim@): The viscous boundary layer thick-
Ap~Num =55 ness is nearly constant. Regirtt®: The solid line shows a data fit

. . by a power law Of\ a,— Re™02310.01L
whereas the viscous boundary layey ax increases. For

low values of Pr the viscous boundary layer is embeddeq]
within the thermal boundary layer. At values of Pr around o'?’mcreasing Re. The transition between those two regimes oc-

we observe a crossover and from that value of Pr the viscou(lsurs at a critical Reynolds number Reof about 20. A fit of
boundary layer is thicker than the thermal one. In a numeri: :

:  Re 02310011
cal study, but in a spherical shell domain, Tilgh24] found the data provides the power law,mac-Re

a similar dependence of the viscous and thermal bounda%l). This relation forms a central assumption in the theory
layers on the Prandtl number. Due to the spherical geometr f Grossmann and Lohse and relies on the existence of a

he fki1nd.s the thicdknessesbof thde boulndary Igyers to be differerg rely laminar flow of Blasius type. This discrepancy was
oL, o o Seomet o repoed n Refz, an expermenal vesigaon o

??]Z]ii;ié otsg tl)%vzﬁg ;;ﬁai%??;:é)#g:g?azyébg ti:n?hi)ékneﬁ The specific dyefin)?tion of thgg. viscous boundary layer by
for Pr>10 (Fig. 8 and does not further grow. Grossmann e position of the local velocity maximum, though appar-

. o ently sensible and as such commonly used, is somewhat ar-
and Ik;oh?e[f_it] |9I_rﬁd|cted such a b_eiha\lnorlm th? tlﬁrgg Pranl(sljﬂbitrary. Other definitions are feasible and possibly the dis-
number imit. They assume a critical value of the Reyno .Screpancy between our numerically determined scaling law
number in the case of large Prandtl numbers where the vis:

boundary | d tfurther i ith i .—and that as assumed in Grossmann-Lohse theory is only a
;?;ﬁdt?ﬁﬂmaggrayer oes notiurtherincrease wi IncreaSIn@onsequence of that specific definition. In order to check this

Now we return to the question if the boundary layers obeyWe have employed a second definitibg iy of the viscous
the relations as given in Eq&L0) and (11) which form an boundary layer. Similar to the thermal boundary laygf;,

essential basis of the theory of Grossmann and Lohse. In Fi Is defined by a linear fit, here of the velocity profile, in the
9 the thickness of the therymal boundary laver is Iot-ted Vglicinity of the boundary. The intersection of the straight line,
the time averaged Nusselt number. A poywerylaw ofthe fc)mTesulting from the linear fit, with the vertical tangent to the
Ay—Nu~%%40.92 (the error indicates the standard devialion ocal maximum in the profilécf. Fig. 7) defines the bound-

being in close agreement with the theoretical prediction o ry layer thicknesa., i, . In Fig. 11 the viscous boundary

: ayer thickness\ i, is plotted as a function of Reynolds
Eq. (10. The dependence of the viscous boundary' Iayernumber. Similar to the previously employed defined bound-
thickness on the Reynolds number is displayed in Fig. 10ar laver X+ is nearlv constant for low values of the Rev-
We defined the Reynolds number Re over the Iarge-scaley YEn Ay lin y Y

horizontal wind by the local maximum of the nondimen- riolds number. In the high Reynolds Qlé.rﬂb&eor.orl%gvlvnr:igh; data
sional horizontal velocitycf. Fig. 7)

olds numbers the boundary layer thickness decreases with

which significantly deviates from the relation given in Eg.

fit provides a power law oh ;,~Re
significantly closer to the scaling based on the assumption of
Re= UM JPr. (12 @ Blasius-type boundary layer flow. A comparison of Figs. 10
- and 11 points out a further discrepancy betwagn,,, and
As mentioned above we observe a regime for high Prandt\ i, - The boundary layer thickness, j;, turns out to be
numbers where the viscous boundary layer does not furthegignificantly thinner than the initially considered boundary
increase with increasing Prandtl number. The correspondintgyer thickness\, max. Consequently, even for high Prandtl
behavior is displayed in Fig. 10. For low Reynolds numbersnumbers the viscous boundary layer remains thinner than the
(corresponding to high Prandtl numbetse viscous bound- thermal one(cf. Fig. 12. Differently from the boundary
ary layer reaches an asymptotic thickness. For higher Reyayer definition\, ax (Fig. 8), no crossover between, i,
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FIG. 11. Thickness of the viscous boundary laygr;, vs the FIG. 12. Thickness of the thermal boundary layer and the

