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Symmetric, asymmetric, and antiphase Turing patterns in a model system
with two identical coupled layers
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We study Turing pattern formation in a model reaction-diffusion system with two coupled identical layers.
The coupling creates a pitchfork bifurcation, which unfolds the symmetric steady state via primary Turing
instability, into a pair of distinct, unstable, asymmetric steady stat&®S. The a-SS gain stability at a reverse
Turing bifurcation. The multiple stabilities created by the coupling generate a corresponding multiplicity of
structures, including symmetric, asymmetric, antiphase, and localized Turing patterns. Coexistence and com-
petition of the different types of Turing patterns are studied. A one-dimensional localized structure exhibits
striking curvature effects.
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[. INTRODUCTION sition of hexagons and stripes. Our focus here is not on these
effects, however, but rather on the pure coupling effects that
The Turing instability has been proposed theoretically as @an arise when twalentical layers are coupled.
mechanism for pattern formation in morphogenggisand In this paper, we consider a two-layer system in which
has been demonstrated experimentally in reaction-diffusiospecies within each layer diffuse isotropically in two dimen-
systemg2,3]. Classic Turing patterns, spontaneously arisingsions and move more slowly between layers due to the pres-
due to the Turing instability, are stationary, periodic concen-ence of a gap or a permeable or semipermeable membrane
tration patterns with an intrinsic wavelength. We have re{5]. Reaction andhorizonta) diffusion in each(infinitesi-
cently expanded the classic notion of Turing patterns immally thin) layer generate 2D patterns, leading to a charac-
two aspects. First, the single wavelength selectivity wageristic length scale, while the mass exchange between layers
broadened to encompass two-wavelength selection, wheigertical diffusion provides coupling. We focus on how this
two interacting Turing modes exhibit a spatial resonance thatoupling influences pattern formation. We find that interest-
spontaneously gives rise to “black-eye” or “white-eye” hex- ing new patterns emerge only when the coupling is weaker
agonal superlatticep4]. The other extension encompassesthan the planar diffusion. When the vertical and horizontal
oscillatory Turing pattern$5], where a skeleton stationary diffusion are matche@here is no gap between layers, or the
Turing pattern is overlaid with a fine structure of propagatingintervening membrane is identical to the material of the lay-
traveling waves. er9, the system approaches 3D, and no new phenomena oc-
Both of the above studies were performed on systemsur.
consisting of two coupled layers. Such structures are com- Two sets of properties control the behavior of a coupled-
mon in biological systems, where bilayer membranes otayer system: chemicalcomposition and concentrations of
multilayer tissues are often found. Typically, particles un-feed streams, kinetic parameterand physical(diffusion
dergo homogeneous diffusion within each layer, but the rateates within the layers, diffusive or other form of interlayer
of diffusion between layers can be quite different. This dif- coupling. In this paper, we investigate a two-coupled-layer
ference in diffusion may play a significant role in embryonic system in which the layers are identical with respect to their
development or biological morphogenefts. chemical and physical properties, i.e., all parameters are the
Concentration gradients caused by chemical feeds arise same for both layers. There are no ramps. This choice dis-
most experimental designs used to study pattern formationinguishes the present work from our earlier studigs] and
Gradients are ubiquitous in biological environments. Turingfrom Ref.[9] where coupled layers with different parameter
patterns in such ramped systems have been studied iralues were investigated.
quasi-2D and 3D geometridd,8]. Multiple layers tend to The diffusion coefficients araniform within a layer and
develop spontaneously because of the feeding ramps. &re thesamefor both layers but arelifferent across layers.
model consisting of two coupled layers provides a math-This configuration mimics stepwise changes in the diffusion
ematically tractable way of examining some of the effects oftransverse to the layefthird dimension when the thickness
parameter ramps. A two-layer model consisting of two lin-of the layers and the gap between them are taken into con-
early coupled Haken equations with different parameters isideration. Anisotropic and spatially varying diffusion coef-
the two layers was studied by Bestehd®l, who found ficients have been studied in a general context using ampli-
mixed states or “beans” and triangles obtained by superpotude equation§l0]. Here, we ignore the third dimension and
treat the system as two close-coupled layers, which are ap-
proximated as infinitesimally thin. The diffusion across lay-
*Electronic address: epstein@brandeis.edu ers provides the coupling. We focus here on the role of the
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coupling, and demonstrate that it suffices to produce new and t

nontrivial phenomena. a/
We categorize the patterns found in this systensys-

metric (s-) when the concentrations at all pairs of corre-

sponding positions in the two layers are equalaggnmetric

(a-) when corresponding concentrations in the two layers dif-

fer, and asantiphase(anti-) when the spatially varying parts

of the concentrations in the layers are of equal amplitude and

opposite phase. We show that the coupling can induce a sec- I—‘T r' T—ITL—l

ondary bifurcation, in which, as the coupling is increased, a ) " A

symmetric steady statés-SS subject to a primary Turing ‘§ \}W\ u1

(symmetric Turing: s-Tuinstability is split into two distinct, §| u=t, bt WU\ D

unstable, asymmetric steady statesSS, followed by a re- Sl d >

verse asymmetric Turinga-Tu) bifurcation, in which the

a-SS gains stability. FIG. 1. Pitchfork bifurcation in the coupled layer system with

