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Excitable dynamics and threshold sets in nonlinear systems

Michal Voslařand Igor Schreiber*
Department of Chemical Engineering and Center for Nonlinear Dynamics of Chemical and Biological Systems,

Prague Institute of Chemical Technology, Technicka´ 5, 166 28 Prague 6, Czech Republic
~Received 15 July 2003; published 27 February 2004!

Following our previous work@J. Zagoraet al., Faraday Discuss.120, 313~2001!#, we present a quantitative
definition of a threshold that separates large-amplitude excitatory responses and small-amplitude nonexcitatory
responses to a perturbation of an excitable system with a single globally attracting steady state. For systems
with two variables, finding the threshold set is formulated as a boundary value problem supplemented by a
condition of a maximum separation rate. For this highly nonlinear problem we formulate a numerical method
based on the use of multiple shooting and continuation methods. The threshold phenomena are examined by
using an example dynamical system with chemical reaction—the bromate-sulfite-ferrocyanide system. In a
model of this reaction we find the threshold set, construct a bifurcation diagram and discuss how excitability
can vanish. These results are compared with recent experiments. We also discuss relevance of other definitions
of the excitability threshold including the concept of nullclines.

DOI: 10.1103/PhysRevE.69.026210 PACS number~s!: 05.45.2a, 82.20.2w, 82.20.Wt
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I. INTRODUCTION

Excitability represents one of the basic mechanisms
lized in living organisms@1,2#, because it allows to reac
adequately to external stimuli, examples are biochemistr
sensory perception@2#, neural and muscular activity@3–5#,
metabolic regulation@6#, etc. Excitability also frequently oc
curs in chemical, biochemical, and physical systems@7–10#.
In essence, it is an ability to amplify a superthreshold pu
the existence of the threshold helps to ensure distinction
sensible information from noise, while the amplification is
necessary condition for an effective response. More tec
cally, when a system operating at a stable steady sta
subject to a small-size perturbation, the deviation from
steady state may decrease uniformly. However, some
tems significantly amplify perturbations exceeding cert
size for a transient period of time before the response am
tude begins to shrink. Systems possessing such transien
namics are called excitable. Very often, excitability is as
ciated with a spatial transport, for instance, in the form
pulse waves in reaction-diffusion systems. Here we will
cus on ‘‘lumped parameter’’ systems, which are not spatia
extended. If such systems are periodically perturbed, c
plex firing patterns may result and the analysis of thresh
behavior presented here is a prerequisite for understan
these patterns.

Intuitively, excitability is associated with a threshold s
which delineates a boundary between perturbations that
come amplified and those that are damped. In an excit
system with multiple steady states the threshold set is sim
formed by a stable separatrix of a saddle—as the size of
perturbation is increased the transition from a nonexcitat
to an excitatory response is discontinuous@11#. If there is a
unique steady state, however, the transition is in fact smo
albeit very sharp. Yet, on the observational level, there
pears a distinct threshold associated in some way wit
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steepest change in the amplitude of the response. This
of excitability is very frequent in nonlinear systems.

In our previous work@12# a basic quantitative formulation
of the threshold set in the presence of a unique steady s
was introduced. In Secs. II and III we give a detailed acco
and extend this concept by describing an iterative proced
for numerically accurate location of the threshold. This
lows us to understand how excitability vanishes and how i
interlinked with bistability and periodic oscillations. In Se
IV we provide an example of an excitable chemical reacti
calculate the threshold set and then construct and discu
corresponding bifurcation diagram. Comparison with oth
approaches is discussed in Secs. IV and V.

II. THEORY

We assume that a dynamical system is given in terms
ordinary differential equations

dx

dt
5v~x!, xPRn. ~1!

The vector fieldv is implicitly assumed to depend o
external parameters. In general, the threshold setT should be
a smooth codimension one surface having a codimen
two end about which trajectories of Eq.~1! corresponding to
excitations wind. For this reason we assumeT to be invariant
under the floww(x,t) of Eq. ~1! in negative time direction,
i.e., w(T,t)#T for all t,0. Therefore the threshold set mu
be a~negatively directed! semiorbit in a two-variable system
a one-parameter smooth family of semiorbits in a thr
variable system, etc. A traditional concept of the thresh
being a~repelling! piece of a nullcline manifold@1,5# lacks
the invariance property and only in the infinitely fast aut
catalytic variable limit the two concepts merge.