Reynolds numben i, is defined by the intersection of the linear Viscous boundary layex, i, vs the value of the Prandtl number.
fit near the boundary with the tangent to the local maximum in theDifferent to the viscous boundary layer definitian max (cf. Fig.
velocity profile(cf. Fig. 7). For low Reynolds numbefsegime(a)]  8). Ay,iin Shows no crossover with the thermal boundary layer thick-
the viscous boundary layer thickness is nearly constant. In the cagtesshr in the high Prandtl number case.
of high Reynolds numbersegime(b)] the viscous boundary layer
thickness\, i, is decreasing as a function of Re following a power the viscous one or vice versa. We will now present our re-
law of N i, ~ Re 0:442-0018 sults in the light of the theory of Grossmann and Lohse.
The Nusselt numbers obtained from our numerical experi-
and \; takes place with increasing Prandtl number. On theMents are plotted in Fig. 13 for different values of the Prandtl
one hand the scaling of, ;, with Re is close to the theo- number. We can identify two regions with different scaling
retical assumption of a Blasius type boundary layer flow, o@Wws. For low Prandil numbers, R, there is a clear in-
the other hand it does not resemble the theoretical predictiof€ase in the Nusselt number with increasing Prandtl number.
of a changing hierarchy between viscous and thermal boundD this regime our data are represented by a power law of the
i - i form Nu~ P-18220012 At 5 Prandtl number of around 0.3 a
ary layers in the high Prandtl number regime. N
At this stage we note that the behavior of both boundaryransition takes place and beyond that value the Nusselt num-

layers based on the definitions, max, Ay,in are not in full T T T T T
agreement with the Grossmann-Lohse theory. [ ' ' ' ' '

O  rigid BC (this study)
O  stress-free BC (Schmalzl et al.,2006) T

V. NUSSELT AND REYNOLDS NUMBER - @ .
VS PRANDTL NUMBER

©)

—_
=3

It is common to describe the state, respectively, the dy-
namics of thermal convecting systems using global outputs
parameters like the Nusselt and the Reynolds number. Th1zg
Nusselt number Nu gives the ratio of actual heat transport tc
the heat transport which would occur in a purely conductive
state. The Reynolds number Re measures the ratio of advec
tive momentum transport to the diffusive momentum trans-
port in the equation of motiofEg. (1)] and indicates how
turbulent the velocity field is. Most of the theories of thermal 1t oo s
convection assume a simple scaling relation between the glo Prandtl number
bal nondimensional output parameters like Nu and Re and
the system parameters Ra and Pr. There is known evidencﬁg
that the particular form of the scaling laws depends on the

region in the parameter space, spanned by the system paragkiieq with stress-free boundary conditions published in Schmalzl
eters Ra and Pffor a review see Siggi425]). Recently o 5 [6]. In both cases we can identify two different regions in
Grossmann and Loh4,8] have put forward a new theoret- yhich the increase of the Nusselt number with the Prandtl number
ical approach which allows them to predict scaling laws forfoliows a different power lawrigid: (8) Nu~PP182:0012 () Ny
Nu(Ra,Py and RéRa,Py for several flow regimes. They dis- pp.082:0003  gpressfree: (c) Nu~PrR2240017  (g) Ny
tinguish these regimes by whether kinetic and thermal dissi-- p/0-016:0.003 The solid lines indicate those fits. Filled circles and
pation occurs mainly in the boundary layer or in the bulk,squares denote used data to determine fits. The bars represent the
and by whether the thermal boundary layer is thinner thastandard deviation of the temporal fluctuations.

selt number

®)

