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Excitable dynamics and threshold sets in nonlinear systems
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Following our previous workJ. Zagoreet al, Faraday Discus4.20, 313(2001 ], we present a quantitative
definition of a threshold that separates large-amplitude excitatory responses and small-amplitude nonexcitatory
responses to a perturbation of an excitable system with a single globally attracting steady state. For systems
with two variables, finding the threshold set is formulated as a boundary value problem supplemented by a
condition of a maximum separation rate. For this highly nonlinear problem we formulate a numerical method
based on the use of multiple shooting and continuation methods. The threshold phenomena are examined by
using an example dynamical system with chemical reaction—the bromate-sulfite-ferrocyanide system. In a
model of this reaction we find the threshold set, construct a bifurcation diagram and discuss how excitability
can vanish. These results are compared with recent experiments. We also discuss relevance of other definitions
of the excitability threshold including the concept of nullclines.
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[. INTRODUCTION steepest change in the amplitude of the response. This type
of excitability is very frequent in nonlinear systems.
Excitability represents one of the basic mechanisms uti- In our previous work12] a basic quantitative formulation
lized in living organisms[1,2], because it allows to react Of the threshold set in the presence of a unique steady state
adequately to external stimuli, examples are biochemistry ofvas introduced. In Secs. Il and Il we give a detailed account
sensory perceptiof2], neural and muscular activify3—5], and extend this concept by describing an iterative procedure
metabolic regulatiofi6], etc. Excitability also frequently oc- for numerically accurate location of the threshold. This al-
curs in chemical, biochemical, and physical syst¢ims10]. lows us to understand how excitability vanishes and how it is
In essence, it is an ab|||ty to amp“fy a Superthreshokj pu|5ei,nterlinked with blStabI'Ity and periodic oscillations. In Sec.
the existence of the threshold helps to ensure distinction oV we provide an example of an excitable chemical reaction,
sensible information from noise, while the amplification is acalculate the threshold set and then construct and discuss a
necessary condition for an effective response. More technicorresponding bifurcation diagram. Comparison with other
cally, when a system operating at a stable steady state fPproaches is discussed in Secs. IV and V.
subject to a small-size perturbation, the deviation from the
steady state may decrease uniformly. However, some sys- Il. THEORY
tems significantly amplify perturbations exceeding certain ) o )
size for a transient period of time before the response ampli- We assume that a dynamical system is given in terms of
tude begins to shrink. Systems possessing such transient dgtdinary differential equations
namics are called excitable. Very often, excitability is asso-
ciated with a spatial transport, for instance, in the form of %=v(x) xe R 0
pulse waves in reaction-diffusion systems. Here we will fo- dt ' '
cus on “lumped parameter” systems, which are not spatially
extended. If such systems are periodically perturbed, com- The vector fieldv is implicitly assumed to depend on
plex firing patterns may result and the analysis of threshol@xternal parameters. In general, the thresholdst¢tould be
behavior presented here is a prerequisite for understandirgy smooth codimension one surface having a codimension
these patterns. two end about which trajectories of E(.) corresponding to
Intuitively, excitability is associated with a threshold set excitations wind. For this reason we assufite be invariant
which delineates a boundary between perturbations that bender the flowe(x,t) of Eqg. (1) in negative time direction,
come amplified and those that are damped. In an excitabliee., ¢(7;t) C7 for all t<0. Therefore the threshold set must
system with multiple steady states the threshold set is simplipe a(negatively directedsemiorbit in a two-variable system,
formed by a stable separatrix of a saddle—as the size of the one-parameter smooth family of semiorbits in a three-
perturbation is increased the transition from a nonexcitatoryariable system, etc. A traditional concept of the threshold
to an excitatory response is discontinug@]. If there is a  being a(repelling piece of a nullcline manifold1,5] lacks
unique steady state, however, the transition is in fact smoottihe invariance property and only in the infinitely fast auto-
albeit very sharp. Yet, on the observational level, there apeatalytic variable limit the two concepts merge.
pears a distinct threshold associated in some way with a For simplicity, we assume that the system has two dy-
namical variablesm=2, extension to more than two vari-
ables is possible. Letg be the steady state point, that X,
*Electronic address: igor.schreiber@vscht.cz satisfies the equation
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r=——m. (7)