For simplicity, we assume that the system has two
namical variablesn52, extension to more than two var
ables is possible. LetxS be the steady state point, that is,xS
satisfies the equation
©2004 The American Physical Society10-1
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v~x!50. ~2!

To locate the threshold, we formulate a boundary va
problem for a finite segment of the threshold orbit beginn
at a pointxL and terminating at another pointxR , for sche-
matic representation see Fig. 1. The pointxL is specified by
applying a perturbation shifting the initial rest statexS to xL
so that

f L5vL•~xL2xS!5(
i 51

n

@vLi~xLi2xSi!#50. ~3!

By virtue of Eq. ~3!, the orbit passing throughxL is lo-
cally at a minimum distanceP from the steady state whic
we take as the size~or amplitude! of the pulse

P5ixL2xSi5A(
i 51

n

~xLi2xSi!
2. ~4!

ThusP is a minimal perturbation amplitude for the give
orbit. The system~1! responds to the perturbation by a m
tion along the orbit based atxL , the perturbation become
amplified, eventually reaching a pointxR such that

f R5vR•~xR2xS!50. ~5!

The response amplitudeR,

R5ixR2xSi , ~6!

at that point is, by virtue of Eq.~5!, at its maximum. Equa-
tions ~3! and ~5! are formally equivalent and each of the
defines a part of the same curve in the state space of Eq~1!,
see Fig. 1; the two parts meet at a point whereP and R
become equal.

Let us define a relative amplification as the increase
amplitude fromxL to xR relative to the amplitude of pertur
bation

FIG. 1. Schematic phase portrait showing a general segme
an excitatory orbit from a pointxL to xR satisfying boundary con-
ditions ~3! and ~5!, respectively~dashed line!, the perturbationP,
the responseR, and the threshold setT ~thick line!.
02621
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R2P

P
. ~7!

All orbit segments satisfying boundary conditions~3! and
~5! form a smooth family which can be parametrized byP,
and consequentlyr can be viewed as a function ofP. It can
be shown that the first derivative of this function is given

dr

dP
5

gradr •d0

gradP•d0
, ~8!

where grad5d /dxL , andd0 is a normalized vector tangen
to the curve defined by Eq.~3! at xL :

d0
•

d fL

dxL
50, id0i51. ~9!

The derivative in Eq.~8! plays a role of a sensitivity co
efficient characterizing variations of the response with
spect to perturbation amplitude, and allows for a definition
the threshold becauser is expected to grow most signifi
cantly withP just on the orbit segment lying on the thresho
set T. We call this sensitivity coefficient aseparation rate
and use it to single out a particular orbit segment connec
xL andxR so thatdr/dP is at maximum

dr

dP
5
!

max. ~10!

The threshold setT is then defined as the semiorbit pas
ing throughxL and terminating atxR which extends to arbi-
trary negative times. The constraint~10! is complemented by
a condition for an orbit with the smallest possibledr/dP.
The associated orbit, in a sense, represents a typical ex
tory response and therefore we refer to it as acharacteristic
excitation. Note that an orbit with a maximal relative ampl
fication r corresponding to the point of zerodr/dP is found
between the threshold set and the characteristic excita
Taking into account the commonly accepted qualitative d
nition of an excitable system as providing~relatively! large-
amplitude responses to~relatively! small superthreshold per
turbations, it is convenient to add a supplementary constr
to Eq. ~10! requiring that the relative amplification for bot
extreme orbits satisfies

r>1. ~11!

This ensures that all the orbits between the threshold
and the characteristic excitation are sufficiently amplifyi
the perturbation.

Since the Euclidean distance used in definingP and R
depends on scaling, we need to assume that the variabl
Eq. ~1! are given in their natural scale. As a threshold ph
nomenon, excitability cannot be made scale independent
cause the measurement of both the perturbation and resp
amplitudes involves more than one variables.

of
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III. NUMERICAL METHOD FOR FINDING
THRESHOLD SETS

In the following we develop a numerical approach f
finding the threshold orbit by employing the shootin
method and combining it with the continuation meth
@13,14#. The formula~8! requires calculation of gradP and
gradr . The former is simply expressed as

gradP5
dP

dxL
5

xL2xS

P
. ~12!