@

ool 40l
1

10

FIG. 13. Values of the Nusselt number averaged in time vs the
andtl number. The circles represents results from this study with
igid upper and lower boundaries. Squares represent former results
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LA AR B AU B A B finding of different regions in the N&r and Ré&Pr) rela-
o meBCWiviy 2006)| 1 tions. Quantitatively, however, their results differ from ours.
— 3 For low values of Pr they obtain an exponent of 0.14 for the
Nu(Pr) relation (0.182, this studyand —0.73 for the Ré&Pr)
relation (—0.607, this study The differences can probably
be addressed to the differences in geometry and boundary
] conditions. In their study no-slip conditions were applied at
. the sidewalls while we kept the sidewalls stress-free.
3 Regardless those differences, a change in the system be-
] havior, reflected by a change in the scaling laws at a Prandtl
= number of around 1 seems to be an established fact. What is
3 the mechanism behind this transition? Most theories address
this transition to a change in the hierarchy between the vis-
Tl S g s —o] - coys and thermal boundary  layere.g.,  Refs. [26,7)).
Prandtl number Namely, they assume that at low values of Pr the viscous
FIG. 14. Values of the Reynolds number vs the Prandtl numbelj,ayer is nested within the thermal one and that With increas-
Similar to Fig. 13 the circles represents results of this stiidyd ing Pr the thermal boundary layer decreases while the vis-

case, whereas the squares denote results of the stress-free ca&QUS layer grows. A crossover occurs and at large values of
published in Ref[6]. In both cases, two regions with different P the viscous and thermal boundary layer thicknesses reach

power laws can be identified: rigid cage) Re~ Pr~ 06070012 () an asymptotic value. This picture corresponds almost exactly
Re~ Pr 09980014 giregs-free casdc) Re~Pr 06050013 (q) Re  to our observationgcf. Fig. 8), if we consider the viscous
~ pr0.916-0.014 boundary layer definition ok, .. Otherwise, the viscous
boundary layer based on the definition 0f ;, does not
ber virtually saturates. In fact our data still show a weaklyshow a crossover with the thermal boundary layer in the high
increasing Nu, represented by a power law NuPrandtl number regime and hence contradicts in this point
~PP032:0003 The two regimes are portrayed in Fig. 13 with the theory(cf. Fig. 12. However the change of hierar-
(lower curve. The low Prandtl number branch correspondschy cannot be the cause behind the transition in the scaling
to the regionll, in the Grossmann and Lohse picture and islaws of NUPr) and Re&Pr). Strictly spoken, the presence of a
characterized by a thin viscous boundary layer embedded iviscous boundary layer and such also its growth is not nec-
the thermal one. Dissipation of kinetic energy occurs mainlyessary for this transition to take place. We have carried out a
in the bulk while thermal dissipation takes place in the ther-virtually identical set of experiments, however with stress-
mal boundary layers. We have already demonstrated in Fig. ee conditions all around the box. Under such circumstances
that the viscous boundary layer lies in fact within the thermalonly thermal boundary layers are present, whereas a viscous
layer for low values of Pr. For this regime Grossmann andooundary layer does not exigf]. The main result of this
Lohse predict a power law of NuPr’® thus being in close study is shown in Figs. 13 and Xdpper curves For both,
agreement with our results. The high Prandtl number branctigid and stress-free conditions Nu and Re show quantita-
corresponds to a region which according to Grossmann arfdvely a very similar functional dependence on Pr. In either
Lohse is characterized by dissipation, both thermal and kicase a transition in the NRr) and R¢Pr) curve is observed
netic, taking place mainly in the boundary layers and wheréand also the describing power laws yield similar val(efs
no further increase of the viscous boundary layer can bé&igs. 13 and 14 In fact the presence of a viscous boundary
expected. Following the theory Nu does not depend on Pr itayer seems only to affect the actual values of the Nusselt
this region. Our results reveal that the viscous boundarygnd the Reynolds number, however not the dependence on
layer does not further grow with increasing @f. Fig. 8.  the Prandtl number. Seemingly the existence of a viscous
The exponent in the power law is very small. Thus we conboundary layer is not a necessary condition for the transition
sider our results to be in close agreement with the prediction Nu(Pr) and Ré&Pr) to take place. Thus, the mechanism
of Grossmann and Lohg&,8]. behind the transition in the power laws cannot be the change
The Reynolds number dependence on the Prandtl numbef hierarchy of viscous and thermal boundary layers. We
is displayed in Fig. 14lower curve. Similar as for the Nus- present an alternative explanation in the following section.
selt number we can define two regions with different scaling
behavior, i.e., different power laws in the functional depen-
dence of R&Pr). For low Prandtl numbers our data yield a
power law of Re-Pr 00070012 whereas for high Prandtl  \We have investigated the influence of the Prandtl number
numbers the Reynolds number scales with Reon the dynamics of thermal convection. A numerical param-
~Pr0-998=0.014 These results are almost identical with the eter study has been carried out in a 3D Rayleighdsd
predictions of Grossmann and LoH$&8]. For small Prandtl  configuration for Prandtl numbers 18<Pr<10?. By flow
numbers (regime 11|) they derive a power law of Re visualization we studied how the spatial structure of the flow
~Pr ¥ and in the high Prandtl number regime | a power s affected by changes in Prandtl number. We further inves-
law of Re~Pr 1. Verzicco and Camus$il2] performed a tigated the functional dependence of the global parameters
numerical study in a cylindrical geometry and also report theNu and Re on the Prandtl number. The results are compared