Alocalized structurdLS) is a stably coexisting combina- P=0.55,7=0.3. The primary SS changes from statdelid line) to
tion of a region of one type of pattern embedded in anothe}l’urln_g-unstable(dash_ed lingpat the_prlmary Turlng plfurcatloaT.
type of (backgroung pattern. One form of LS, with potential A pair of new SS arises at the pitchfork bifurcatiap. They are
applications in information processifi@l], consists of cay- uring unstablddashed lineswhen born, then become stalgt®lid
ity solitons in a semiconductor microcavity, where optical“nes) at_the reverse Turing blfurcatlca_h. Schematic solutions are
spots(intensity peakscan be written and erased on a homo-ShOWn in each of the parameter regions.
geneous background of radiation. Pinned spifa® or an-
tispirals[13] constitute another example of a LS, where Tur-Here,u andv are the dimensionless concentrations ofihd
ing spots serve as cores that emit or receive waves. Most LS3IO, , respectively. Concentrations in the two layers are dis-
arise in bistable systems, and we anticipate that the multistainguished by subscripts 1 and 2. Diffusion within each layer
bility in our coupled layer system may generate a variety ofis described by the 2D Laplacian tern¥?=g%/dx?
LSs. + 3%/dy?. There is a linear coupling with strengthbetween
layers. The parameteesandb are kinetic parameters related
Il. MODEL AND BIFURCATIONS to the feed concentrations and the rate constahsgecifies
the relative mobilities of T and CIG, , while the multiplier
We represent our two-coupled-layer system by a pair of; is determined by the complexing ability of the starch in-
coupled reaction-diffusion equations. We imagine that thejicator S used in the ge[16]. We taked=1, ¢=50 in all
two layers are identical and are fed with the same set ofa|culations;a or 7 will serve as the control parameter.
reagents: We first fix the coupling aty=0.3 and vary the chemical
parametem in order to analyze the three bifurcatio(isig.
1). At small a<ay, the system has a unique stable steady
state where the concentrations of the two layers are uniform
and identical (;,=u,=ugs=a/5). At the primary Turing bi-
v, furcation point 61=13.6983), this s-SS becomes unstable
7=0{G(U1,01)+d[vzvl+ n(v,—vy)]}, (20 to spatial perturbations of a critical wave numixer=0.97,
resulting in formation of s-Tu patterns that break the spatial
u uniform symmetry. The concentratilfms of the two layers,
oH2 _ 2 _ however, remain identicalug =u,~e'<*). At a second bi-
at FUz,02) +V U+ (U1~ ), @ furcation point,a,=14.6707, a pitchfork bifurcation occurs
and the concentrations of the two layers begin to diverge
vy 5 from one another. In this new pair of asymmetric steady
7=U{G(U2,vz)+d[V vot(vi—va)l}, (49 statesa-SS the concentration is higher in one layer than in
the other. Turing patterns arising out of this a-SS are termed
ﬁsymmetric Turing (a-Tu. By changing the coupling
strength », a, may approachay, but it never becomes
smaller thara; (Fig. 2. In this sense, the pitchfork bifurca-
tion is a secondary bifurcation. The Turing instability ceases
at a,7=16.0468; beyond that point, the two layers are uni-
F(up)=a—u— uv form in space, but have distinct concentrations in the now
,wv)=a—u—4 , (5) ) .
1+ u? stable a-SS. We refer to the bifurcationagt; as a reverse
Turing bifurcation because it occurs asis varied in the
opposite direction from the s-SS to s-Tu bifurcatioraat
(6) The asymmetric solutions depend strongly on the cou-
pling. If the coupling is too weak, it cannot split the s-SS

Juy ,
W:F(Ubvl)"'v U+ 7(uz—Uuy), (1)

where the kinetic terms are specified by the Lengyel-Epstei
model[14,15, which describes the chlorine dioxide-iodine-
malonic acid(CDIMA) reaction.