The expression for the latter is more subtle. Since
points xL , xR belong to one orbit, the initial~left! point on
the segment is mapped to the terminal~right! point by the
flow w of Eq. ~1!,

xR5w„xL ,T~xL!…, ~13!

where the timeT of travel between the points depends onxL .
By formally differentiating Eq.~7! with respect toxL , we
obtain

dr

dxL
5

P

R (
i 51

n Fdw i„xL ,T~xL!…

dxL
~xRi2xSi!G2

R

P
~xL2xS!

ixL2xSi2
,

~14!

where

dw i„xL ,T~xL!…

dxL
5

]w i

]xL
1

]w i

]T

dT

dxL
. ~15!

The termU5$]w i /]xL j% is the fundamental matrix ob
tained by integrating first variational equations of the syst
~1! along the orbit segment. The derivative of the flow w
respect to time is just the vector fieldvR at xR and the term
dT/dxL is obtained by differentiating the right boundary co
dition ~5! with respect toxL ,

d fR

dxL
5(

i 51

n Fdw i„xL ,T~xL!…

dxL
vRi1

dvRi

dxL
~xRi2xSi!G50,

~16!

where

dvRi

dxL
5 (

k51

n FdvRi~xR!

dxR

dwk„xL ,T~xL!…

dxL
G , ~17!

and JR5$dvRi /dxR j% is the Jacobian of the vector field i
Eq. ~1! evaluated atxR . The formula~16! and ~17! can be
rearranged to give an explicit expression for the derivative
T with respect toxL :

]T

]xL j
52

(
i 51

n F ~xRi2xSi!(
k51

n

~JRikUk j!1vRiUi j G
(
i 51

n F ~xRi2xSi!(
k51

n

~JRikvRk!1vRi
2 G .

~18!
02621
e
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Finally, according to Eq.~9!, the vectord0 is perpendicu-
lar to gradf L , where

gradf L5
d fL

dxL
5vL1JL~xL2xS!, ~19!

andJL5$]vLi /]xL j% is the Jacobian of the vector fieldv in
Eq. ~1! evaluated atxL . The steady statexS is found by
solving Eq.~2!.

In summary, we have a boundary value problem for
orbit segment, satisfying the boundary conditions~3! and~5!
and the steady state condition~2!; the unknowns arexS ,xL ,
andT. There is one more unknown than the equations, the
fore one unknown may be taken as a free parameter and
problem is solved by a continuation method@13,14#. The
continuation provides a one-parameter family of orbit se
ments. The separation rate~8! is calculated at each poin
along this curve according to Eqs.~12!–~19! and searched
for maximum and minimum values, indicating the thresho
set and the characteristic excitation, respectively. When
peated continuations with sequentially varying external
rameters are made, the threshold set and the characte
excitation can meet and the minimum and maximum val
of the separation rate merge and disappear. A second p
bility is that the relative amplificationr drops below 1 for
any of the two extreme orbits thereby violating constra
~11!. If either of the two possibilities happen, the excitabili
vanishes. Since the threshold trajectory is strongly unsta
a multiple shooting method with nonequidistant time su
intervals is used in practical calculations@15,16# rather than
the simple shooting approach outlined above.

IV. RESULTS AND DISCUSSION

An example of a system providing either oscillatory
excitable dynamics depending on the choice of external
rameters is a chemical reaction of bromate with sulfite a
ferrocyanide in acidic solution~BSF reaction! run in an iso-
thermal flow-through stirred reactor. This reaction is char
terized by large-amplitude oscillations of hydrogen ion co
centration and belongs to the group of so called
oscillators @17#. Dynamics of this system was thorough
studied experimentally@18# and different mechanisms wer
proposed@18,19#.

Following these studies and our experiments@12,20# we
proposed and tested an improved reaction scheme@21,20#
which consists of seven irreversible reactions, and four r
idly equilibrated protonation-deprotonation reactions. Bas
on this mechanism we formulated a 13-variable model t
can be further reduced to two variables, and still capt
accurately all the experimentally observed dynamics and
furcation phenomena@20#. On using mass conservation co
straints, a charge conservation constraint, a quasi-ste
state and quasiequilibrium assumptions, the model is fin
described by two dynamical mass balance equations for
drogen ions H1 and hydrogen sulfite ions HSO3

2 . By denot-
ing the molar concentrationsH5@H1# and HX5@HSO3

2#,
the equations in a flow-through stirred reactor are forma
written as follows:
0-3
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dH

dt
5RH1k0~H02H !, ~20!

dHX

dt
5RHX1k0~HX02HX!. ~21!