10000

g

Reynolds number
S
3

VI. SUMMARY AND DISCUSSION
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with those from a recent theoretical approach by Grossmang,, .. obeys a power law,, ;,~Re 244%:9-018 heing close

an(\iNLOr:lSG[?.g]- itied two different redimes. to the predicted scaling law of,~ 1/yRe, while X, max is
€ have identihied two different regimes. related to Re by the dependencg .~ Re #3001 thus

Low Prandtl number regimgPr < 1). In this regime heat significantly deviating from the theoretical value. None of

transport is dominated by one large-scale circulation. Th . . . )
regime is characterized by a high ratio of toroidal energy tc?he employed velocity boundary definitions yield a behavior

total kinetic energy. Due to no-slip conditions the Strongthat closely resembles the theoretical predictions. Still, the

horizontal wind near the top and the bottom walls crea’[egremcuad dependences of ) and R¢Pr) agrees well with

viscous boundary layers which are embedded within the thero! results, indicating that the viscous boundary layer does

mal boundary layers. ther srong evidence fo th relative imsigniicance of the be-
High Prandtl number regiméPr> 1). The high Prandtl g g

number regime is characterized by plume dominated heaQavior of the viscous boundary layer is provided by a set of
g o Dy plur runs carried out under stress-free, but otherwise identical
transport. The flow motion is mainly poloidal and the frac-

tion of toroidal energy on the total kinetic energy tends toCondltlons [6]. In such a configuration, viscous boundary

e ) ) layers do not exist, i.e., their thickness is zero. Despite the
zero with increasing Pr. Viscous boundary layers could als%bsence of viscous boundary lavers. Nu and Re show quali-
be identified in the high Prandtl number regime, but different y 1ayers, q

from the low Prandtl number regime thev reach a saturatet tively the same dependence on Pr as for rigid boundaries.
o . 9 y his means that the presence of viscous boundary layers is
state with increasing Pr.

In both regimes the power laws for kRr) and RéPY) as certainly not a necessary condmo_n for the observed phenom-
. . : enon to occur and it is indeed unlikely that the viscous layers
derived from our calculations match closely with those ob-

tained thepretically by Grpssmann and thse for the appr09|a|)r/1 ?)Tjrlr\r:i%(\)/\:tftlril; rrzlrif;rrlk?lﬁerfsgtetﬂé significance of toroi-
priate regimes. Our.expenments also conﬁ.rm the assumpnogal motion changes noticeably across the transition from the
that for Jow Pr the viscous b_oundary layer is thinner than theiow to the high Prandtl number branch indicating that the
thermal one and that the viscous boundary layer UIt'matel.¥wo dynamical regimes are characterized by different trans-
stops growing, once a Prandtl number higher than ten is .

reached. However the behavior of the viscous boundary Iayé)rOrt properties.
deviates from the theoretical prediction in some sense. The

change of hierarchy between thermal and viscous boundary

layers, as anticipated from the work of Grossmann and The authors profited from discussions during the collo-
Lohse is only observed for a viscous boundary laygrax  quium “High Rayleigh Number Thermal Convection” at the
determined by the local velocity maximum. The boundarylLorentz Center Leiden, The Netherlan@®003. This work
layer\, in ,» based on a linear fit of the velocity profiles near was supported by the “Deutsche Forschungsgemeinschaft”
the boundaries does not show such a crossover. Converse(fpFG) under Grant No. Ha 1765/7-1.
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