All orbit segments satisfying boundary conditiof® and
(5) form a smooth family which can be parametrized By
and consequently can be viewed as a function &f It can
be shown that the first derivative of this function is given by

X
dr gradr-d° ®
dP  gradP-d®’
where grag=d/dx,_, andd® is a normalized vector tangent
to the curve defined by Eq3) at x, :
X1 df
_ — @ —==0, [d=1. )
FIG. 1. Schematic phase portrait showing a general segment of dx,
an excitatory orbit from a point, to xg satisfying boundary con-
ditions (3) and (5), respectively(dashed ling the perturbatiorP, The derivative in Eq(8) plays a role of a sensitivity co-
the respons®, and the threshold séf (thick line). efficient characterizing variations of the response with re-
spect to perturbation amplitude, and allows for a definition of
v(x)=0. (2)  the threshold becauseis expected to grow most signifi-

cantly with P just on the orbit segment lying on the threshold
To locate the threshold, we formulate a boundary valuget 7. we call this sensitivity coefficient aeparation rate

problem for a finite segment of the threshold orbit beginningang yse it to single out a particular orbit segment connecting
at a pointx, and terminating at another poirg, for sche-  y andx; so thatdr/dP is at maximum

matic representation see Fig. 1. The pointis specified by
applying a perturbation shifting the initial rest stateto x, \
so that dr
(10)

n

fL:vL'(XL_XS)ZiZ‘l [owi(Xi=xsi)]=0. ®) The threshold setZis then defined as the semiorbit pass-

ing throughx, and terminating akg which extends to arbi-
By virtue of Eq.(3), the orbit passing througk, is lo-  trary negative times. The constraifi) is complemented by
cally at a minimum distanc® from the steady state which a condition for an orbit with the smallest possitde/dP.

we take as the sizéor amplitude of the pulse The associated orbit, in a sense, represents a typical excita-
. tory response and therefore we refer to it asharacteristic
5 excitation Note that an orbit with a maximal relative ampli-
P=[x —xd|= V< (X = Xsi) " 4 ficationr corresponding to the point of zettr/dP is found

between the threshold set and the characteristic excitation.
ThusP is a minimal perturbation amplitude for the given Taking into account the commonly accepted qualitative defi-
orbit. The systen{1) responds to the perturbation by a mo- nition of an excitable system as providifgelatively) large-
tion along the orbit based a , the perturbation becomes amplitude responses feelatively) small superthreshold per-

amplified, eventually reaching a poirg such that turbations, it is convenient to add a supplementary constraint
to Eq. (10) requiring that the relative amplification for both
fr=vr (Xr—Xs)=0. (5)  extreme orbits satisfies

The response amplitudg, r=1 (11)
R=|xg—xg], (6) . .
This ensures that all the orbits between the threshold set
at that point is, by virtue of E¢5), at its maximum. Equa- and the characteristic excitation are sufficiently amplifying
tions (3) and (5) are formally equivalent and each of them the perturbation.

defines a part of the same curve in the state space dflEq. Since the Euclidean distance used in definfhgand R
see Fig. 1; the two parts meet at a point wh&r@nd R depends on scaling, we need to assume that the variables in
become equal. Eq. (1) are given in their natural scale. As a threshold phe-

Let us define a relative amplification as the increase imomenon, excitability cannot be made scale independent, be-
amplitude fromx,_ to Xy relative to the amplitude of pertur- cause the measurement of both the perturbation and response
bation amplitudes involves more than one variables.
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IIl. NUMERICAL METHOD FOR FINDING
THRESHOLD SETS

Finally, according to Eq(9), the vectord® is perpendicu-
lar to grad, , where

In the following we develop a numerical approach for
finding the threshold orbit by employing the shooting
method and combining it with the continuation method

df
grade:d—Xt=vL+JL(xL—Xs), (19

[13,14). The formula(8) requires calculation of grae and
gradr. The former is simply expressed as

dP X —Xg
gradP—d—XL— P

12

andJ_ ={dv;/dx_;} is the Jacobian of the vector fieidin
Eqg. (1) evaluated atx, . The steady stateg is found by
solving Eq.(2).