G(u,v)=Db| u-— .
(Uo) ( 1+u?
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FIG. 2. Location of the pitchfork bifurcation in the— » plane
holding a,=a;. The bifurcation separates multiple steady states
(lined area from the single SS region.

solutions. On the other hand, with too strong a coupling the

rapid exchange destroys any differences between the layers. < 021

Thus multistability can arise only in a finite range of cou- & anti-Tu

pling strengths. Our calculations in Fig(aB show an egg- I TN T

shaped region of multiple steady states. 00 05 10 k 00 05 10 k
In addition to the original primary instability, two new

instabilities are induced by the coupliflgigs. 3b)—3(e)]. At 6 | a-Tu f) 1 amplitude of a-Tu g)

intermediate coupling levels, the two a-SS are stable, but ol TARAAANANN max 2 b 4 { max

these become unstable to Turing pattern formation toward 5 ] 2 1 in ><fn”

the ends of the “egg.” This is the a-Tu instability, which is 2 WUUU\WW ;" }2{ a

shown on the dispersion relations in Figgbj3and 3c).
Although the concentrations in the s-SS are independent of
[horizontal dashed line in Fig.(8], the stability properties 61
of this state change as the coupling strength is vajaéd
Figs. 3d) and 3e)]. The original, degenerate Turing insta-
bility is split into two distinct maxima in Fig. @); the left 2]
one (antiphase Turing, anti-Tuis a coupling-dependent
mode, while the right one is independent @fAs the cou-
pling increases, the left peak in Figd® moves to a lower 6

U,

wave number, flattens, and finally becomes monotonically o I 1{\
decreasing, as shown in Fig(ek S 4 [

Three types of Turing instabilities: a-Tu, anti-Tu, and 2] \} U\J Jl WU
s-Tu, are responsible for three types of Turing pattern forma- | i lJ _
tion [Figs. 3f), 3(h), and 3j)]. (i) The a-Tu instability gives O T o a0 80 00 02 04 06 08 10
rise to an a-Tu patterfFig. 3(f)], where the layers have space ul

unequal concentrations that are periodic in space and station- ) ) _

ary in time. We note that a-Tu patterns are always in-phase, FIG. 3. (@ Bifurcation “egg” showing dependence of a-SS on
the maxima and minima of one layer correspond to those ofPupling strengthy for (a,b)=(16,0.55). Middle sectiongsolid
the other layer. Their occurrence and amplitude depeng on 'ines are stable; two endélashed linesare unstable. The central
[Fig. 3(g)]. (ii) We refer to the coupling-dependent Turing ho_rlzontal da_shed line shows }J_nstak_)le s-@B-(e) Dispersion re-
mode as anti-Tu because it gives stationary Turing patterns it"iftéosn(z)s(rgglnf:tgzon(]gﬁ dF)JC;Sr:ng gé?;r'(\é?hﬁ::; ;{ffs(c())fa;‘fr_
hath Igyers V.Vlth t.he same amp“tUde and wavelength, bui%ng patterns in one-dimensional simulations, a{Ty anti-Tu (h),
opposlte profilegFig. .3(h)]' An'u-Tu patte_rns occ_ur at weak and s-Tu(j) arise from corresponding instabilities {b) and (d).
cqupllng, 77<,,0'65 [Fig. 3], and their amphtudeg e Theijr occurrence(span of ) and amplitude(=max—min) are
shglhtly modified by 7, p_gt the average concentration re- g yn in(g), (i), and (K), respectively, where the averagav) is
mains constant at s-S$iii) The s-Tu patterngFig. 3()]  from integration over a layer.

arising from the primary Turing instability are independent

of coupling strengthy [Fig. 3(k)]. with the same chemical parameters,i{) = (16,0.55). In the
single layer system, a random initial condition &t 0
I1l. COEXISTENCE AND COMPETITION OF DIFFERENT quickly develops into a honeycomb Turing patternt at40
TYPES OF TURING PATTERNS time units(t.u.), and then slowly decomposes into a stable

stripelike patternt(=400 t.u.), as shown in Fig.(d. In the
The two-dimensiona{2D) Turing patterns shown in Fig. two-coupled-layer system with coupling=0.3, these same
4 all evolved spontaneously from random initial conditionschemical parameters yield two different types of Turing pat-
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FIG. 4. Spontaneous formation @ stripelike Turing pattern in
the single layer systenip) spotlike a-Tu, andc) short stripelike
anti-Tu in the two-layer system. Size: 844 (a),(b) and 128<128
(©).

