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Symmetric, asymmetric, and antiphase Turing patterns in a model system
with two identical coupled layers

Lingfa Yang and Irving R. Epstein*
Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University,

Waltham, Massachusetts 02454-9110, USA
~Received 23 May 2003; published 27 February 2004!

We study Turing pattern formation in a model reaction-diffusion system with two coupled identical layers.
The coupling creates a pitchfork bifurcation, which unfolds the symmetric steady state via primary Turing
instability, into a pair of distinct, unstable, asymmetric steady states~a-SS!. The a-SS gain stability at a reverse
Turing bifurcation. The multiple stabilities created by the coupling generate a corresponding multiplicity of
structures, including symmetric, asymmetric, antiphase, and localized Turing patterns. Coexistence and com-
petition of the different types of Turing patterns are studied. A one-dimensional localized structure exhibits
striking curvature effects.
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I. INTRODUCTION

The Turing instability has been proposed theoretically a
mechanism for pattern formation in morphogenesis@1# and
has been demonstrated experimentally in reaction-diffus
systems@2,3#. Classic Turing patterns, spontaneously aris
due to the Turing instability, are stationary, periodic conc
tration patterns with an intrinsic wavelength. We have
cently expanded the classic notion of Turing patterns
two aspects. First, the single wavelength selectivity w
broadened to encompass two-wavelength selection, w
two interacting Turing modes exhibit a spatial resonance
spontaneously gives rise to ‘‘black-eye’’ or ‘‘white-eye’’ hex
agonal superlattices@4#. The other extension encompass
oscillatory Turing patterns@5#, where a skeleton stationar
Turing pattern is overlaid with a fine structure of propagat
traveling waves.

Both of the above studies were performed on syste
consisting of two coupled layers. Such structures are c
mon in biological systems, where bilayer membranes
multilayer tissues are often found. Typically, particles u
dergo homogeneous diffusion within each layer, but the r
of diffusion between layers can be quite different. This d
ference in diffusion may play a significant role in embryon
development or biological morphogenesis@6#.

Concentration gradients caused by chemical feeds aris
most experimental designs used to study pattern format
Gradients are ubiquitous in biological environments. Tur
patterns in such ramped systems have been studie
quasi-2D and 3D geometries@7,8#. Multiple layers tend to
develop spontaneously because of the feeding ramp
model consisting of two coupled layers provides a ma
ematically tractable way of examining some of the effects
parameter ramps. A two-layer model consisting of two l
early coupled Haken equations with different parameters
the two layers was studied by Bestehorn@9#, who found
mixed states or ‘‘beans’’ and triangles obtained by super
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sition of hexagons and stripes. Our focus here is not on th
effects, however, but rather on the pure coupling effects
can arise when twoidentical layers are coupled.

In this paper, we consider a two-layer system in whi
species within each layer diffuse isotropically in two dime
sions and move more slowly between layers due to the p
ence of a gap or a permeable or semipermeable memb
@5#. Reaction and~horizontal! diffusion in each~infinitesi-
mally thin! layer generate 2D patterns, leading to a char
teristic length scale, while the mass exchange between la
~vertical diffusion! provides coupling. We focus on how thi
coupling influences pattern formation. We find that intere
ing new patterns emerge only when the coupling is wea
than the planar diffusion. When the vertical and horizon
diffusion are matched~there is no gap between layers, or th
intervening membrane is identical to the material of the la
ers!, the system approaches 3D, and no new phenomena
cur.

Two sets of properties control the behavior of a couple
layer system: chemical~composition and concentrations o
feed streams, kinetic parameters! and physical~diffusion
rates within the layers, diffusive or other form of interlay
coupling!. In this paper, we investigate a two-coupled-lay
system in which the layers are identical with respect to th
chemical and physical properties, i.e., all parameters are
same for both layers. There are no ramps. This choice
tinguishes the present work from our earlier studies@4,5# and
from Ref. @9# where coupled layers with different paramet
values were investigated.

The diffusion coefficients areuniform within a layer and
are thesamefor both layers but aredifferent across layers.
This configuration mimics stepwise changes in the diffus
transverse to the layers~third dimension! when the thickness
of the layers and the gap between them are taken into c
sideration. Anisotropic and spatially varying diffusion coe
ficients have been studied in a general context using am
tude equations@10#. Here, we ignore the third dimension an
treat the system as two close-coupled layers, which are
proximated as infinitesimally thin. The diffusion across la
ers provides the coupling. We focus here on the role of
©2004 The American Physical Society11-1
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coupling, and demonstrate that it suffices to produce new
nontrivial phenomena.