In summary, we have a boundary value problem for an
orbit segment, satisfying the boundary conditiéBsand(5)

The expression for the latter is more subtle. Since theand the steady state conditi¢®); the unknowns areg,x, ,

pointsx, , Xg belong to one orbit, the initialleft) point on
the segment is mapped to the termifaght) point by the
flow ¢ of Eq. (2),

Xp= (X, T(X)), (13

where the tim€T of travel between the points dependsxpn
By formally differentiating Eq.(7) with respect tox, , we
obtain

P< do T TR
dr _Ri=1 dx, Ri 2SI p it 7S
dx, 1% —x)|® 1

(14
where
dei(x, T(X) %—k de; dT (15

dx, Toax, | dT dx_

The termU={d¢;/dx ;} is the fundamental matrix ob-

andT. There is one more unknown than the equations, there-
fore one unknown may be taken as a free parameter and this
problem is solved by a continuation methfti3,14. The
continuation provides a one-parameter family of orbit seg-
ments. The separation raf8) is calculated at each point
along this curve according to Eq&l2)—(19) and searched

for maximum and minimum values, indicating the threshold
set and the characteristic excitation, respectively. When re-
peated continuations with sequentially varying external pa-
rameters are made, the threshold set and the characteristic
excitation can meet and the minimum and maximum values
of the separation rate merge and disappear. A second possi-
bility is that the relative amplificatiom drops below 1 for

any of the two extreme orbits thereby violating constraint
(12). If either of the two possibilities happen, the excitability
vanishes. Since the threshold trajectory is strongly unstable,
a multiple shooting method with nonequidistant time sub-
intervals is used in practical calculatiofb,16 rather than

the simple shooting approach outlined above.

IV. RESULTS AND DISCUSSION

tained by integrating first variational equations of the system

(1) along the orbit segment. The derivative of the flow with

respect to time is just the vector fielg; at xg and the term

An example of a system providing either oscillatory or
excitable dynamics depending on the choice of external pa-

dT/dx, is obtained by differentiating the right boundary con- rameters is a chemical reaction of bromate with sulfite and

dition (5) with respect tax, ,

dfs s [dei(x,T(x) dog;
d_XL_.—l[ dx, URit ax, (XRi—Xsi) | =0,
(16)
where
dURi:i dogi(Xg) de(x,, T(X)) 17
dXL k=1 dXR dXL '

and Jg={dvg;/dxg;} is the Jacobian of the vector field in

Eqg. (1) evaluated akg. The formula(16) and (17) can be

ferrocyanide in acidic solutiotBSF reactionrun in an iso-
thermal flow-through stirred reactor. This reaction is charac-
terized by large-amplitude oscillations of hydrogen ion con-
centration and belongs to the group of so called pH
oscillators[17]. Dynamics of this system was thoroughly
studied experimentally18] and different mechanisms were
proposed 18,19.

Following these studies and our experime[ritg,20 we
proposed and tested an improved reaction schgzie2(
which consists of seven irreversible reactions, and four rap-
idly equilibrated protonation-deprotonation reactions. Based
on this mechanism we formulated a 13-variable model that
can be further reduced to two variables, and still capture

rearranged to give an explicit expression for the derivative oficcurately all the experimentally observed dynamics and bi-

T with respect tox, :

>

oT i=1
n

n
(XRi_XSi)kgl (JRikUkj)"_URiUij}
n

(XRi_XSi)kZl (JRikrK) T VR

&XLj B

>

n
=1

(18

furcation phenomeng20]. On using mass conservation con-
straints, a charge conservation constraint, a quasi-steady-
state and quasiequilibrium assumptions, the model is finally
described by two dynamical mass balance equations for hy-
drogen ions H and hydrogen sulfite ions HSQ By denot-

ing the molar concentrationd =[H*] and HX=[HSG; ],

the equations in a flow-through stirred reactor are formally
written as follows:
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FIG. 3. Dependence of the relative amplificatiortfull line),

FIG. 2. Phase portrait for the activatory excitabiligy=4.5
X102 s, s,=70 mM: full lines, orbit segments found by the
continuation; the threshold sef)( and the characteristic excitation A complementary case to Fig. 2 occurs k§=7.7
(CE) are indicated by thick lines; dashed lines show the boundary<x 10" s 1 and s,=70 mM, where an acidic steady state
condition curves, see Eq€3) and (5). SSA (pH~4) exists, see Fig. 4. Here a perturbation that

causes excitation should be directed so as to incnedséor
dH example, by adding OH or SG~ ions. These species are
i ~ Rutko(Ho—H), (200 inhibitors and thus this kind of dynamics is callediahibi-
tory excitability. The calculatedr/dP vs P dependence pos-
dHX sesses similar features as that in Fig. 3 and therefore is omit-
——=Ryx+ko(HXg—HX). (21) ted.
dt Now we are interested in dependence of both extreme
orbits and their characteristics on the flow r&tefor fixed