space

d
terns, depending on the initial condition$) Starting from )
the a-SS, where the two layers have quite different concen-
trations, an a-Tu appears, in which the layers show an in-
phase spotlike, hexagonal, stationary pattern of the same fre-
guency [Fig. 4(b)]. (i) Starting from the s-SS where the
concentrations in the two layers are identical, an anti-Tu ap-
pears, in which both layers have a short stripelike pattern,
but they are antiphag€&ig. 4(c)]. The snapshots af; andu, : 100
look at first glance like negative images of one another. space
Averaging the layer§third frames in Figs. éb) and 4c)]
produces frequency-doubling in the anti-Tu, while the a-Tu FIG. 5. Coexistence of a-, anti-, and s-Turing patterns resulting
retains its original frequency. To explain this difference, wefrom random perturbation of initial a-SS and s-%8. Initial con-
revisit the dispersion relations in Figsb3and d, where we  centrations of the two layergb)—(d) three views(two layers and
observe that the a-Tu instability band is narrow and close tdeir averaggof stably coexisting patterns. System size: £256.
the onset point, while the anti-Tu instability band is muchParameters as in Fig. 4.
broader and far above onset, which allows resonant modes to
arise. The dispersion curves can also be used to predistripes in the adjacent area lll, with both stripes parallel to
whether the patterns will be spotlike or stripelike, since thethe interface. With this configuration, all three types of Tur-
former patterns arise immediately above onset, while stripethg patterns(a-, anti-, and 9-remain stable apparently in-
generally occur well beyond the onset of an instability. definitely.
The existence of two different stable patterns at the same
parameters implies bistability: the a-Tu in Fighjtand the

space

anti-Tu in Fig. 4c) are both stable to small perturbations. (=40
With appropriate initial conditions, both structures can

emerge and coexist. Figure 5 shows the coexistence of three

types of Turing patterns. The system is initially prepared in 2
an a-SS at the left and an s-SS at the right, and then small 3 E:
random perturbations are added as shown in Fig). A\s o

illustrated in Figs. & and ¢, two types of Turing patterns
should, and do, develop in areas | and IV, respectively, as
shown in Figs. ®,c,d. Close to the interfacédash-dot line
section the concentration difference on the left side consti- FIG. 6. Competition between a-Tu and anti-Tu shown as snap-
tutes a strong perturbation to the s-SS on the right sideshots of (1,+u,)/2. Arrows show directions of motion of the phase
which gives rise to anti-Tu stripes in area Il followed by s-Tu border. Size 128128, couplingz=0.62.
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When more than one type of pattern is stable, competition
can arise at an interface where patterns meet, and this com-
petition can result in movement of the border or front be-
tween the patterns. The motion can be complicated due to the
structure of the attractor basins in the phase plane, the border
geometry, and curvature effects. A relatively simple but in-
teresting situation involving competition between anti-Tu
and a-Tu is shown in Fig. 6. The stable anti-Tu is initiated as
parallel stripes with the central quarter replaced by a-SS. It
then quickly develops into a-Tut€40 t.u.). The broken 6
anti-Tu stripes approach one another along the vertical direc- "\ANANA ! AN Uy
tion, swallowing the a-Tu that separates them, but they show 41 i
no motion in the horizontal directiofcompare snapshots at
40 and 400 t.y. Thus the anti-Tu stripes are active at their
broken “heads” as they overcome the a-Tu spots, but the two
patterns coexist peacefully where the boundary between
them is vertical.

The multiplicity of spots and stripes in a-, s-, or anti-
Turing patterns in this two-layer system arises from a differ- 2]
ent source than the coexistence of spots and stripes in the
single layer system. In the two-layer system, the spotlike 0 . . . .
a-Tu originates from the a-SS and the stripelike s-Tu and 0 zospace40 60
anti-Tu emerge from the s-SS. In the one layer system there
is a region of bistability of spot- and stripelike Turing pat-  FIG. 7. Example of a stable localized structure: a single s-Tu
terns, but both originate from a single monostable SS. Staspot is embedded in a hexagonal a-Tu latticg panel. The con-
bility or competition in the first case depends mainly on thecentrations of the two layers and their average along the dashed line
basins of attraction of the steady states, while in the seconclut are shown in the lower panels.
case it depends on the secondary instabilities of each pattern.

We will show that localization in the coupled system de-
pends on multistability, while in the single layer system lo-
calization arises from subcriticalifyl 2]. a) =40 =120 =240 (uq*uy)/2

s
.
-t e

64 space units

concentrations
o

(ur+u,)i2

-
L)
ra®® ‘

oo
.