We categorize the patterns found in this system assym-
metric ~s-! when the concentrations at all pairs of corr
sponding positions in the two layers are equal, asasymmetric
~a-! when corresponding concentrations in the two layers
fer, and asantiphase~anti-! when the spatially varying part
of the concentrations in the layers are of equal amplitude
opposite phase. We show that the coupling can induce a
ondary bifurcation, in which, as the coupling is increased
symmetric steady state~s-SS! subject to a primary Turing
~symmetric Turing: s-Tu! instability is split into two distinct,
unstable, asymmetric steady states~a-SS!, followed by a re-
verse asymmetric Turing~a-Tu! bifurcation, in which the
a-SS gains stability.

A localized structure~LS! is a stably coexisting combina
tion of a region of one type of pattern embedded in anot
type of ~background! pattern. One form of LS, with potentia
applications in information processing@11#, consists of cav-
ity solitons in a semiconductor microcavity, where optic
spots~intensity peaks! can be written and erased on a hom
geneous background of radiation. Pinned spirals@12# or an-
tispirals@13# constitute another example of a LS, where T
ing spots serve as cores that emit or receive waves. Most
arise in bistable systems, and we anticipate that the mult
bility in our coupled layer system may generate a variety
LSs.

II. MODEL AND BIFURCATIONS

We represent our two-coupled-layer system by a pair
coupled reaction-diffusion equations. We imagine that
two layers are identical and are fed with the same se
reagents:

]u1

]t
5F~u1 ,v1!1¹2u11h~u22u1!, ~1!

]v1

]t
5s$G~u1 ,v1!1d@¹2v11h~v22v1!#%, ~2!

]u2

]t
5F~u2 ,v2!1¹2u21h~u12u2!, ~3!

]v2

]t
5s$G~u2 ,v2!1d@¹2v21h~v12v2!#%, ~4!

where the kinetic terms are specified by the Lengyel-Eps
model @14,15#, which describes the chlorine dioxide-iodin
malonic acid~CDIMA ! reaction.

F~u,v !5a2u24
uv

11u2
, ~5!

G~u,v !5bS u2
uv

11u2D . ~6!
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Here,u andv are the dimensionless concentrations of I2 and
ClO2

2 , respectively. Concentrations in the two layers are d
tinguished by subscripts 1 and 2. Diffusion within each lay
is described by the 2D Laplacian term,¹25]2/]x2

1]2/]y2. There is a linear coupling with strengthh between
layers. The parametersa andb are kinetic parameters relate
to the feed concentrations and the rate constants;d specifies
the relative mobilities of I2 and ClO2

2 , while the multiplier
s is determined by the complexing ability of the starch i
dicator S used in the gel@16#. We taked51, s550 in all
calculations;a or h will serve as the control parameter.

We first fix the coupling ath50.3 and vary the chemica
parametera in order to analyze the three bifurcations~Fig.
1!. At small a,aT , the system has a unique stable stea
state where the concentrations of the two layers are unif
and identical (u15u25uSS5a/5). At the primary Turing bi-
furcation point (aT513.6983), this s-SS becomes unstab
to spatial perturbations of a critical wave numberkc50.97,
resulting in formation of s-Tu patterns that break the spa
uniform symmetry. The concentrations of the two laye
however, remain identical (u15u2;eikcx). At a second bi-
furcation point,a2514.6707, a pitchfork bifurcation occur
and the concentrations of the two layers begin to dive
from one another. In this new pair of asymmetric stea
states~a-SS! the concentration is higher in one layer than
the other. Turing patterns arising out of this a-SS are term
asymmetric Turing ~a-Tu!. By changing the coupling
strength h, a2 may approachaT , but it never becomes
smaller thanaT ~Fig. 2!. In this sense, the pitchfork bifurca
tion is a secondary bifurcation. The Turing instability ceas
at a2T516.0468; beyond that point, the two layers are u
form in space, but have distinct concentrations in the n
stable a-SS. We refer to the bifurcation ata2T as a reverse
Turing bifurcation because it occurs asa is varied in the
opposite direction from the s-SS to s-Tu bifurcation ataT .