The reaction termBy andR,, are rather involved due to yajyes of other parameters. The maximdia and minimum
the reduction of variables and include contributions to the el .. of the separation ratér/dP is plotted againsk, in Fig.
reaction rates from both reversible and irreversible steps, s&¢ The middle range ok, (marked by dashed lingss the
Ref. [20] for details. The external parameters are the flowrange of stable periodic oscillations. There are two separate
rateko and the inflow concentratiortdy andHX,. However,  maximum/minimum pairs of curves, one extending to the
these two concentrations can be related to the inflow concenyght from the oscillatory range and the other one to the left.
trationshy ands, of the reactants $50, and NaSO; [20].  Those two separate pairs of branches are associated with the
Consequently, we sdt;=7.5 mM in correspondence with o distinct types of excitability. The right part corresponds
experimentd20] and takek, ands, as external control pa- to the activatory excitability, see Fig. 2, where excitatory
rameters. Fixed concentrations of other reactants are irhasponses at a weakly acidic steady state SSB are invoked by

cluded inRy andRyx . addition of hydrogen ions. The left part is the complementary
For the valuesko=4.5x10 2 st and s,=70 mM this

model has a weakly acidic steady state S$BI{£6) and
displays excitability upon a perturbation that lowgitd (by 4.0 1
adding H" ions). Since H ion is the activatoryor autocata-
lytic) species in the BSF reaction, we call this type of dy-
namics arnactivatory excitability. The one-parameter family

& 3.0
of orbit segments calculated by the continuation method as g
described in Sec. Ill is shown in Fig. 2. 5
Clearly, the threshold set serves as a boundary separating E
orbits that are excitatoryon the lef} and those returning — 2.0
directly to the steady state without any large excursion. Fig- >:E

ure 3 shows the dependence of the relative amplification
and the separation rat/d P [expressed as sinf(dr/dP) to 1.0 |
set proper scaleon the perturbation amplitud@. There is a
maximum and a minimum on theér/dP vs P curve, corre-
sponding to the threshold set and the characteristic excita-
tion, respectively. Figure 3 also shows, that an orbit with
maximum amplification is found between the two critical ~ FIG. 4. Phase portrait for the inhibitory excitabilitigy=7.7
orbits. X104 s, s,=70 mM; notation of the curves as in Fig. 2.
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FIG. 5. Dependence of the maximal{) and minimal f.g) 105 10+ 103 102 10
values of sinh(dr/dP) onk, atsy=70 mM: dashed lines, bounds k, [s"]
of the oscillatory region; dotted lines, bounds of the experimentally
observed vanishing excitability. FIG. 6. Bifurcation diagram in the parameter plaqges, with

marked bounds of vanishing excitability: thin full line, transition
case of the inhibitory excitability, see Fig. 4, where excita-from nonexcitable to excitable steady states; thick full line, curve of
tions are elicited by adding hydroxyl or sulfite ions to ana saddle-node bifurcation on steady states; dashed line, curve of a
acidic steady state SSA; this effectively removes the hydroHopf bifurcation.
gen ions.