The reaction termsRH andRHX are rather involved due to
the reduction of variables and include contributions to the
reaction rates from both reversible and irreversible steps,
Ref. @20# for details. The external parameters are the fl
ratek0 and the inflow concentrationsH0 andHX0. However,
these two concentrations can be related to the inflow con
trationsh0 ands0 of the reactants H2SO4 and Na2SO3 @20#.
Consequently, we seth057.5 mM in correspondence with
experiments@20# and takek0 ands0 as external control pa
rameters. Fixed concentrations of other reactants are
cluded inRH andRHX .

For the valuesk054.531023 s21 and s0570 mM this
model has a weakly acidic steady state SSB (pH'6) and
displays excitability upon a perturbation that lowerspH ~by
adding H1 ions!. Since H1 ion is the activatory~or autocata-
lytic! species in the BSF reaction, we call this type of d
namics anactivatoryexcitability. The one-parameter famil
of orbit segments calculated by the continuation method
described in Sec. III is shown in Fig. 2.

Clearly, the threshold set serves as a boundary separ
orbits that are excitatory~on the left! and those returning
directly to the steady state without any large excursion. F
ure 3 shows the dependence of the relative amplificatior
and the separation ratedr/dP @expressed as sinh21(dr/dP) to
set proper scale# on the perturbation amplitudeP. There is a
maximum and a minimum on thedr/dP vs P curve, corre-
sponding to the threshold set and the characteristic ex
tion, respectively. Figure 3 also shows, that an orbit w
maximum amplification is found between the two critic
orbits.

FIG. 2. Phase portrait for the activatory excitability,k054.5
31023 s21, s0570 mM: full lines, orbit segments found by th
continuation; the threshold set (T) and the characteristic excitatio
~CE! are indicated by thick lines; dashed lines show the bound
condition curves, see Eqs.~3! and ~5!.
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A complementary case to Fig. 2 occurs atk057.7
31024 s21 and s0570 mM, where an acidic steady sta
SSA (pH'4) exists, see Fig. 4. Here a perturbation th
causes excitation should be directed so as to increasepH, for
example, by adding OH2 or SO3

22 ions. These species ar
inhibitors and thus this kind of dynamics is called aninhibi-
tory excitability. The calculateddr/dP vs P dependence pos
sesses similar features as that in Fig. 3 and therefore is o
ted.

Now we are interested in dependence of both extre
orbits and their characteristics on the flow ratek0 for fixed
values of other parameters. The maximumdTS and minimum
dCE of the separation ratedr/dP is plotted againstk0 in Fig.
5. The middle range ofk0 ~marked by dashed lines! is the
range of stable periodic oscillations. There are two sepa
maximum/minimum pairs of curves, one extending to t
right from the oscillatory range and the other one to the le
Those two separate pairs of branches are associated wit
two distinct types of excitability. The right part correspon
to the activatory excitability, see Fig. 2, where excitato
responses at a weakly acidic steady state SSB are invoke
addition of hydrogen ions. The left part is the complement

ry

FIG. 3. Dependence of the relative amplificationr ~full line!,
and sinh21(dr/dP) ~dotted line! on the perturbation sizeP. Param-
eter values as in Fig. 2.

FIG. 4. Phase portrait for the inhibitory excitability,k057.7
31024 s21, s0570 mM; notation of the curves as in Fig. 2.
0-4
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EXCITABLE DYNAMICS AND THRESHOLD SETS IN . . . PHYSICAL REVIEW E69, 026210 ~2004!
case of the inhibitory excitability, see Fig. 4, where exci
tions are elicited by adding hydroxyl or sulfite ions to
acidic steady state SSA; this effectively removes the hyd
gen ions.

Along with the values of maxima and minima, we al
plot values of the relative amplification for the two extrem
trajectories,r TS and r CE . There are two ways of disappea
ance of excitability depending on whether the constraint~11!
holds at the point where Eq.~10! defining the threshold set i
violated, or not. EitherdTS and dCE merge ask0 is varied,
leaving no extreme trajectories, or condition~11! is violated
for an existing threshold set or for its complement, the ch
acteristic excitation. Both cases are found in Fig. 5. On
left side of the oscillatory range the curvesdTC and dCE
merge atk0'431025 s21 while r .1. However, on the
right of the oscillatory regionr TS drops below 1 atk0
'0.1 s21 well beforedTS anddCE merge. For comparison
the dotted vertical lines mark the boundary of vanishing
citability as evaluated from experiments with the BSF s
tem@20#. These experiments rely on measurement of a sin
species (pH in this case! which can indicate only a strongl
developed excitability and that explains a narrower range
excitable dynamics than predicted.