The asymmetric solutions depend strongly on the c
pling. If the coupling is too weak, it cannot split the s-S

FIG. 1. Pitchfork bifurcation in the coupled layer system wi
b50.55,h50.3. The primary SS changes from stable~solid line! to
Turing-unstable~dashed line! at the primary Turing bifurcationaT .
A pair of new SS arises at the pitchfork bifurcationa2. They are
Turing unstable~dashed lines! when born, then become stable~solid
lines! at the reverse Turing bifurcationa2T . Schematic solutions are
shown in each of the parameter regions.
1-2
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solutions. On the other hand, with too strong a coupling
rapid exchange destroys any differences between the la
Thus multistability can arise only in a finite range of co
pling strengths. Our calculations in Fig. 3~a! show an egg-
shaped region of multiple steady states.

In addition to the original primary instability, two new
instabilities are induced by the coupling@Figs. 3~b!–3~e!#. At
intermediate coupling levels, the two a-SS are stable,
these become unstable to Turing pattern formation tow
the ends of the ‘‘egg.’’ This is the a-Tu instability, which
shown on the dispersion relations in Figs. 3~b! and 3~c!.
Although the concentrations in the s-SS are independenth
@horizontal dashed line in Fig. 3~a!#, the stability properties
of this state change as the coupling strength is varied@cf.
Figs. 3~d! and 3~e!#. The original, degenerate Turing inst
bility is split into two distinct maxima in Fig. 3~d!; the left
one ~antiphase Turing, anti-Tu! is a coupling-dependen
mode, while the right one is independent ofh. As the cou-
pling increases, the left peak in Fig. 3~d! moves to a lower
wave number, flattens, and finally becomes monotonic
decreasing, as shown in Fig. 3~e!.

Three types of Turing instabilities: a-Tu, anti-Tu, an
s-Tu, are responsible for three types of Turing pattern form
tion @Figs. 3~f!, 3~h!, and 3~j!#. ~i! The a-Tu instability gives
rise to an a-Tu pattern@Fig. 3~f!#, where the layers have
unequal concentrations that are periodic in space and sta
ary in time. We note that a-Tu patterns are always in-pha
the maxima and minima of one layer correspond to those
the other layer. Their occurrence and amplitude depend oh
@Fig. 3~g!#. ~ii ! We refer to the coupling-dependent Turin
mode as anti-Tu because it gives stationary Turing pattern
both layers with the same amplitude and wavelength,
opposite profiles@Fig. 3~h!#. Anti-Tu patterns occur at wea
coupling, h,0.65 @Fig. 3~i!#, and their amplitudes are
slightly modified by h, but the average concentration r
mains constant at s-SS.~iii ! The s-Tu patterns@Fig. 3~j!#
arising from the primary Turing instability are independe
of coupling strengthh @Fig. 3~k!#.

III. COEXISTENCE AND COMPETITION OF DIFFERENT
TYPES OF TURING PATTERNS

The two-dimensional~2D! Turing patterns shown in Fig
4 all evolved spontaneously from random initial conditio

FIG. 2. Location of the pitchfork bifurcation in thea2h plane
holding a2>aT . The bifurcation separates multiple steady sta
~lined area! from the single SS region.
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with the same chemical parameters, (a,b)5(16,0.55). In the
single layer system, a random initial condition att50
quickly develops into a honeycomb Turing pattern att540
time units ~t.u.!, and then slowly decomposes into a stab
stripelike pattern (t5400 t.u.), as shown in Fig. 4~a!. In the
two-coupled-layer system with couplingh50.3, these same
chemical parameters yield two different types of Turing p

s

FIG. 3. ~a! Bifurcation ‘‘egg’’ showing dependence of a-SS o
coupling strengthh for (a,b)5(16,0.55). Middle sections~solid
lines! are stable; two ends~dashed lines! are unstable. The centra
horizontal dashed line shows unstable s-SS.~b!–~e! Dispersion re-
lations showing the most positive eigenvalue for a-SS~b!,~c! and
s-SS~d!,~e! at h50.30 ~b!,~d! and 0.62~c!,~e!. Three types of Tur-
ing patterns in one-dimensional simulations, a-Tu~f!, anti-Tu ~h!,
and s-Tu~j! arise from corresponding instabilities in~b! and ~d!.
Their occurrence~span of h! and amplitude~5max2min! are
shown in ~g!, ~i!, and ~k!, respectively, where the average~av! is
from integration over a layer.
1-3
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terns, depending on the initial conditions.~i! Starting from
the a-SS, where the two layers have quite different conc
trations, an a-Tu appears, in which the layers show an
phase spotlike, hexagonal, stationary pattern of the same
quency @Fig. 4~b!#. ~ii ! Starting from the s-SS where th
concentrations in the two layers are identical, an anti-Tu
pears, in which both layers have a short stripelike patte
but they are antiphase@Fig. 4~c!#. The snapshots ofu1 andu2
look at first glance like negative images of one another.