Along with the values of maxima and minima, we also curve, separating excitability from bistable steady states, is
plot values of the relative amplification for the two extremethe curve of saddle-node bifurcation on steady states. This
trajectoriesy s andrcg. There are two ways of disappear- curve is closed and includes two cusp points, the lower one
ance of excitability depending on whether the constréliit  coincides with the cusp where two branches of vanishing
holds at the point where E@LO) defining the threshold set is excitability meet.
violated, or not. Eithed;g and d-g merge ak is varied, Figure 6 shows that the central part, including the oscil-
leaving no extreme trajectories, or conditiii) is violated latory domain (OSCO and the domain of two coexisting
for an existing threshold set or for its complement, the charstable steady statdSSA and SSB separates the two types
acteristic excitation. Both cases are found in Fig. 5. On theof excitability. On the left of the central part is the region of
left side of the oscillatory range the curves: and dcg  inhibitory excitability (ESSA associated with a perturbation
merge atky~4x10°s ! while r>1. However, on the removing hydrogen ions, on the right is the region of activa-
right of the oscillatory regionr;g drops below 1 atk,  tory excitability (ESSB associated with a perturbation add-
~0.1 s ! well befored;s anddcg merge. For comparison, ing hydrogen ions. Outside the boundaries of vanishing ex-
the dotted vertical lines mark the boundary of vanishing ex-<citability the system is at one of the nonexcitable stable
citability as evaluated from experiments with the BSF sys-steady state§SSA or SSB. Two parts of the curve of van-
tem[20]. These experiments rely on measurement of a singléshing excitability marked by crosses correspond to the case
species [pH in this cas¢ which can indicate only a strongly when the threshold set merges with the characteristic excita-
developed excitability and that explains a narrower range fotion and the relative amplification>1 for both, while the
excitable dynamics than predicted. remaining two parts marked by diamonds correspond to

The two limiting values ok, for marginal occurrence of =1 for one of the two extreme orbits. Clearly, the vanishing
excitability depend on other parameters of the BSF systeraxcitability represents a transition that does not change topo-
defining thus a boundary of a domain in a parameter spadegical structure of the phase portrait, that is, it is not a bi-
where excitability can be found. By addirsg as a second furcation. Rather, it may be compared to a transition from a
control parameter, we can calculate this boundary as a curfecal steady state to a node. However, unlike the focus-node
and display it along with other types of curves bounding thetransition, the vanishing excitability marks a global change
domain of excitability, see Fig. 6. The two branches of van-of the phase portrait. A similar dynamical featmevolving
ishing excitability meet at a cusp point. A second kind ofalso a threshold sets a sudden amplitude increase of peri-
boundary that delimits the domain of excitability corre- odic oscillations referred to as canard phenomera23.
sponds to two curves where oscillations appear. This is asso- The proposed formulation of the threshold set makes no
ciated either with a supercritical Hopf bifurcation or with a difference between the two types of excitability. However, it
saddle-node bifurcation on periodic orbit which occursis useful to make this distinction with regard to the way
nearby if the Hopf bifurcation is subcritical. Although the excitability fits into the framework of theross-shaped bifur-
latter is the present case, we show only curves of the Hopéation diagram[24] as shown in Fig. 6. The cusp region of
bifurcation in Fig. 6 since the saddle-node curves extendnultiple steady states and the adjacent oscillatory region is
very near to the Hopf curvd®0]. Finally, the last type of the complemented on both sides by the two types of excitability,
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2.0

x10 4 s %, Fig. 7 compares the nullcline for the autocata-
lytic variable H and the threshold set satisfying conditions
(10) and(11). A similar situation is found by inspecting Figs.

2 and 4. Thus the nullcline method does not allow for deter-
mination of the(minimal) threshold perturbation and, in ad-
dition, it has the inconvenient feature that the threshold is not
invariant with respect to the flow of Eql).

Another way of using the nullcline of the autocatalytic
variable to distinguish between subthreshold and super-
threshold excursions from an excitable steady state is to take
a reference point in the phase plane corresponding to one of
the extremes of the nulicline as discussed in REf. Trajec-
tories winding around such a point are taken as responses to
superthreshold perturbations. Within the context of the
; ‘ . . threshold set discussed in this paper, the extreme on the
4.0 5.0 6.0 7.0 nullcline would be the end point &f associated with a nega-

pH tive semiorbit extending from the extreme. This concept pro-
vides results comparable to those for the inhibitory excitabil-

FIG. 7. Phase portrait for the inhibitory excitability showing ity shown in Figs. 4 and 7, where the relevant extreme is the
orbits approaching a focal steady state,=3x10"*s!, s,  maximum. However, for the activatory excitability shown in
=70 mM; the threshold sef is indicated by the thick line; the  Fig. 2 this approach cannot be applied, because the relevant
dash-dotted line shows the nullicline for the variable extreme—a minimum—is absent. This turns out to be the
rule for the BSF system and is likely to occur in other sys-

each associated with one of the two stable steady states. TEMS as well. Thus, although intuitive in use, the nulicline

bifurcation structure may be quite symmetric as that in Fig@PProaches have limitations which the current concept of the
6, in which case both types of excitability are well devel- threshold set avoids. Also, the description of disappearing
oped, but it may also be asymmetric and then one of th@XCIt.ablllty as parameters are varied is missing with the con-
regions of excitability may be small or even absent. ventional nulicline methods.