The two limiting values ofk0 for marginal occurrence o
excitability depend on other parameters of the BSF sys
defining thus a boundary of a domain in a parameter sp
where excitability can be found. By addings0 as a second
control parameter, we can calculate this boundary as a c
and display it along with other types of curves bounding
domain of excitability, see Fig. 6. The two branches of va
ishing excitability meet at a cusp point. A second kind
boundary that delimits the domain of excitability corr
sponds to two curves where oscillations appear. This is a
ciated either with a supercritical Hopf bifurcation or with
saddle-node bifurcation on periodic orbit which occu
nearby if the Hopf bifurcation is subcritical. Although th
latter is the present case, we show only curves of the H
bifurcation in Fig. 6 since the saddle-node curves exte
very near to the Hopf curves@20#. Finally, the last type of the

FIG. 5. Dependence of the maximal (dTS) and minimal (dCE)
values of sinh21(dr/dP) on k0 at s0570 mM: dashed lines, bound
of the oscillatory region; dotted lines, bounds of the experiment
observed vanishing excitability.
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curve, separating excitability from bistable steady states
the curve of saddle-node bifurcation on steady states. T
curve is closed and includes two cusp points, the lower
coincides with the cusp where two branches of vanish
excitability meet.

Figure 6 shows that the central part, including the os
latory domain ~OSC! and the domain of two coexisting
stable steady states~SSA and SSB!, separates the two type
of excitability. On the left of the central part is the region
inhibitory excitability ~ESSA! associated with a perturbatio
removing hydrogen ions, on the right is the region of activ
tory excitability ~ESSB! associated with a perturbation ad
ing hydrogen ions. Outside the boundaries of vanishing
citability the system is at one of the nonexcitable sta
steady states~SSA or SSB!. Two parts of the curve of van
ishing excitability marked by crosses correspond to the c
when the threshold set merges with the characteristic exc
tion and the relative amplificationr .1 for both, while the
remaining two parts marked by diamonds correspond tr
51 for one of the two extreme orbits. Clearly, the vanishi
excitability represents a transition that does not change to
logical structure of the phase portrait, that is, it is not a
furcation. Rather, it may be compared to a transition from
focal steady state to a node. However, unlike the focus-n
transition, the vanishing excitability marks a global chan
of the phase portrait. A similar dynamical feature~involving
also a threshold set! is a sudden amplitude increase of pe
odic oscillations referred to as canard phenomenon@22,23#.

The proposed formulation of the threshold set makes
difference between the two types of excitability. However
is useful to make this distinction with regard to the w
excitability fits into the framework of thecross-shaped bifur-
cation diagram@24# as shown in Fig. 6. The cusp region o
multiple steady states and the adjacent oscillatory regio
complemented on both sides by the two types of excitabil

y
FIG. 6. Bifurcation diagram in the parameter planek0-s0 with

marked bounds of vanishing excitability: thin full line, transitio
from nonexcitable to excitable steady states; thick full line, curve
a saddle-node bifurcation on steady states; dashed line, curve
Hopf bifurcation.
0-5
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M. VOSLAŘ AND I. SCHREIBER PHYSICAL REVIEW E69, 026210 ~2004!
each associated with one of the two stable steady states
bifurcation structure may be quite symmetric as that in F
6, in which case both types of excitability are well deve
oped, but it may also be asymmetric and then one of
regions of excitability may be small or even absent.

Both the maximum condition~10! and the additional con
straint ~11! might be altered in a number of ways. We ha
tried several other formulations and found that all of the
provide very similar results in the case of astrongexcitabil-
ity, by which we mean cases with a strongly repelling thre
old set that passes very close to the steady state. On the
hand, in the case of aweak excitability near the point of
disappearance, the threshold is usually only weakly repel
and the perturbation amplitudeP is relatively large. Under
such circumstances only the definition presented h
worked well for this and also for a number of other mod
of excitable systems@21,25#.