Averaging the layers@third frames in Figs. 4~b! and 4~c!#
produces frequency-doubling in the anti-Tu, while the a-
retains its original frequency. To explain this difference,
revisit the dispersion relations in Figs. 3~b and d!, where we
observe that the a-Tu instability band is narrow and close
the onset point, while the anti-Tu instability band is mu
broader and far above onset, which allows resonant mode
arise. The dispersion curves can also be used to pre
whether the patterns will be spotlike or stripelike, since
former patterns arise immediately above onset, while stri
generally occur well beyond the onset of an instability.

The existence of two different stable patterns at the sa
parameters implies bistability: the a-Tu in Fig. 4~b! and the
anti-Tu in Fig. 4~c! are both stable to small perturbation
With appropriate initial conditions, both structures c
emerge and coexist. Figure 5 shows the coexistence of t
types of Turing patterns. The system is initially prepared
an a-SS at the left and an s-SS at the right, and then s
random perturbations are added as shown in Fig. 5~a!. As
illustrated in Figs. 4~b and c!, two types of Turing patterns
should, and do, develop in areas I and IV, respectively,
shown in Figs. 5~b,c,d!. Close to the interface~dash-dot line
section! the concentration difference on the left side cons
tutes a strong perturbation to the s-SS on the right s
which gives rise to anti-Tu stripes in area II followed by s-T

FIG. 4. Spontaneous formation of~a! stripelike Turing pattern in
the single layer system,~b! spotlike a-Tu, and~c! short stripelike
anti-Tu in the two-layer system. Size: 64364 ~a!,~b! and 1283128
~c!.
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stripes in the adjacent area III, with both stripes parallel
the interface. With this configuration, all three types of Tu
ing patterns~a-, anti-, and s-! remain stable apparently in
definitely.

FIG. 5. Coexistence of a-, anti-, and s-Turing patterns resulti
from random perturbation of initial a-SS and s-SS.~a! Initial con-
centrations of the two layers.~b!–~d! three views~two layers and
their average! of stably coexisting patterns. System size: 1283256.
Parameters as in Fig. 4.

FIG. 6. Competition between a-Tu and anti-Tu shown as sn
shots of (u11u2)/2. Arrows show directions of motion of the phas
border. Size 1283128, couplingh50.62.
1-4
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When more than one type of pattern is stable, competi
can arise at an interface where patterns meet, and this c
petition can result in movement of the border or front b
tween the patterns. The motion can be complicated due to
structure of the attractor basins in the phase plane, the bo
geometry, and curvature effects. A relatively simple but
teresting situation involving competition between anti-
and a-Tu is shown in Fig. 6. The stable anti-Tu is initiated
parallel stripes with the central quarter replaced by a-SS
then quickly develops into a-Tu (t540 t.u.). The broken
anti-Tu stripes approach one another along the vertical di
tion, swallowing the a-Tu that separates them, but they sh
no motion in the horizontal direction~compare snapshots a
40 and 400 t.u.!. Thus the anti-Tu stripes are active at the
broken ‘‘heads’’ as they overcome the a-Tu spots, but the
patterns coexist peacefully where the boundary betw
them is vertical.

The multiplicity of spots and stripes in a-, s-, or an
Turing patterns in this two-layer system arises from a diff
ent source than the coexistence of spots and stripes in
single layer system. In the two-layer system, the spot
a-Tu originates from the a-SS and the stripelike s-Tu a
anti-Tu emerge from the s-SS. In the one layer system th
is a region of bistability of spot- and stripelike Turing pa
terns, but both originate from a single monostable SS. S
bility or competition in the first case depends mainly on t
basins of attraction of the steady states, while in the sec
case it depends on the secondary instabilities of each pat
We will show that localization in the coupled system d
pends on multistability, while in the single layer system
calization arises from subcriticality@12#.

IV. LOCALIZATION

Localization arises when different types of patterns
steady states can coexist with a stationary border separ
them, and a region of one is embedded in a region of
other~s!. Multistability provides the possibility of a numbe
of localized structures in the two-layer system. On clo
examination of the anti-Tu@area IV, (u11u2)/2 snapshot# in
Fig. 5~d!, we note the occurrence of black dots and wh
‘‘bridges’’ that form a series of dashed lines. Along the
lines, the concentrations of the two layers are in-phase, ra
than antiphase. These lines are localized Turing pattern
which an s-Tu pattern is embedded in a background of a
Tu. This lower-dimensional Turing pattern occurs along
lines of the anti-Tu phase switching.