Both the maximum conditiofil0) and the additional con-
straint(11) might be altered in a number of ways. We have
tried several other formulations and found that all of them
provide very similar results in the case oft@ongexcitabil- We have outlined a theoretical formulation of a criterion
ity, by which we mean cases with a strongly repelling thresh-allowing to determine the threshold set—an orbit segment
old set that passes very close to the steady state. On the otttbat constitutes a boundary between responses to a perturba-
hand, in the case of weak excitability near the point of tion, which are excitatory and those which are not. This for-
disappearance, the threshold is usually only weakly repellingnulation leads to a boundary value problem with an added
and the perturbation amplitude is relatively large. Under constraint of maximal separation rate. The problem has been
such circumstances only the definition presented hersolved numerically by employing multiple shooting method
worked well for this and also for a number of other modelsfor locating an orbit segment satisfying the boundary condi-
of excitable systemg21,25|. tions (3), (5) and the continuation method for finding a seg-

Among alternative ways of treating excitability threshold ment satisfying the maximum conditiqd0). The threshold
there is a commonly accepted approach via nullclines in twoset found in this way can be traced in one or more parameters
variable systems, see, for example, Ref4,4]. The to find transitions from excitable to nonexcitable dynamics.
nullclines are obtained by plotting in the phase plane curveSuch a transition can occur in two different ways: either the
of loci where the time derivative for either of the two vari- threshold set vanishes by merging with a complementary or-
ables is zero. The intersecti@hof the nuliclines defines the bit having a minimum value of the separation rdtgd P or
steady staf@). For the autocatalyti¢fas) variable, there is the relative amplificatiom of either of the two extreme orbits
typically a minimum and a maximum separating the curvedrops below one. Either way, excitable steady states become
into three branches. The middle one repells trajectories andonexcitable beyond this transition point. Other transitions
may be taken as the threshold set. Such a situation is fouridclude a transition between excitability and oscillations and
in the FitzZHugh—Nagumo-type of equatioiis26,27 where  between excitability and bistable steady states. Although the
the nullicline for the fast variable is described by a polyno-presented example involves only two variables, extension for
mial of third order and the excitable steady state is found orsystems with three variables is currently being elaborated.
the outer branch past the minimum. In many cases, however, Excitability is usually defined only loosel\28], a quan-
this determination of the threshold is not useful, since theitative definition such as presented here is helpful when fir-
steady state may as well occur on the middle branch and thatg sequences in periodically perturbed excitable systems are
makes the threshold perturbation impossible to define. Thistudied[25,29,3Q. In these studies, the knowledge of the
situation is typical for the model represented by E@Q)  threshold set enables us to make a clear distinction between
and (21). For example, ats;=70 mM and ky=3 excitatory (superthresholdand nonexcitatorysubthresholg

1.0

HX [mmol dm™)

0.0

V. CONCLUSIONS
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responses and allows for a characterization of the response diefinition of excitability. Moreover, a quantitative measure
periodic perturbations by means of a firing number definednakes it possible to study transition phenomena associated
as an average number of excitatory responses per forcingith the vanishing excitability. The results presented here
period. Recently there have appeared other approaches {povide a consistent picture relating excitability to bifurca-
characterizing the threshold in terms o aepeller and iso-  tion phenomena such as subcritical Hopf bifurcation or mul-

chrones[31,32. As discussed above, our approach treatsjple steady states, a detailed analysis will be subject of our
both the strong excitability, where the threshold is equivalentytyre work.

to aT repeller, and the weak excitability where the concept

of strongly repelling sets may be difficult to apply. In addi-

tion, the presence of‘ﬁre_p_elle_r by itself does not necessar- ACKNOWLEDGMENTS

ily imply sufficient amplification of the perturbation. The

guantitative measure provided by E#0) and the constraint This work has been supported by grants from the Czech
(11) takes into account the distance and position of theGrant Agency, Grant Nos. 203/02/D051 and 203/03/0488
threshold setT repelle) from the steady state, which deter- and a project from the Czech Ministry of Education, Grant
mines sufficient amplification in agreement with intuitive No. MSM223400007.
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