Among alternative ways of treating excitability thresho
there is a commonly accepted approach via nullclines in t
variable systems, see, for example, Refs.@1,4#. The
nullclines are obtained by plotting in the phase plane cur
of loci where the time derivative for either of the two var
ables is zero. The intersection~s! of the nullclines defines the
steady state~s!. For the autocatalytic~fast! variable, there is
typically a minimum and a maximum separating the cu
into three branches. The middle one repells trajectories
may be taken as the threshold set. Such a situation is fo
in the FitzHugh—Nagumo-type of equations@1,26,27# where
the nullcline for the fast variable is described by a polyn
mial of third order and the excitable steady state is found
the outer branch past the minimum. In many cases, howe
this determination of the threshold is not useful, since
steady state may as well occur on the middle branch and
makes the threshold perturbation impossible to define. T
situation is typical for the model represented by Eqs.~20!
and ~21!. For example, at s0570 mM and k053

FIG. 7. Phase portrait for the inhibitory excitability showin
orbits approaching a focal steady state,k05331024 s21, s0

570 mM; the threshold setT is indicated by the thick line; the
dash-dotted line shows the nullcline for the variableH.
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31024 s21, Fig. 7 compares the nullcline for the autocat
lytic variable H and the threshold set satisfying conditio
~10! and~11!. A similar situation is found by inspecting Figs
2 and 4. Thus the nullcline method does not allow for det
mination of the~minimal! threshold perturbation and, in ad
dition, it has the inconvenient feature that the threshold is
invariant with respect to the flow of Eq.~1!.

Another way of using the nullcline of the autocatalyt
variable to distinguish between subthreshold and sup
threshold excursions from an excitable steady state is to
a reference point in the phase plane corresponding to on
the extremes of the nullcline as discussed in Ref.@1#. Trajec-
tories winding around such a point are taken as response
superthreshold perturbations. Within the context of t
threshold set discussed in this paper, the extreme on
nullcline would be the end point ofT associated with a nega
tive semiorbit extending from the extreme. This concept p
vides results comparable to those for the inhibitory excita
ity shown in Figs. 4 and 7, where the relevant extreme is
maximum. However, for the activatory excitability shown
Fig. 2 this approach cannot be applied, because the rele
extreme—a minimum—is absent. This turns out to be
rule for the BSF system and is likely to occur in other sy
tems as well. Thus, although intuitive in use, the nullcli
approaches have limitations which the current concept of
threshold set avoids. Also, the description of disappear
excitability as parameters are varied is missing with the c
ventional nullcline methods.

V. CONCLUSIONS

We have outlined a theoretical formulation of a criterio
allowing to determine the threshold set—an orbit segm
that constitutes a boundary between responses to a pert
tion, which are excitatory and those which are not. This f
mulation leads to a boundary value problem with an add
constraint of maximal separation rate. The problem has b
solved numerically by employing multiple shooting meth
for locating an orbit segment satisfying the boundary con
tions ~3!, ~5! and the continuation method for finding a se
ment satisfying the maximum condition~10!. The threshold
set found in this way can be traced in one or more parame
to find transitions from excitable to nonexcitable dynami
Such a transition can occur in two different ways: either
threshold set vanishes by merging with a complementary
bit having a minimum value of the separation ratedr/dP or
the relative amplificationr of either of the two extreme orbits
drops below one. Either way, excitable steady states bec
nonexcitable beyond this transition point. Other transitio
include a transition between excitability and oscillations a
between excitability and bistable steady states. Although
presented example involves only two variables, extension
systems with three variables is currently being elaborate

Excitability is usually defined only loosely@28#, a quan-
titative definition such as presented here is helpful when
ing sequences in periodically perturbed excitable systems
studied @25,29,30#. In these studies, the knowledge of th
threshold set enables us to make a clear distinction betw
excitatory~superthreshold! and nonexcitatory~subthreshold!
0-6
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responses and allows for a characterization of the respon
periodic perturbations by means of a firing number defin
as an average number of excitatory responses per for
period. Recently there have appeared other approache
characterizing the threshold in terms of aT repeller and iso-
chrones@31,32#. As discussed above, our approach tre
both the strong excitability, where the threshold is equival
to a T repeller, and the weak excitability where the conce
of strongly repelling sets may be difficult to apply. In add
tion, the presence of aT repeller by itself does not necessa
ily imply sufficient amplification of the perturbation. Th
quantitative measure provided by Eq.~10! and the constrain
~11! takes into account the distance and position of
threshold set (T repeller! from the steady state, which dete
mines sufficient amplification in agreement with intuitiv
s:

s

t. A

M

.

-

e,

02621
to
d
ng
to

s
t
t

e

definition of excitability. Moreover, a quantitative measu
makes it possible to study transition phenomena associ
with the vanishing excitability. The results presented h
provide a consistent picture relating excitability to bifurc
tion phenomena such as subcritical Hopf bifurcation or m
tiple steady states, a detailed analysis will be subject of
future work.
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