Multistability among the three types of Turing patterns,
a-, and anti-, or the two types of steady states, s- and a
provides numerous possibilities for different types of loc
ized structures, which merit further study. Figure 7 sho
one example, where the background is a matrix of hexa
nally arranged spots~a-Tu!. When this two-layer medium is
locally ‘‘burnt’’ or ‘‘written upon,’’ i.e., the concentrations
are reset to s-Tu at the dark spot, one bit of information
‘‘saved.’’ Of course, the bit is erasable~by restoring the con-
centrations to the levels of the uniform a-Tu!, like a CD-RW.
Even more appealing is the medium’s ‘‘auto-correction’’ fe
ture, if the location of one bit is written incorrectly so that
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FIG. 7. Example of a stable localized structure: a single s
spot is embedded in a hexagonal a-Tu lattice~top panel!. The con-
centrations of the two layers and their average along the dashed
cut are shown in the lower panels.

FIG. 8. Spontaneous formation of localized one-dimensio
s-Tu structures at the border between antiphase clusters. (a,b)
5(12,0.2),h50.3, size: 1283128.~a! Formation of antiphase clus
ters from random initial conditions. 1D s-Tu pattern@dashed line in
plot of (u11u2)/2] survives at phase boundary and drifts due
curvature effect.~b! Formation of s-Tu at an initially straight an
tiphase border.~c! Curvature effect causes shrinkage, and ultim
disappearance, of the inner phase. Rightmost panel is a space
plot along a line through the center of the circle. Temporal behav
shows accelerating speed as curvature increases.
1-5
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does not fit the matrix exactly, that bit will be pushed ba
into its proper position by the Turing wavelength selectivi

Finally, an unprecedented type of localized structu
arises as a result of the multistability between the a-SS
terns and the s-Tu pattern. This type of multistability occ
for a.a2T in Fig. 1, or for values ofh in the middle part of
the ‘‘egg’’ in Fig. 3~a!. Starting from random initial condi-
tions, antiphase clusters appear as shown in Fig. 8~a!. The
borders between the domains are rough, and the bump
them persist as the clusters evolve. Plotting the average
centration shows that (u11u2) is essentially constant every
where except on these borders, where the concentration
file looks like a dashed line. Measuring the wavelength alo
this border and comparing the concentrations ofu1 andu2,
we recognize that this boundary constitutes a 1D s-Tu st
ture. In Fig. 8~b!, we focus on the spontaneous formation
this structure by initializing the left and the right halves
two a-SS of opposite phases with a straight border betw
them, with cylinder boundary conditions~top connects to
bottom, left and right are zero-flux!. The sharp concentratio
profile across the border first becomes smooth and t
forms a ‘‘shoulder’’ region of high concentration. Nex
bumps in the average concentration begin to form along
border, ultimately becoming a dashed line like that seen
Fig. 8~a!. This structure remains stable and stationary.
these kinetic parameters, the phenomenon occurs within
coupling range 0.28,h,0.42; at weaker coupling strength
the border remains straight; with stronger coupling, s-
stripes grow perpendicular to the border.

The evolution of the shape of the domain boundaries
Fig. 8~a! is due to a curvature effect. To elucidate this ph
hy

,
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nomenon, we carry out the simulation shown in Fig. 8~c!,
where the central disk and the outer region are initialized
opposite a-SS. A dashed circle quickly forms, and then
gins to shrink. The space-time plot in the rightmost frame
Fig. 8~c! demonstrates that the speed at which the bor
contracts is proportional to its curvature, 1/r .

V. CONCLUSION

We have analyzed a relatively simple model consisting
two identical coupled layers. The coupling induces new
furcations, leading to multistability. Two types of stead
states, s- and a-SS, and three types, s-, a-, and anti-, of
ing patterns are obtained. Their coexistence or competit
as well as the associated phase boundary movements,
further study. A novel one-dimensional localized structu
has been found and investigated with respect to its forma
and the effects of curvature. More localized structures
expected due to the multistability. Our results have be
demonstrated in, but are not limited to, the Lengyel-Epst
model of the CIMA reaction. Similar coupling added to oth
models that possess a Turing instability should prod
analogous results. The present coupled scheme shoul
applicable to pattern formation in morphogenesis, and
localized structures offer promise for information storage
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