-
.
et

IV. LOCALIZATION T 2

.-
o

L

Localization arises when different types of patterns or ¥ A
steady states can coexist with a stationary border separating?®
them, and a region of one is embedded in a region of the b Straighl

t=0
othels). Multistability provides the possibility of a number )
of localized structures in the two-layer system. On closer I

=120 t=240 (Us+up)/
shoulder wiggling dashed

(Uru)2 At = 4,150

e,
-

N

examination of the anti-T{area IV, (u;+ U,)/2 snapshdtin

Fig. 5(d), we note the occurrence of black dots and white
“bridges” that form a series of dashed lines. Along these
lines, the concentrations of the two layers are in-phase, rather
than antiphase. These lines are localized Turing patterns, in C)

I
which an s-Tu pattern is embedded in a background of anti- e — ‘
Tu. This lower-dimensional Turing pattern occurs along the i Tl
lines of the anti-Tu phase switching. | ,?
Multistability among the three types of Turing patterns, s-, S aaaaant! ;

a-, and anti-, or the two types of steady states, s- and a-SS, '

.prOVideS numerous.pOSSibi!ities for different 'pres of local- FIG. 8. Spontaneous formation of localized one-dimensional
ized structures, which merit further SFUdy' F'gl,”e 4 ShovVss-Tu structures at the border between antiphase clustarb) (
one example, where the backgrou_nd IS a matrix Of_ hex_&lgo':(lz,o.Z),n:O.s, size: 12&128.(a) Formation of antiphase clus-
nally arranged spot&-Tu). When this two-layer medium is  (ers from random initial conditions. 1D s-Tu pattdttashed line in
locally “burnt” or “written upon,” i.e., the concentrations piot of (u,+u,)/2] survives at phase boundary and drifts due to
are reset to s-Tu at the dark spot, one bit of information isyrvature effect(b) Formation of s-Tu at an initially straight an-
“saved.” Of course, the bit is erasab{by restoring the con- tiphase border(c) Curvature effect causes shrinkage, and ultimate
centrations to the levels of the uniform ajTlike a CD-RW.  disappearance, of the inner phase. Rightmost panel is a space-time
Even more appealing is the medium’s “auto-correction” fea- plot along a line through the center of the circle. Temporal behavior
ture, if the location of one bit is written incorrectly so that it shows accelerating speed as curvature increases.

»|
>
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does not fit the matrix exactly, that bit will be pushed backnomenon, we carry out the simulation shown in Fi¢c)8
into its proper position by the Turing wavelength selectivity. where the central disk and the outer region are initialized as
Finally, an unprecedented type of localized structureopposite a-SS. A dashed circle quickly forms, and then be-
arises as a result of the multistability between the a-SS pagins to shrink. The space-time plot in the rightmost frame of
terns and the s-Tu pattern. This type of multistability occursFig. 8c) demonstrates that the speed at which the border
for a>a,r in Fig. 1, or for values ofy in the middle part of contracts is proportional to its curvaturer 1/
the “egg” in Fig. 3(a). Starting from random initial condi-
tions, antiphase clusters appear as shown in Fig. 8he V. CONCLUSION
borders between the domains are rough, and the bumps on
them persist as the clusters evolve. Plotting the average con- We have analyzed a relatively simple model consisting of
centration shows thaug + u,) is essentially constant every- two identical coupled layers. The coupling induces new bi-
where except on these borders, where the concentration préircations, leading to multistability. Two types of steady
file looks like a dashed line. Measuring the wavelength alongstates, s- and a-SS, and three types, s-, a-, and anti-, of Tur-
this border and comparing the concentrationsipfand u,, ing patterns are obtained. Their coexistence or competition,
we recognize that this boundary constitutes a 1D s-Tu strucas well as the associated phase boundary movements, merit
ture. In Fig. &b), we focus on the spontaneous formation of further study. A novel one-dimensional localized structure
this structure by initializing the left and the right halves ashas been found and investigated with respect to its formation
two a-SS of opposite phases with a straight border betweeand the effects of curvature. More localized structures are
them, with cylinder boundary conditiondop connects to expected due to the multistability. Our results have been
bottom, left and right are zero-fluxThe sharp concentration demonstrated in, but are not limited to, the Lengyel-Epstein
profile across the border first becomes smooth and themodel of the CIMA reaction. Similar coupling added to other
forms a “shoulder” region of high concentration. Next, models that possess a Turing instability should produce
bumps in the average concentration begin to form along thanalogous results. The present coupled scheme should be
border, ultimately becoming a dashed line like that seen irapplicable to pattern formation in morphogenesis, and the
Fig. 8(@). This structure remains stable and stationary. Fotocalized structures offer promise for information storage.
these kinetic parameters, the phenomenon occurs within the

coupling range 0.28 #<<0.42; at weaker coupling strength, ACKNOWLEDGMENTS
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